

2048-15

From Core to Crust: Towards an Integrated Vision of Earth's Interior

20 - 24 July 2009

Elastic properties of Earth materials

S. Speziale Helmholtz Centre Potsdam, Germany

Measuring Elastic Properties of Earth Materials

S. Speziale

Deutsches GeoForschungsZentrum Potsdam

The Earth:

Internal structure and composition

GFZ

Helmholtz Centre

from the web

Seismology:

1D structure

PREM

from the web

Seismology:

3D structure, heterogeneity

Mineralogical model of the deep Earth:

The role of mineral physics

Accessing extreme conditions:

Experimental methods

The symmetry of the elastic tensor

 σ_{ij}, \in_{ij} symmetric \rightarrow 6 independent components c_{ij}, s_{ij} (in matrix form) \rightarrow 6×6 components

POTSDAM

Elastic moduli of isotropic media

Dynamic behavior of elastic media:

Equations of motion

$$\rho \ \partial^2 u_i / \partial t^2 = c_{ijkl} \partial^2 u_k / \partial x_j \partial x_l$$

Eulerian finite strain

Anisotropic case

$$\mathsf{E}_{ij} = 1/2[\delta_{ij} - (\partial \mathsf{X}_i / \partial \mathsf{x}_j)(\partial \mathsf{X}_j / \partial \mathsf{x}_i)]$$

Isotropic case

$$E_{ij} = -f \,\delta_{ij}$$

f = 1/2[(V₀/V)^{2/3} - 1] = 1/2[(\rho/\rho_0)^{2/3} - 1]

Helmholtz Centre

Strain dependence of C_{ijkl}:

Free energy

$$F_{T0} = F_0 + 1/2a_{ij}E_iE_j + 1/6a_{ijk}E_iE_jE_k + 1/24a_{ijkl}E_iE_jE_kE_l + ...$$

Elastic constants

$$c_{ijkl,T0} = (1 + 2f)^{7/2} \{ c_{ijkl}^0 + b_1 f + 1/2b_2 f^2 + ... \} - P\Delta_{ijkl}$$

from Stixrude and Lithgow-Bertelloni (2005)

Helmholtz Centre

Temperature dependence of C_{ijkl}

$$\mathbf{c}_{ijkl} = \mathbf{c}_{ijkl,T0} + \rho [\mathbf{c}_1 \Delta \mathbf{U}_q - \mathbf{c}_2 \Delta (\mathbf{C}_V \mathbf{T})]$$

$$c_{1} = F(\gamma_{ij}, \eta_{ijkl}), \ c_{2} = F(\gamma_{ij})$$
$$\gamma_{ij} = -\partial \ln v_{\lambda} / \partial E_{ij} \quad \eta_{ijkl} = \partial \gamma_{ij} / \partial E_{kl}$$

from Stixrude and Lithgow-Bertelloni (2005)

Helmholtz Centre

Aggregate properties

Voigt: uniform
$$\in_{ij}$$
 $\sigma_{ij} = \langle c_{ijkl} \rangle \in_{kl}$
Reuss: uniform σ_{ij} $\in_{ij} = \langle s_{ijkl} \rangle \sigma_{kl}$

GFZ

Aggregate properties

Voigt:
$$M_V = \sum f_i M_i$$

Reuss: $1/M_R = \sum f_i / M_i$

f: volume fraction M: elastic modulus

Helmholtz Centre

Aggregate properties

POTSDAM

Limitations

Anharmonicity

 $(\partial M/\partial T)_{\mathsf{P}} = (\partial M/\partial T)_{\mathsf{V}} + (\partial M/\partial \mathsf{V})_{\mathsf{T}} (\partial \mathsf{V}/\partial \mathsf{T})_{\mathsf{P}}$

GFZ

POTSDAM

Anelasticity

Minerals of the crust

Elasticity of crustal minerals:

Impulsively stimulated light scattering

POTSDAM

Elasticity of crustal minerals: Albite (NaAlSi₃O₈)

Elasticity of crustal minerals:

Diopside [CaMgSiO₃] at high temperature

Resonant ultrasound spectroscopy

from Isaak et al. (2006)

Elasticity of crustal minerals:

Diopside [CaMgSiO₃] at high temperature

from Isaak et al. (2006)

The upper mantle

Cations substitutions

Helmholtz Centre

from the web

Brillouin scattering

Effect of Mg-Fe substitution in olivine [(Mg,Fe)₂SiO₄]

Brillouin scattering

Transition zone

Ol. polymorphs + Garnet-Majorite

- Pressure/Temperature effects
- H incorporation

Helmholtz Centre

from the web

Elasticity of transition zone minerals:

Elasticity of transition zone minerals:

Wadsleyite [β-(Mg,Fe)₂SiO₄]

Ultrasonic interferometry In the Large Volume Press

from Liu et al. (2009)

Helmholtz Centre

Elasticity of transition zone minerals:

Elasticity of transition zone minerals: OH in wadsleyite [β-Mg₂SiO₄]

from Mao et al. (2008)

Elasticity of transition zone minerals: OH in ringwoodite [y-(Mg,Fe)₂SiO₄]

from Jacobsen and Smyth (2006)

Helmholtz Centre

- Perovskite / Postperovskite
- Effect of Spin transition of Fe in (Mg,Fe)O

GFZ

Helmholtz Centre

from the web

Elasticity of lower mantle minerals: Perovskite-postperovskite [(Mg,Fe)SiO₃]

Sound velocity of perovskite (MgSiO₃)

Brillouin scattering

Sound velocity of postperovskite (MgSiO₃)

Brillouin scattering

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

Low sound velocity in Fe-rich postperovskite [(Mg_{0.6}Fe_{0.4})SiO₃]

Nuclear resonant inelastic X-ray scattering

from Mao et al. (2006)

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

Nuclear resonant X-ray inelastic scattering

Single-crystal MgO at 81 GPa:

Shear elastic anisotropy

Velocity anisotropy (measurements):

Marquardt et al. (2009)

Helmholtz Centre

from Marquardt et al. (2009)

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

from Marquardt et al. (2009)

GFZ

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

Effects of Fe spin-transition on ferropericlase [(Mg,Fe)O]

from Cammarano et al. (submitted 2009)

Helmholtz Centre

- Sound velocity of liquid Fe at core conditions

GFZ

Helmholtz Centre

from the web

Elasticity of the outer core

Shock wave velocity measurements

Elasticity of the outer core

Computational and experimental constraints on sound velocity of liquid Fe

Inner core

Solid Fe + alloying elements

- Sound velocity of ε-Fe

- Elastic anisotropy of ε-Fe

Momentum resolved inelastic X-ray scattering

from Fiquet et al. (2001); Antonangeli et al. (2004)

Elasticity of single-crystal hcp Co:

Structural proxy for ε-Fe

Momentum resolved inelastic X-ray scattering

from Antonangeli et al. (2004)

Impulsively stimulated light scattering

from Crowhurst et al. (2004)

Helmholtz Centre

High P-T average velocity for isotropic aggregates

Nuclear resonant X-ray inelastic scattering

from Lin et al. (2005)

Seismic anisotropy of the inner core

from Ishii et al. (2002)

Helmholtz Centre

More complex picture from seismology

from Ishii and Dziewonski (2003)

Helmholtz Centre

New perspectives (my personal view)

Experiments at simultaneous high-pressure and high-temperature

A enormous "thank you" to Hauke (my first student and good friend)

