


Preface 
 

This is a book about the set of coupled atmosphere-ocean phenomena known 
collectively as ENSO (El Niño-Southern Oscillation).  While it will concentrate on what 
is known about ENSO, its mechanism, its effects, and how predictable it is, it will also 
touch on what is known about the paleohistory of ENSO and what we might expect in the 
future as mankind puts CO2 and other radiatively active constituents into the atmosphere. 
The approach, while theoretical and sometimes necessarily mathematical, will 
concentrate on observations and on physical principles. Rigor will be acknowledged and 
appreciated but rarely practiced. When something in  the text is stated to be known, but is 
not explained, the symbol  ☼ (usually accompanied by a reference or footnote) will be 
used. This will be true of all chapters except the Preview (Chapter 1) where much will be 
arbitrarily stated, subsequently to be explained in the rest of the book. 
 

Because ENSO is an intrinsically coupled ocean-atmosphere process, we will 
introduce the essentials of both the tropical atmosphere and ocean and explain the unique 
properties of each medium. Because ENSO is an intrinsically Pacific phenomenon, we 
will explain the unique aspects of the tropical Pacific and which of its features makes it 
particularly congenial for the existence of ENSO. We will describe those tropical 
atmospheric and oceanic mechanisms that ultimately help to explain the mechanism of 
ENSO. While there is not general agreement about what the ENSO mechanism is, we 
would expect that a similar book written a decade or so henceforth would contain much 
of the same material. In pursuit of the ENSO mechanism throughout this book, these 
themes will recur: the ability of warm sea surface temperature to anchor regions of 
persistent precipitation; the ability of regions of persistent precipitation to induce surface 
westerly wind anomalies to the west of these regions; the tendency of anomalously warm 
sea surface temperature anomalies in the Pacific to become warmer by local processes; 
and the tendency of cold sea surface temperature anomalies to be associated with 
shallower thermoclines. 
 

In order to draw the reader into the subject, the book will begin with a Preview 
which will touch lightly on all the subject matter in the remainder of the book. We 
recommend that all readers, regardless of sophistication, read the Preview in order to gain 
a feel for the method and content of the book and to devise a personal plan for reading the 
subsequent chapters. While not everything in the Preview is explained, the important 
topics are introduced and, where explanation is complex or requires the kind of 
mathematical treatment that will be established in a later chapter, a warning will be given 
that the matter cannot be understood without some additional work. 
 

Each chapter will begin with a short précis which will indicate the broad outlines 
of the chapter. The book will conclude with a recap which will mirror, but not repeat, the 
content of the book. It is hoped that in this way, the reader will be able to read the book in 
a manner suitable for his or her ability and needs. Essential mathematics will be relegated 
to the appendices. Some exercises will be interspersed in the chapters in order to give the 
reader the useful practice of deriving some basic results. 
 



The aim of the authors is to produce a book that can be read on many levels by 
many audiences, depending on their interests and capabilities. Anyone reading the 
Preview, the chapter headings, and the final Postview chapter will get a very complete 
idea of what this book is about. We view our audience as scientists who are at least 
familiar with the nature of scientific explanation while perhaps not being familiar with 
the nitty-gritty of fluid mechanics, meteorology, or oceanography. We expect that a 
second year graduate student in meteorology or oceanography would have enough basic 
background to work through the entire book. 

 
This book has two authors but many ancestors. Both authors owe a permanent 

debt to the prime inspiration for our careers in the geosciences, Jule Charney, and it is to 
his memory that this book is dedicated.  
 

This book, and our approach to the material, arose from a series of lectures 
addressed to people of diverse backgrounds and abilities. The lecture series was given 
three times in Fortaleza, Brazil (thanks to the good offices of Antonio Divino Moura and 
Carlos Nobre, with the cooperation of CPTEC and FUNCEME) and twice at the 
International Centre for Theoretical Physics in Trieste, Italy with many thanks to J. 
Shukla and A.D. Moura for setting up the lectures and to Lisa Ianitti for the loving care 
with which she treated the students, the lecturers, and the manuscript. Virginia DiBlasi 
typed an early version of the draft and provided essential technical support throughout, as 
well as much appreciated moral support. Finally, we would like to thank the numerous 
colleagues and students who did so much to shape our ideas over the years in 
conversations, seminars, and correspondence.  Many of their names are scattered 
throughout this book.  We do not educate easily, so we are especially grateful for their 
perseverance. 
 

We are grateful to Virginia DiBlasi, Mike Halpert, Emilia Jin, Alexey Kaplan, 
Billy Kessler, Todd Mitchell, and Jenny Nakamura for special efforts in providing figures 
for our use in the book. 
 

ESS was supported throughout the writing of this book by grants from the NOAA 
Climate Office to the JISAO Center for Science in the Earth System at the University of 
Washington and owes special thanks to his Program Managers, Ming Ji and Chet 
Ropelewski, for their encouragement and forbearance in the (too) long writing of this 
book. This book was begun on a sabbatical leave supported by the University of 
Washington. 
 

MAC’s contributions were supported by the Vetlesen Foundation, by NASA, 
NSF, and, most importantly, by NOAA’s Office of Global Programs. Particular thanks to 
Mike Hall and Ken Mooney for their inspired and inspiring leadership in enabling so 
much of the science that is the content of this book.  
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1. Preview 
 

This chapter serves as an introduction and preview for the entire book. Topics will be 
broadly introduced, to be better and more completely explained in the sequel. 
 

1.1 The Maritime Tropics 
 

It may surprise people living in the mid-latitudes that the tropics have such an 
overwhelming role in the climate of the earth. Yet it has been shown time and time again that 
the maritime tropics is the only region on earth where changes in the surface boundary 
condition, especially sea surface temperature (SST), has a demonstrable and robust causal 
correlation with weather effects in mid-latitudes. This happens through the ability of warm 
sea surface temperature anomalies (deviations of sea surface temperature from its normal 
value for that time of year) to organize deep cumulonimbus convection and plentiful rainfall 
which can then emit large scale planetary waves which subsequently  travel to higher 
latitudes. The changes of SST, the formation of regions of persistent precipitation, and the 
resulting forcing of the mid-latitude motions by these regions of persistent precipitation, form 
a set of themes that appear and recur throughout this book. 
 

It is a good rule of thumb (these rules of thumb will be examined in much greater 
detail in the body of the book), in the tropical Pacific in particular, that regions of persistent 
precipitation lie over the warmest water and a good rule of thumb that in the presence of 
persistent precipitation, the net synoptic motion is upward and the sea level pressure low. 
With these rules of thumb, we are in a position to describe the normal conditions over the 
tropical Pacific, the main region of interest in this book. 
 

1.2 The Normal Tropical Pacific 
 

The tropical Pacific extends from the coast of South America in the eastern Pacific to 
the various islands and land masses of Australia and Indonesia that form the so-called 
“maritime continent”, a somewhat paradoxical idea expressing a collection of land masses 
without there actually being a land continent present (Fig. 1.1). In particular, the equator runs 
from Ecuador in the east (at 80°W) to Indonesia in the west--the first land the equator crosses 
in the western Pacific is Halmehera at 129°E and then the more substantial Sulewesi at 
120°E. Taking Halmahera as the western boundary of the Pacific gives a total length on the 
equator of 131 degrees of longitude or 14,541 km, more that one third of the total distance 
around the globe. 
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Fig. 1.1: The Tropical Pacific, including the definition of the four Niño regions. (Courtesy of 
the NOAA Climate Prediction Center)  

 
The climatic state in and over the tropical Pacific is given by a convenient cartoon 

(Fig. 1.2). The surface of the western Pacific is warm and the atmosphere above it is rainy, 
with the rain coming from deep cumulonimbus clouds. The air rises in the region of the 
warm water and the rising air is characterized by  low pressure at the surface. The winds 
across the surface of the tropical Pacific blow westward into the region of low pressure, 
consistent with  the westward trade winds. The rising motion in the warm region reaches the 
tropopause and returns eastward aloft and completes the circuit by descending in the eastern 
Pacific leading to higher pressure at the surface.  

 
Fig. 1.2: Schematic of the normal state of the coupled atmosphere-ocean system in the 
tropical Pacific during boreal winter. The shading on the surface of the ocean represents sea 
surface temperature, warm in the west and cooler to the east and southwest. (Courtesy of the 
NOAA Climate Prediction Center) 
 

This tropical Pacific-wide circuit of air proceeding westward at the surface, rising 
over the (warm) region of persistent precipitation, returning eastward aloft, and descending 
over the cool eastern Pacific, is called the Walker circulation. Associated with the Walker 
circulation is the low surface pressure in the western Pacific and the high surface pressure in 
the east. A measure of the strength of the Walker circulation is the difference of the surface 
pressure between the east and west--this difference is conventionally called the Southern 
Oscillation Index (SOI) --we will see below the oscillation to which it refers. When the 
Walker circulation is strong, the pressure in the west is low and the pressure in the east is 



high--the SOI is then less negative. When the Walker circulation is weak, the SOI is more 
negative.  
 

The oceanic part of Fig. 1.2 is driven by the westward surface winds, the surface 
expression of the Walker circulation in the atmosphere. The feature in the ocean called the 
thermocline is a near ubiquitous property of the oceans. In the tropics it is a region of such 
sharp temperature change in the vertical that one may vertically divide the ocean into only 
two regions, one with warm temperatures and one where the temperatures are cold. The 
thermocline demarcates the warm water sphere near the surface from the cold water sphere 
below. We will show later that the deeper thermocline in the western Pacific is caused by the 
westward winds at the surface of the ocean. Thus the stronger the westward surface winds 
(due to a strong Walker circulation), the deeper the thermocline in the west and the shallower 
the thermocline in the east. The tilt of the thermocline in the ocean is a measure of the 
strength of the westward surface winds and therefore another measure of the strength of the 
Walker circulation. The chain of reasoning is continued by noting that the east-west 
temperature difference, which may be considered to drive the atmospheric motion, is indeed 
unexpected, since the sun shines equally on the western and eastern Pacific.  
 

The mechanism responsible for the mean east-west sea surface temperature (SST) 
difference involves both the atmosphere and the ocean. The mean westward surface winds 
drives ocean motion poleward in both the Northern and Southern Hemispheres within fifty or 
so meters of the surface very near the equator. Water moving poleward must be replaced by 
water upwelling on the equator from below. In the eastern Pacific, the thermocline (recall 
that the thermocline is the demarcation between warm and cold water) is shallower than 50 m 
so that cold water is upwelled on the equator causing the SST to be cold. In the western 
Pacific, the thermocline lies below 50m and while upwelling still occurs, it simply brings up 
warm water from above the thermocline allowing the Western Pacific SST to remain warm.  
Heat put into the ocean from the atmosphere counteracts the upwelling influence on SST but 
it does not win the contest: the eastern Pacific remains cooler than te west. 
 

The cold SST in the eastern Pacific is spread poleward several degrees of latitude  by 
the ocean motions until it encounters another warm region in the northern (but not southern) 
hemisphere caused by an eastward ocean current. There is again rising motion in the 
atmosphere above this warm water and a line of deep convection extends pretty much across 
the entire Pacific at an average latitude of about 6˚ N. This region of deep convection is 
called the Intertropical Convergence Zone (ITCZ) and forms the rising tropical branch of a 
north-south circulation called the Hadley circulation.   
 

Though unmentioned thus far, there is a pronounced seasonal cycle in the tropical 
Pacific.  Unlike midlatitudes, the seasonal extremes are in March-April when the eastern 
equatorial Pacific is warmest and the ITCZ is closest to the equator, and September-October 
when the eastern SST is coldest and the ITCZ is furthest north. Since the SSTs in the western 
Pacific vary only by about 1°C, the seasonal variations in the east-west gradient co-vary with 
the eastern Pacific SSTs: weakest in boreal spring, strongest in fall.  This annual cycle has a 
strong influence on evolution of ENSO phases, which exhibit a marked tendency to be phase-



locked to the annual cycle, growing through the (northern) summer and autumn to reach a 
winter peak. 
 

1.3 The Phases of ENSO 
 
 Superimposed on the normal state of the tropical Pacific is an irregular cycle of 
warming and cooling of the eastern Pacific with attendant atmospheric and oceanic effects, 
the panoply of which will be referred to as ENSO. Fig. 1.3 shows conditions in and over the 
tropical Pacific during warm phases of ENSO. 
 

 
Fig 1.3:.Schematic of the coupled atmosphere-ocean in the Tropical Pacific during the peak 
of a warm phase of ENSO  during boreal winter. (Courtesy of the NOAA Climate Prediction 
Center) 
 

The eastern Pacific warms and can warm to such an extent that the temperature across 
the entire tropical Pacific assumes an almost uniform temperature. That the temperature 
reached is that of the western Pacific rather than that of the eastern Pacific indicates that the 
warm phase of ENSO is due to a failure of the eastern Pacific to stay cold. Consistent with 
this point of view is the relaxation of the westward surface winds (the figure shows the 
anomalous winds which are the winds that must be added to the normal winds to produce the 
present winds---in the figure, eastward winds are added to the normal westward winds to 
produce weakened westward winds) which produces less upwelling and therefore less 
cooling. Consistent with weaker westward winds, the thermocline is not as tilted and any 
upwelling in the eastern Pacific would bring warmer water to the surface. When the cooling 
in the eastern Pacific is totally gone and the westward surface winds relaxed to almost zero, 
the warm phase of ENSO is as strong as it can be and the temperature over the entire tropical 
Pacific is uniform and assumes the approximate temperature of the western Pacific. This 
happened in the strong warm phases of ENSO during 1982/3 and 1997/8.  
 



As the eastern Pacific becomes less cold, the region of persistent precipitation that 
lies over the warmest water expands eastward into the central Pacific. The normally high sea 
level pressure (SLP) of the eastern Pacific becomes lower and the sea level pressure 
difference between the western and eastern Pacific decreases. Consistent with this decrease is 
the weakening of the Walker circulation and the relaxation of the normally westward surface 
winds. As the central and eastern tropical Pacific becomes warm, the ITCZ moves onto the 
equator and the line of deep convection assumes its southernmost position and the Hadley 
circulation becomes stronger.  
 

The effect of the warming of the eastern Pacific, and the consequent eastward 
movement of the region of persistent precipitation, is felt throughout the world (Fig. 1.4). In 
the tropics, the normally rainy western Pacific becomes dryer as the region of persistent 
precipitation moves eastward into the central Pacific. Droughts in Indonesia and in eastern 
Australia become far more common during the warm phases of ENSO. Rainfall in the 
normally arid coastal plains of Peru becomes far more likely and warm water spreads north 
and south along the western coasts of the north and south American continents. The 
temperature and rainfall in other selected areas of the world (e.g. Zimbabwe, Madagascar) 
are similarly affected even though the reasons are either difficult to explain or unknown. 
 

 

 
 
Fig 1.4a: Composite effects of warm phase of ENSO on global climate during boreal winter. 
(Courtesy of the NOAA Climate Prediction Center) 

 
During cold phases of ENSO, the normal cooling of the eastern Pacific becomes even 

stronger, the surface pressure difference between the eastern Pacific and western Pacific 
becomes stronger and the Walker circulation in general becomes stronger. Consistent with 
this, the surface westward winds become stronger, the tilt of the thermocline becomes 
greater, the stronger westward winds in the eastern Pacific produce even more upwelling and, 
because the thermocline is closer to the surface, the water upwelled is colder. The regions of 
warmest water in the western Pacific contracts westward under the encroachment of cold 
water in the east and, with the warm water, the region of persistent precipitation contracts 
westward onto the maritime continent. Excess rainfall in Indonesia and western Australia 
become far more common during cold phases of ENSO. 
 



 
Fig. 1.5 Schematic of the coupled atmosphere-ocean in the Tropical Pacific during the peak 
of a cold phase of ENSO during boreal winter. (Courtesy of the NOAA Climate Prediction 
Center.) 
 

The SST anomalies (the deviations from the normal) look, in many ways, the obverse 
of each other (Fig. 1.6). 

 

 

 
Fig 1.6  Upper panel: SST anomalies for warm phase of ENSO during  December 1991 
Lower Panel: SST anomalies for cold phase of ENSO during December 1988. (Downloaded 
and plotted from http://iridl.ldeo.columbia.edu/ using the Reynolds et al, 2002, updated SST 
data set.) 



 
It must be kept in mind, however, that in many ways, cold and warm phases are 

fundamentally different because the quantities that affect the remote atmosphere are not the 
SST anomalies, but rather the mean location of the regions of persistent precipitation. In the 
warm phase of ENSO, persistent precipitation extends into the central Pacific while during 
the cold phases of ENSO retreats to the far western Pacific. The SST anomalies can be the 
inverse of each other but the mean location of the heat source, which drives the response in 
the low and mid latitudes, is very different. Because the rest of the world is forced by these 
regions of persistent precipitation and because these regions are in different locations for 
warm and cold phases of ENSO, there is no expectation that the global effects will be the 
negative of each other. Fig 1.4b shows that during cold phases of ENSO, there are some 
similarities and significant differences in the global response.  
 

 
 
Fig 1.4b. Composite effects of cold phase of ENSO on global climate during boreal winter. 
(Courtesy of the NOAA Climate Prediction Center 

1.4 Evolution of Phases of ENSO 
 

While we will go into greater detail in later chapters, we simply note here that the 
phases of ENSO evolves differently each time they appear. The general recurrence time for 
warm and cold phases is around 4 years with large variations around this mean. The literature 
often speaks of an “ENSO band” from 2 to 7 years. 
 



 
Fig 1.7 Nino region anomalies and Southern Oscillation Index with respect to the respective 
means of 1985-1994. (Courtesy Todd Mitchell. Extended version of Plate 2 of  Wallace et 
al., 1998.) 
 

One way of describing ENSO evolution with time is to examine the SST anomalies in 
various regions of the Pacific defined by Fig. 1.1. Fig 1.7 shows the SST anomalies since 
1980 in the various regions of the Pacific and a measure of the strength of the Walker 
circulation, the Southern Oscillation Index (SOI). We can infer a number of important 
properties of the warm and cold phases of ENSO by examining this Figure. First we see that 
the major phases of ENSO tend to have expression all the way across the Pacific,  from the 
coast of South America (Nino 1+2) to the western Pacific (Nino 4). Second that the major 
warm and cold phases tend to set on across the entire Pacific at about the same time. Third, 
that the larger events seem to start around summer, peak near the end of the year, and end 
before the next summer so that the length of warm and cold phases is about a year. Fourth, 
that there are stretches of time in which not much is happening in the tropical Pacific (the 
entire 1930s were noted for having no major warm or cold phases---see Fig. 1.17) and that 
these times are punctuated by the appearance of large phases of ENSO. It is worth 
mentioning that the  warm phases in 1982/3 and 1997/8 were the largest of the century.  
 
 

1.5 Physical ENSO Processes 
 

According to what we’ve see so far, we need to understand how the SST anomalies 
characteristic of ENSO are produced, and how the connections of SST with sea level 
pressure, precipitation, surface winds, the depth of the thermocline and remote precipitation 
and temperature are accomplished. Once we have a firm idea of the operation of each of 
these processes, we will have to know how they fit together to produce ENSO. 
 



1.5.1 The Processes that Change SST 
 

The temperature of ocean water can change either by directly adding heat (say from 
the sun) or by mixing with water of a different temperature. Because the ocean has no 
significant internal heat sources, heat can only be added directly at the surface. Heat added at 
the surface is basically a balance between solar radiation and evaporation: any solar radiation 
reaching the surface that does not evaporate water is available to cross the ocean surface and 
heat the ocean water. In general, when water cools, evaporation decreases, and when water 
warms, evaporation increases. To the extent that the solar radiation reaching the surface is 
independent of the temperature of the underlying ocean (not entirely true since the overlying 
cloudiness can change), warm surface water will have more evaporation and therefore less 
heat entering the ocean across the surface. Similarly, cooler water will have less evaporation 
and therefore more heat entering the ocean. Clearly, therefore, the heat at the surface of the 
ocean tends to oppose the temperature changes.  

 
If we consider a bit of water near the ocean surface, the temperature can change if it is 

heated by heat entering the ocean through the surface, if it mixes with warm or cold water 
entering from the sides, or if it is cooled by water entering from below. 

 

 
Fig. 1.8. Schematic of vertical heat inputs into the tropical ocean mixed layer. 
 
 

In the eastern Pacific, water at the surface is constantly cooled by water upwelled 
from below the thermocline and this cooling is opposed by heat entering through the surface. 
In the western Pacific, the temperature of the water is determined by the interactions with the 
atmosphere.  It is approximately in equilibrium with the atmosphere and is neither cooled 
from below nor heated from the atmosphere above. If the upwelling in the east were to 
decrease to a new, but smaller, steady value, not as much cold water would be brought up 
from below and the heat entering from the surface would warm the water until it reached a 
new not as cool temperature--this would be a warm SST anomaly. The evaporation would 
increase, the heat entering though the surface would decrease and the water near the surface 
would reach a new warmer equilibrium, cooled not as much from below and heated not as 
much from above.  The water could also warm if it mixed with warmer water form the west 
or perhaps from the north. In either case, warm SST anomalies would be associated with 
more evaporation and therefore less heating of the ocean surface from above.  

Surface 

Heat from  
Atmosphere 

Upwelling of 
Cold Water 



 

1.5.2 The Process by which Warm SST Anchors Regions of Persistent Precipitation 
 

Warm regions tend to have lighter air above these regions as the air is warmed by the 
surface. Warm air is light and since surface pressure is the total weight of the air above it, the 
surface pressure tends to be smaller above warm tropical regions. Air from surrounding 
higher pressure regions rush in and is warmed, moistened, and raised.  Rising air condenses 
and the heat of condensation raises the air further. If the underlying SST is warm enough, 
about 28° or 29° C, the clouds can reach to the top of the atmosphere (the tropopause) and 
regions of deep cumulonimbus convection result. The averaged amount of rain that falls is 
equal to the local evaporation plus the amount of moisture that converges into the region. 
Moisture exists mostly in the lowest one or two kilometers of the atmosphere so it is the low 
level moist air that converges into the region that provides the additional moisture for the 
rainfall.  The overall picture may be sketched as in Fig. 1.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.9 Schematic of the convergence of moisture into deep cumulonimbus clouds over 
regions of warm SST.  
 

1.5.3 The Processes by which Regions of Persistent Precipitation Produce Surface 
Winds 
 

It is not an easy matter to understand how regions of persistent precipitation force 
surface winds and a full explanation can only come from the deeper considerations in 
Chapter 5. The problem however can be stated relatively straightforwardly. 
 

A region of persistent precipitation is one in which deep cumulonimbus clouds 
constantly rain in a given area and therefore constantly condense heat into the atmosphere. 

Moisture 

Warm SST 
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Because so much heat is being condensed into the atmosphere in these regions, regions of 
persistent precipitation are said to “thermally force” the atmosphere.  
 

Clouds have their base at about 600m above the ocean surface in the tropics so that 
any thermal forcing by the cumulonimbus convection occurs only above the cloud base. The 
problem then is to get the region of thermal forcing to transmit its forcing down below cloud 
base to the surface. 
 

There is an alternate mechanism that seems also to affect the winds in the maritime 
tropics. As we pointed out in the previous section, warm SST tends to have lighter air above 
it and cold SST heavier air. The subsequent pressure gradients can drive surface winds into 
the warm region and these will be in roughly the same direction as those forced by the 
cumulonimbus convection.  
 

1.5.4 The Processes by which Surface Winds Change Thermocline Depth 
 

Since SST changes in the tropical Pacific are due primarily to changes in upwelling of 
cold water from below, and since the efficacy of this upwelling depends on the location of 
the thermocline (the deeper the thermocline, the further from the surface is the cold water) 
we have to be able to find the depth of the thermocline and how it changes.  
 

Let us assume the processes that determine the average depth of the thermocline 
occur on long time scales and, from the point of view of ENSO dynamics, may be considered 
given. In the absence of any equatorial winds, the depth of the thermocline would be about 
100m and independent of longitude (Fig 1.10a)—below the thermocline is the deep ocean.  
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Fig 1.10 Schematic of effect of wind stress on thermocline depth and sea level height. a) 
Upper 100 meters of ocean is bounded below by the thermocline and above by the sea 
surface. Without winds, both are flat. b)  Response to an easterly wind stress anomaly. The 
sea level height tilts up to the west while the thermocline deepens to the west.  
 
 

In the presence of a westward wind (Fig. 1.10b), water is moved westward on the 
equator and piles up against the western boundary until the westward force (stress) exerted 
by the wind is balanced by the eastward force exerted by the higher pressure due to the 
greater weight of the water in the west. If the wind was suddenly removed, the water would 
flow eastward until the conditions of Fig. 1.10a were restored.  Across the entire Pacific, the 
sea level is about 40cm higher in the west than in the east.  
 

When the water piles up in the west, the thermocline moves down in a way that the 
total weight of water down to the bottom doesn’t change (if it did change, there would be 
unbalanced forces in the deep ocean.)  The water above the thermocline is lighter than the 
water below by a small amount so that a large amount of light water is needed to balance the 
small amount of sea level rise—the thickness of light water above the thermocline must 
therefore increase and the thermocline must descend. Similarly, if the winds were from the 
west, the sea level would rise and the thermocline descend in the east.  
 

Imagine now that a finite region of eastward wind anomaly (i.e. a westerly wind 
patch) blows over the surface of the equatorial ocean. Superimposed on whatever else is 
happening would be the picture in Fig. 1.11 where only the deviation of the thermocline (and 
not the small deviation of sea level) is shown. 
 

 
 
Fig 1.11 Schematic of the response of the thermocline to a westerly wind anomaly (arrow) of 
limited zonal extent. The thermocline deepens not only at the eastern end of the wind patch 
but also everywhere to the east of the wind patch. Similarly the thermocline rises not only at 
the western end of the wind patch but everywhere to the west of the wind patch.  



 
The figure shows the final steady stage of the thermocline—it has deepened not only 

in the east of the region of the winds, but everywhere to the east, and has risen, not only in 
the western part of the region of the winds, but everywhere to the west. It does this through a 
time dependent process of the adjustment of the thermocline to the winds. This adjustment 
takes place thorough a signaling process in which the signals have properties of equatorial 
waves, in particular Kelvin waves traveling to the east and Rossby waves traveling to the 
west. In the presence of real boundaries to the east and west of the wind patch, the signals are 
reflected and work their way back into the basin. 
 
 

1.5.5. The Processes by which Regions of Persistent Precipitation Affect Regions 
Remote from the Tropical Pacific 
 

 
 
Fig 1.12 Schematic of how the upper level divergence in regions of persistent precipitation 
(i.e. in thermal sources) forces a poleward progression of planetary waves at upper levels 
which subsequently moves the storm tracks. (From Trenberth et al., 1998.) 
 

The remote effects of ENSO arise from the motion of the regions of persistent 
precipitation and the subsequent thermal forcing of the atmosphere by the latent heat released 
in the process of cumulus condensation and precipitation. The air rising at upper levels of the 
atmosphere eventually diverge and according to one way of looking at the problem (Fig. 
1.12) , the divergence region acts as a source of planetary waves at the upper levels of the 
atmosphere that propagate into the mid-latitudes as a series of cyclonic (L in Fig 1.12)  and 
anticyclonic (H) features. Because the high and low pressure areas (H and L in Fig 1.12) 
move the jet streams, the storm paths are moved. (Fig. 1.13).  During warm phases of ENSO, 
thermal forcing puts a low pressure area in the Gulf of Alaska. Air blows counterclockwise 



around the low and brings warm air into the Pacific Northwest. The low pressure area also 
moves the storm track southward and brings excess rain to California and Baja California and 
leaves the Pacific Northwest relatively dry. During cold phases of ENSO, the mechanism of 
Fig 1.12 produces a high pressure region in the Gulf of Alaska, cold clockwise flow into the 
Pacific Northwest, and a northward displacement of the storm track bringing excess 
precipitation into the Pacific Northwest and leaving California and Baja California relatively 
dry. 
 

 
 

Fig 1.13 Effects of warm (Upper Panel) and cold phases (Lower Panel) of ENSO on blocking 
and stormtracks in the Northeast Pacific. (Fig 1.4b. Composite effects of cold phase of 
ENSO on global climate during boreal winter. (Courtesy of the NOAA Climate Prediction 
Center) 
 

While Fig 1.12 shows the generation of planetary highs and lows at upper levels only, 
a more complete theory of generation of planetary waves would show that thermal forcing in 
the tropics by cumulonimbus convection throughout the atmosphere (not only at upper 
levels) creates planetary  motions that propagate to higher latitudes. Only those motions that 
are relatively independent of height reach high latitudes and the results of Fig 1.13 then 
follow. 
 
 

1.6 Modeling ENSO 
 



If the processes introduced in section 1.5 were complete and accurately portrayed in a 
coupled atmosphere-ocean model, we would expect that ENSO would be the natural result of 
the coupling of the atmosphere and the ocean. The first coupled atmosphere-ocean model of 
ENSO (the Zebiak-Cane model) took care to represent: the regions of persistent precipitation 
over the warmest water; the westerly surface winds to the west of the regions of persistent 
precipitation; the processes that change SST in the surface layer of the ocean; and the correct 
effects of the winds on the thermocline depth. What the model did not calculate, but rather 
specified, was the correct annual cycle in the Pacific and simply calculated the anomalies 
with respect to this annual cycle. The model produced a recognizable version of the ENSO 
phenomenon in agreement with reality in important ways. 
 

 
 
Fig 1.14 Time series of simulated Nino3 (solid) and Nino4 (dotted) indices. (From Zebiak 
and Cane, 1987.) 
 

The spatial structure and amplitude of the warm and cold phases have a good 
correspondence with nature (viz. Fig 1.15) and occur irregularly with an average period of 
about 4 years (Fig. 1.14). As in the observations, there are long periods where not much 
happens, and periods when the events seem to occur relatively regularly. Both warm and cold 
phases have the correct tendency to peak near the end of the calendar year, and the amplitude 
of the warm events is greater than that of the cold events.   Among the discrepancies with 
nature, the model events tend to last too long, and set on over the entire eastern Pacific 
simultaneously more consistently than nature’s version. 
 

 
 



Fig 1.15 December SST anomaly at peak of simulated warm phase of ENSO. (From Zebiak 
and Cane, 1987.) 
 

1.7. Observing and Predicting ENSO 
 

Why would we even suppose that the phases of ENSO could be predicted? There 
would have to be something of long time scale that carries the information from the time we 
started the forecast to the verification time (the time at which we compared the prediction to 
the actual state of the system). Even if we didn’t know what this something was (it has to be 
something in the ocean since atmospheric time scales are quite short—of order a few days), 
we did see that the evolution of ENSO phases takes place slowly, the  
phases beginning around summer, growing to reach maximum toward the end of the year, 
and decaying into the spring of the next year. If we could therefore recognize the 
characteristic features of SST anomaly growth before the summer, we would be able to make 
a prediction for the following winter. To do this, we use models--- but this requires that we 
know what is the current state of the ocean. Fortunately we have an observing system that 
was designed to tell us just this.  
 

The observing system has combinations of instruments to measure the thermal state 
of the upper ocean throughout the tropics in the Pacific (in particular the SST and the depth 
of the thermocline), to measure the surface winds, and to estimate the heat fluxes. The data is 
telemetered once a day by satellite and made available to  everyone. 
 

 
Fig 1.16 The ENSO observing system established by the TOGA program at the end of 
TOGA in December 1994. Solid diamonds are bottom moored buoys taking both upper 
ocean measurements and surface meteorological measurements. Open circles are tide gauge 
stations, solid lines are ship tracks on which traditional meteorological measurements and 
some shipboard ocean measurements are taken, and arrows are drifting buoys. (From 
McPhaden et al., 1998.) 
 



There are numerous schemes in use for predicting ENSO, many of which have 
roughly the same skill. (More precisely, in view of the short record used for most forecasts, 
one cannot say that one is significantly better than another at a high level of confidence.) 
They can be divided into two classes: statistical methods relying on empirically determined 
relationships between states in the future and states in the past, and dynamical methods, using 
numerical models that incorporate equations describing physical laws for the ocean, 
atmosphere and their interaction. There are also hybrid methods with statistical add-ons to a 
dynamical model. Our understanding of ENSO puts the long memory of the system in the 
distribution of upper ocean heat content, or equivalently, the displacement of the 
thermocline. This does not mean that all prediction schemes must make explicit use of this 
field, and in fact most statistical schemes rely solely on SST, the variable with the longest set 
of reliable observations, and therefore the longest history to use in training an empirical 
model. There is no contradiction here; if the SST field encodes the essential thermocline 
information in some way explicit use of the latter is not necessary. 
 

The dynamical approach casts prediction as what is mathematically an initial value 
problem. The model starts from an initial state at a time t0 and is integrated forward into the 
future, simulating the evolution of nature. If the model flaws are not too incapacitating, and 
the initial model state bears a sufficient resemblance to the state of nature at time t0, then that 
simulation may be realistic enough to yield a good prediction of what nature will do. We say 
“may” because the climate system is chaotic, which means that its evolution into the future is 
highly sensitive to the initial state. Since we cannot know all the variables that comprise this 
state perfectly at all places, some uncertainty in the starting point of our forecast is 
unavoidable, and hence we cannot be sure which among a range of possible futures will be 
the one that actually occurs. 
 

We face up to this intrinsic limitation in our ability to forecast the future by running 
an ensemble of forecasts, each with different plausible initial conditions, which results in a 
distribution of possible future states. We might, for example, initialize our model with the 
state of the atmosphere and ocean on successive days. The ocean changes very little over the 
course of a few weeks, but the atmospheric states (which might be taken from the 
sophisticated analyses of daily initial states used at a major weather prediction center for 
weather prediction) change quite a lot. Any of these daily states is an equally plausible initial 
forecast state, but the model forecasts of ENSO a few seasons hence could be quite different. 
The ensemble of predictions from all these states gives a mean forecast and a range of 
possibilities: this is the best we can do. Sometimes this range is narrow and the forecast is 
rather definite; sometimes it is broad and the forecast is highly uncertain. In either case, it 
could be wrong. Our coupled ocean-atmosphere models are, at present, seriously flawed, and 
our procedures for creating initial states by combining all available observational data with 
fields from the model to create a complete best estimate of the initial state for a coupled 
ocean-atmosphere model – a process known as data assimilation – are still quite primitive in 
comparison to the comparable state of the art in weather prediction.  
 

Suffice it to say that forecast procedures are in regular operation in a number of 
places throughout the world and the forecasts are proving to have skill several seasons in 



advance. The forecasts have some skill but are not perfect. How to use the results of forecasts 
that have uncertainty is a subject in itself.  
 
 

1.8. Towards a Theory of ENSO 
 

The most widely accepted explanation for ENSO is built upon Jacob Bjerknes’ (1969) 
masterpiece of physical reasoning from observational data.  Bjerknes marked the peculiar 
character of the “normal” equatorial Pacific we noted above: although the equatorial oceans all 
receive about the same solar insolation, the Pacific is 4-10°C colder in the east than in the west 
(see Figure 1.2).  The east is cold because of equatorial upwelling, the raising of the thermocline 
exposing colder waters, and the transport of cold water from the South Pacific.  All of these are 
dynamical features driven by the easterly trade winds.  But the winds are due, in part, to the 
temperature contrast in the ocean, which results in higher sea level atmospheric pressures in the 
east than the west.  The surface air flows down this gradient.  Thus the state of the tropical 
Pacific is maintained by a coupled positive feedback:  colder temperatures in the east drive 
stronger easterlies which in turn drive greater upwelling, pull the thermocline up more strongly, 
and transport cold waters faster, making the temperatures colder still.  Bjerknes, writing in the 
heyday of atomic energy, referred to it as a “chain reaction”.  We now prefer “positive 
feedback” or “instability”. 
 

Bjerknes went on to explain the warm El Niño state with the same mechanism.  Suppose 
the east starts to warm; for example, because the thermocline is depressed.  Then the east-west 
SST contrast is reduced so the pressure gradient and the winds weaken.  The weaker winds 
bring weaker upwelling, a sinking thermocline, and slower transports of cold water.  The 
positive feedback between ocean and atmosphere is operating in the opposite sense (see Figure 
1.3).  Note that this explanation locks together the eastern Pacific SST and the pressure gradient 
– the Southern Oscillation – into a single mode of the ocean-atmosphere system, ENSO. 
 

Bjerknes’ mechanism explains why the system has two favored states but not why it 
oscillates between them.  That part of the story relies on the understanding of equatorial ocean 
dynamics that developed in the two decades after he wrote.  The key variable is the depth of the 
thermocline, or, equivalently, the amount of warm water above the thermocline.  The depth 
changes in this warm layer associated with ENSO are much too large to be due to exchanges of 
heat with the atmosphere; they are a consequence of wind driven ocean dynamics.  While the 
wind and SST changes in the ENSO cycle are tightly locked together, the sluggish thermocline 
changes are not in phase with the winds driving them.  Every oscillation must contain some 
element that is not perfectly in phase with the other and for ENSO it is the tropical thermocline.   
In particular, it is the mean depth of the thermocline -- equivalently, the heat content -- in the 
equatorial region.  The most widely accepted account of the underlying dynamics emphasizes 
wave propagation and is referred to as the “delayed oscillator”.  Some authors regard the 
recharge-discharge of the equatorial ocean heat content as the essence of the oscillation.  Others 
emphasize the role of ocean-atmosphere interactions in the western Pacific.  One point of view 
(that of the authors) is that these are different descriptions of what is the same essential physics.  
 



There are two elements in this story: the coupled Bjerknes feedback and the (linear) 
ocean dynamics, which introduces the out-of-phase element required to make an oscillator.  If 
the coupling is very strong, then the direct link from westerly wind anomaly to deeper eastern 
thermocline to warmer SST and back to increased westerly anomaly would build too quickly for 
the out-of-phase signals to ever catch up.  There would be no oscillation.  If this coupling 
strength is not quite so strong, then oscillations become possible as the delayed signal can now 
catch up and overtake the directly forced component.  If the coupling strength is not strong 
enough, then there can be no oscillations because an initial small disturbance is no longer 
reinforced and will die out.  However, oscillations in this weaker system could be sustained if 
we add some forcing. This forcing need not be very organized; it could be “weather noise”.  As 
one crosses a threshold from self-sustained oscillations to noise-driven oscillations, the 
characteristics of the oscillations do not change very much; in fact, we are not sure in which 
regime the real world lies. 
 

The “coupling strength” is determined by a host of physical factors.  Among the most 
important: how strong the mean wind is, which influences how much wind stress is realized 
from a wind anomaly; how much atmospheric heating is generated by a given SST change, 
which will depend on mean atmospheric temperature and humidity; how sharp and deep the 
climatological thermocline is, which together determine how big a change in the temperature of 
upwelled water is realized from a given wind-driven change in the thermocline depth. 
 

In simple linear analyses the ENSO period is determined more by the coupling strength 
than the time for waves to travel back and forth across the Pacific.  In more realistic nonlinear 
models this general statement still holds, but in contrast to the linear case the periods tend to 
stay within the 2-7 year band.  There is no satisfactory theory explaining why this is so, or more 
generally, what sets the average period of the ENSO cycle.  There is broad disagreement as to 
why the cycle is irregular; some attribute it to low order chaotic dynamics, some to noise –
weather systems and intraseasonal oscillations --  shaking what is essentially a linear, damped 
system. 
 

It might seem that this distinction is important for the predictability of ENSO, but this is 
true only in a very limited sense.  At present, our predictions are limited by inadequacies in 
models and data more than limits to predictability intrinsic to the system.  The real world ENSO 
incorporates a combination of nonlinear effects, climate system noise, and variations in forcing 
due to, for example, volcanic eruptions and variations in solar radiance. 

 
 

1.9. The Past and Future of ENSO 
 

Knowledge of  the past history of ENSO will, we expect, lead to an understanding of 
the mechanisms that led to past changes of ENSO. Knowing these mechanisms might give us 
some insight into the future of ENSO. 
 



We saw that the ENSO cycle has proceeded, in its irregular manner, for at least the 
last 25 years (Fig. 1.7). Longer instrumental records, though less complete, clearly show that 
from – at least – the mid-nineteenth century, ENSO has had the same character (Fig. 1.17). 
 
 
 

 
 

Fig. 1.17 Anomalies (relative to the mean from 1865-2005) of SST anomalies (grey curve) in 
the NINO3 area (cf. Fig. 1.1) measured in °C and of sea level pressure (black curve) at 
Darwin, Australia (measured in hPa). The former is a measure of El Niño and the latter is a 
measure of the Southern Oscillation. The two are obviously intimately related; both 
components of a single phenomenon: ENSO. (Courtesy Alexey Kaplan.) 
 



To extend the record still further back in time, when no instrumental records exist, 
requires finding proxies that respond to temperature in a consistent way. This is a currently 
active field of research, and will be taken up in Chapter 9. There is good evidence that ENSO 
has been a feature of the earth’s climate at least as far back as the last interglacial 
(approximately 130,000 years). There is some evidence that the ENSO cycle was weaker 
during the glacial period (before the current Holocene which started 10,000 years ago).  It is 
possible that the weakness of ENSO during the glacial can be traced to the same mechanisms 
that produced the glacials themselves, namely the very slow changes in the earth’s orbit, but 
it may be that the key thing is that the overall colder climate weakened the ocean-atmosphere 
coupling.  For one thing, colder temperatures would mean less evaporation and so weaker 
heating of the atmosphere for the same wind convergence.  We do know that the ENSO cycle 
was weaker than today for the first 5,000 years of the Holocene, and that has been shown to 
be a consequence of the different phase of the earth’s precession cycle. 
 

Unfortunately, models (i.e. the ones in the Intergovernmental Panel on Climate 
Change 4th Assessment; IPCC,2007) do not agree on how ENSO will change in the future. 
Arguments have been given that global warming (due to the accumulation of radiatively 
active gases in the atmosphere) will either increase or decrease the amplitude of the ENSO 
cycle. Since ENSO has potent effects on temperature and precipitation throughout the world 
(Fig. 1.4), a basic part of the world’s future climate cannot currently be predicted with any 
confidence.  
 

1.10 What is ENSO Information Good For? 
 

We all instinctively realize that some knowledge about the future is better than no 
knowledge about the future. The promise of ENSO prediction gives some information about 
the future probabilities of temperature and precipitation in selected regions of the world. The 
hope is that such information can be used for public and private benefit in these ENSO 
sensitive areas, but the use of such information is turning out to be much more difficult than 
previously realized. A basic problem is that the system evolves so slowly, there are so few 
unique forecasts, and one has to live with blown forecasts for such a long time. 
 

One would expect that agriculture, hydrology and water management, energy use, and 
fisheries would be highly influenced by climate variability and would therefore benefit by 
some information concerning conditions one or two seasons in advance. Those users who 
understand forecasts that state probabilities of occurrence and can relate the climate forecast 
to a forecast of the resource they are most interested in are in best position to make use of the 
climate forecasts to manage their future risks. Chapter 10 will provide some examples of the 
successful use of forecasts of aspects of ENSO and will indicate the difficulties of making 
use of this information. 



2. The Observational Basis 
 

This Chapter provides an observational survey of the main elements of the tropical 
atmosphere and ocean needed in the sequel. In particular, the major circulation features in the 
atmosphere and ocean important for understanding ENSO: SST, sea level pressure (SLP), 
surface winds, surface heat fluxes, the east-west overturning circulation in the Pacific, the 
Hadley circulation, and the depth of the equatorial thermocline. Because the surface plays 
such a crucial role in atmosphere-ocean interactions, special emphases will be placed on the 
fluxes at the surface, in particular the wind stresses, the latent heat flux and the net heat flux 
into the ocean. The annual cycle of the crucial quantities needed to define the climatology of 
the tropics: SST, SLP, precipitation, winds, and thermocline depth, will be presented. 
“Anomalies”, including those characteristic of ENSO, can be defined relative to this 
climatology.  
 

The major features of ENSO and the evolution of ENSO as we now know them will 
be presented, with some discussion of how typical an ENSO event is likely to be. Some 
effects of ENSO on the globe, especially tropical temperature and precipitation  and Atlantic 
hurricane landings, will be described. Some observations of both higher frequencies (periods 
less than a year) and lower frequency (especially decadal variability) will be introduced. 
 

2.0 The nature and source of climate observations relevant to ENSO 
 

It would be valuable to have an accurate picture of the earth’s atmosphere and ocean 
throughout the temporal evolution of climatic variability but, unfortunately, the measurement 
of variables important for climate has a relatively short history. While a few individual 
records of temperature extend back hundreds of years, the instrumental record adequate to 
measure the temperature of the extent of the earth’s surface is generally taken to have begun 
around 1880 with at-sea shipboard measurements, although a reasonable global description 
of the earth’s surface was not complete until the 1950s and a full global description had to 
await the development of satellite observations in the 1980s. The global upper air network of 
radiosondes and rawinsondes used for weather prediction began in the 1950s and, while 
sporadic ship based measurements of the surface and depths of the ocean have been going on 
for at least a hundred and fifty years, the systematic measurements of the state of the top 
1500 meters of the ocean is just now getting underway at the beginning of the 21st century. 
Observations taken for other purposes (weather prediction, agriculture, water resources, etc.) 
have then been used for defining the climate system, but even today there is no observing 
system adequate for climate; i.e. a system of measurements which satisfies the internationally 
agreed upon principles of climate measurement (GCOS, 2004) and which defines the basic 
variables of the climate system to sufficient accuracy. Because the observational records are 
short, and the long term accuracy of each record cannot be assured, the climate record is 
uncertain and incomplete. 
 

The surface of the ocean is the site of the interaction between the atmosphere and the 
ocean. This interaction is mediated by the exchange of heat and momentum fluxes between 



the atmosphere and ocean through the ocean surface. For records longer than a very few 
decades, there is only one source of information on these fluxes, namely the shipboard based 
meteorological observations taken routinely by many voluntary observing ships. These 
observations include: temperature at ship level; humidity at ship level; winds at ship level or 
winds at sea level by proxy observations of sea state; sea surface temperature as measured by 
the temperature of a bucket of surface water or by the water temperature at the ship’s engine 
intake; and approximate cloud cover in eighths (oktas) as estimated by shipboard observers. 
The prime compilation of these records are the Comprehensive Atmosphere-Ocean Data Set 
(COADS) containing over thirty million reports since 1880 (Woodruff et al., 1987 and 1993) 
and from these reports, fields of suface fluxes can be constructed. A number of Atlases have 
been compiled from these freely available data, in particular Oberhuber, 1988, and Josey et 
al., 1998. The data distribution within COADS depends on where ships have traditionally 
gone: it is quite good in the North Atlantic and quite poor in the tropical Pacific. COADS 
data was the major source of historical information about ENSO until the deployment since 
1995 of the system of 70 bottom moored buoys that make measurements both of the surface 
meteorology and also the thermal state of the upper ocean. The data is telemetered to 
satellites and made freely available within 24 hours of measurement (McPhaden et al., 1998) 
at http://www.pmel.noaa.gov/tao/realtime.html. 
 

There is another source of surface observations and this arises from the many-times-
a-day model analyses produced by the weather centers and their re-analysis over the entire 
record of observations using a single model and the best current data assimilation procedure. 
A recent Atlas (Kållberg et al., 2005) produced at the European Centre for Medium Range 
Weather Forecasting (ECMWF), based on data from 1957-2002, contains a dynamically 
consistent climatology of the surface fluxes and concomitant upper atmosphere fields and 
uses satellite data, where available, for much of this length of time. The re-analysis methods 
use weather data assimilated into a numerical atmospheric model (designed for weather 
prediction) with fields of SST as the only oceanic input. Because not all the original data 
taken was available rapidly enough to meet the stringent time requirements for weather 
prediction, and therefore had to be set aside and not used for the weather analysis, the re-
analyses offers the possibility of using more input data then was originally available for the 
real-time weather analyses. More important, improvements in the models and advances in the 
techniques for assimilating data into models make these reanalysis superior to what was 
possible in the past 
 

While there have been no direct comparisons of the surface fluxes from the two 
different methods, we would expect that the climatology (see Sec. 2.3) would be better for 
the re-analysis methods while the shipboard method would be necessary when longer term 
records are required and no other measurements are available. Our presentation of the annual 
cycle will therefore rely on re-analyses data, especially from the ECMWF compilation, and 
our description of ENSO evolutions and its longer term evolution will necessarily rely on 
shipboard observations.  
 

2.1 Solar Forcing and Fluxes at the Surface 
 



We begin by tracing solar radiation from the top of the atmosphere to the surface to 
give an idea of the magnitude of the various terms of the global energy budget. 

  
Fig. 2.1 The annually averaged globally averaged energy budget of the earth. (From: Kiehl 
and Trenberth, 1997.) 
 

The solar flux at the mean position of the earth is 1367 W/m2  and, because the area of 
the earth ( 24 Rπ ) is four times the disc intercepted ( 2Rπ ), the average solar flux at the top of 
the atmosphere is 342W/m2. The albedo of the earth is about 0.3 so 107 W/m2 is reflected 
back to space, partly by the clouds and aerosols in the atmosphere and partly by the bottom 
surface. An additional 67 W/m2  is absorbed by the atmosphere so that on the average, 168 
W/m2 of direct solar radiation makes it to the surface. The net radiation at the surface is the 
difference between the solar radiation reaching the surface and the net infrared radiation 
leaving the surface. Since the mean temperature of the earth is 15˚C (288K), 4Tσ  is 390 
W/m2 (see Appendix 1) while the back radiation from the radiatively active gases in the 
atmosphere (mostly water vapor and carbon dioxide) is 324 W/m2. The net infrared radiation 
at the surface is therefore upward and has the value 66 W/m2. The net radiation at the surface 
is therefore 102 W/m2. 
 

The net radiation at the surface can generally do three distinct things: it can evaporate 
water from the surface, it can warm the atmosphere by transferring heat from the surface to 
the atmosphere, or it can warm the ocean by transferring heat from the surface to the interior 
of the ocean. Because Fig. 2.1 represents the entire earth averaged over the year, the ocean 
neither heats nor warms over the course of the year, and the heat flux into the ocean is zero. 
[In reality, the anthropogenic addition of greenhouse gases into the atmosphere means that 
the earth system is slightly out of equilibrium and, in particular, the ocean is slightly 
warming with a current net input of about 0.5 W/m2. The top of the atmosphere heat balance 
is also out of equilibrium with a net of about 0.8 W/m2 less net outgoing infrared radiation at 



the top of the atmosphere than net solar incoming radiation thereby heating the earth 
system—the approximately 0.3 W/m2 difference between this number and the amount 
entering the ocean goes into melting ice and evaporating water. These numbers are 
characteristic of 2006 and will be different as time passes since the emission of greenhouse 
gases continues and indeed seems to be accelerating.] 
 

The net radiation at the surface therefore either warms the atmosphere by direct 
transfer of sensible heat or evaporates water from the surface. 78 W/m2 evaporates 
2.7mm/day of water (see Appendix 1). The remainder of the surface heat budget, 24 W/m2 
goes as sensible heat from the surface of the earth to the atmosphere where it helps warm the 
atmosphere. In equilibrium, the surface heat budget must balance, the top of the atmosphere 
budget must balance, and the total heat absorbed by the atmosphere by radiation, latent 
heating, and sensible heating must also balance. Careful inspection of Fig. 2.1 (highly 
recommended!) indicates that the earth system depicted by this figure is indeed in 
equilibrium. 
 

There are of course spatial variations to the solar input at the top of the atmosphere so 
that if we do not average over the entire area of the earth and over the entire year, the 
situation becomes more complicated.  Fig. 2.2 shows the incoming solar radiation at the top 
of the atmosphere averaged around latitude bands as a function of month and latitude. On the 
equator, the solar radiation has only a few percent variation with a mean value of about 425 
W/m2 –note that the sun is overhead twice a year. Some of the solar radiation is directly 
reflected back to space. Only about 325 W/m2 is available after reflection as input to the 
earth—this is the net solar radiation at the top of the atmosphere—see Fig. 2.4. 
 

The solar radiation reaching the ground depends on the intervening clouds and 
aerosols. From Fig, 2.3, we see that rather than 325 W/m2, the values in the tropical Pacific 
range from 225 W/m2 to 250 W/m2 in the eastern Pacific, which as we will see is relatively 
clear, to something like 50 W/m2 less than this under the heavy clouds in the Western Pacific 
and in the Intertropical Convergence Zone (ITCZ) 5 to10 degrees north of the equator. 
 

 



Fig. 2.2 The net solar radiation at the top of the atmosphere, zonally averaged, as a function 
of latitude and month. W/m2, contour interval 50W/m2.  (From Hartmann, 1994.) 
 

 
Fig. 2.3. Annually averaged solar radiation reaching the surface in W/m2. Downward solar 
radiation taken positive. (Plotted and downloaded, with permission of ECMWF, from the 
ECMWF ERA-40 data set (Uppala et al., 2005) at 
http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/). 
 

Because the Tropics is not in radiative equilibrium, some of the excess absorbed solar 
radiation (as well as some of the absorbed infrared radiation from the surface of the earth) is 
diverged out of the tropics into midlatitudes. Fig. 2.4 shows the annually averaged top of 
atmosphere difference between the net incoming solar radiation and net outgoing infrared 
radiation.  
 

 
Fig. 2.4. The net annual radiation balance at the top of the atmosphere as a function of 
latitude. (From Hartmann, 1994). 
 

The Tropics is radiatively heated while the higher latitudes are radiatively cooled. 
Since this is an annual average, we assume the atmosphere and ocean are in equilibrium 



(subject to the same proviso given five paragraphs back) and there is therefore no net annual 
averaged heat storage. To remain in equilibrium, the net radiative heating of the tropics has 
to be balanced by net divergence of heat to higher latitudes by both the atmosphere and the 
ocean and, conversely, the radiative net cooling of the higher latitudes is balanced by the net 
convergence of heat by the atmosphere and the ocean. It may be noted that the net emitted 
longwave radiation in Fig. 2.4 is relatively flat because infrared radiation emitted to space is 
emitted from the top unit optical depth of the radiating atmosphere, which is basically due to 
water vapor. Since the Tropics is warm, it has much more water vapor than midlatitudes and 
one optical depth is higher in the atmosphere. As we move poleward, the amount of water 
vapor decreases so one optical depth is lower in the atmosphere. The net effect is to emit 
infrared radiation at roughly similar temperatures at all latitudes thus accounting for the 
relative flatness of the infrared profile.  
 

The local net radiation at the surface can now do three distinct things. As in the 
discussion of the global budgets in Fig. 2.1,it can leave the surface as sensible heat into the 
atmosphere or as latent heat into the atmosphere. But now, because we are not averaging 
over the entire globe, the net radiation at the surface that does not become sensible or latent 
heating of the atmosphere is also available to enter into the ocean as sensible heat: 
 

Net Solar IRF F F S LE Q= + = + + .                                                (2.1) 
 

We note that in Eq. 2.1 we have defined fluxes as positive when upward and negative 
when downward. The solar flux reaching the surface is therefore downward and negative. A 
common alternate convention is taking the solar flux positive which makes the latent heat 
into the atmosphere negative. 
 

The net infrared flux at the surface is the difference between the emitted blackbody 
radiation at the temperature of the surface and the downward infrared radiation received at 
the surface from the rest of the radiating atmosphere. This is relatively constant in the surface 
of the tropical oceans at a value of about 50 W/m2 (not shown—see Fig. B6 of Kållberg et al, 
2005). The sensible heat from the ocean surface is also relatively spatially constant and has a 
small value of about 10 W/m2. The net flux available at the surface for LE and Q in Eq. 2.1 is 
therefore in the range of 165 to 190 W/m2. Fig 2.5 shows the annual amount of latent heat 
due to the evaporation of water vapor leaving the surface.  



 
Fig. 2.5 Net annually averaged latent heating, in W/m2, at the surface. In this figure, upward 
latent heating is taken negative. (Plotted and downloaded, with permission of ECMWF , from 
the ECMWF ERA-40 data set (Uppala et al., 2005) at 
http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/.) 
 

The evaporation from the surface is of order 3-5 mm/day in the eastern Pacific 
(Appendix 1 indicates that 29 W/m2 evaporates one mm/day of water) except in the cold 
tongue of the eastern Pacific where the evaporation is one or two mm/day. Since the net 
radiation at the surface does not have the spatial dependence of the cold tongue while the 
evaporation does, the net heat flux into the ocean will be largest where the evaporation is 
least and therefore also have the spatial dependence of the cold tongue. Fig. 2.6 shows the net 
heat flux into the ocean.  

 



Fig. 2.6 Net heat flux into the ocean at the surface in W/m2 (here positive downward). . 
(Plotted and downloaded, with permission of ECMWF, from the ECMWF ERA-40 data set 
(Uppala et al., 2005) at http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/.)  
 

We see that heat enters the equatorial Pacific in the cold tongue and leaves the ocean 
at higher latitudes in the regions of the warm Gulf Stream and Kuroshio. The net heat into the 
ocean is far greater on the eastern side of the tropical Pacific than it is in the west (over 
100W/m2  versus less than 10W/m2) primarily because the ocean is far cooler in the east than 
in the west (we will offer a more dynamical argument when we discuss the maintenance of 
the sea surface temperature in Chapter 5). There is also heat into the tropical oceans in other 
cool regions: in the equatorial Atlantic and in the upwelling regions in the SE Pacific and SE 
Atlantic, and north of the equator in the upwelling regions off Africa and Central America. 
The heat transport implied by the heat flux at the surface is shown for a number of 
atmospheric models in Fig. 2.7, along with estimates based on ocean estimates available at a 
few latitudes 

 
 

 
Fig 2.7. Annually averaged heat transport in the ocean from a number of model analyses.  
(From Trenberth and Caron, 2001.) 
 

Since all the model heat flux analyses shown in Fig 2.7 were obtained from surface 
fluxes determined by atmospheric models with sea surface temperatures as their bottom 
boundary conditions, the differences between them are indicative of uncertainties in the 
ability of such models to accurately generate surface fluxes---these differences are probably 
mostly due to differences in simulated cloud distributions. The oceans transport a maximum 
of 2 petawatts (2x1015 W) with the maximum within ± 20 degrees of latitude of the equator. 
The total heat transport in both the atmosphere and ocean from the top of the atmosphere 
radiative balance in Fig. 2. 4 is about 6PW with maxima at about ± 30 degrees of latitude.  
The ocean therefore carries a significant part of the total needed heat transport and a majority 
of the heat transport equatorwards of ± 20 degrees of latitude. 

2.2. The Annually Averaged Tropical Pacific 
 



The annual mean near surface temperature, sea level pressure and precipitation are 
shown in Fig. 2.8. 

 



 
Fig. 2.8 Annual mean of  a. Near surface air temperature at 2m which, over the oceans, is 
almost the sea surface temperature (SST) in °C, negative values dashed. b. The sea level 
pressure (SLP) in hPa  c. Precipitation at the surface in mm/day. . (Plotted and downloaded, 
with permission of ECMWF, from the ECMWF ERA-40 data set (Uppala et al., 2005) from 
http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/.) 
 

The annual mean of a quantity is, by definition, the average over a year. Fig. 2.8 
shows the average of the individual annual averages over all the years from 1957-2002 to 
produce a climatological annual mean. (Hence this particular climatology is relative to 1957-
2002.). Fig. 2.9 shows the monthly variance of the of SST and precipitation to identify those 
regions of the ocean that are associated with large variability. By comparison with Fig. B3 of 
Kållberg et al., 2005, we see that most of the variability is in fact interannual variability.  



 
 

 
Fig. 2.9. Monthly rms  variability of annual means of: a. 2 meter air temperature, in °C  b. 
Precipitation at the surface in mm/day. (Plotted and downloaded, with permission of 
ECMWF, from the ECMWF ERA-40 data set (Uppala et al., 2005) at 
http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/.) 
 

We see from Fig. 2.8a that the western tropical Pacific is warmer than the eastern 
tropical Pacific and, from Fig. 2.8c, that the warm pool in the western Pacific is a locus of 
heavy precipitation. The warm pool precipitation extends westward into the warm Indian 
Ocean, southeastward into the South Pacific as the South Pacific Convergence Zone (SPCZ) 
and eastward into the Pacific, north of the equator at about 7°N as a linear feature, the 
Intertropical Convergence Zone (ITCZ). The ITCZ lies over a band of warm water which 
extends from the warm pool eastward into the eastern Pacific and coincides with a warm 
eastward ocean current, the North Equatorial Counter Current. The dry zone in the Southeast 
Pacific, off the coast of Peru and Chile, is extremely dry and, as indicated in Chapter 1, lies 



in the downward branch of the zonal atmospheric circulation that is upward over the warm 
pool. This is the Walker circulation.  
 

The dominant variability of surface temperature over the tropical oceans occurs over 
eastern tropical Pacific as seen in Fig 2.9a. As we will see in Sec. 2.4, this is the interannual 
variability of SST connected to the evolution of the ENSO phenomenon. The greatest 
variability of precipitation (Fig. 2.9b) not surprisingly occurs where the precipitation is 
greatest. The meridional thickening of the variance compared to the annual mean indicates 
that the ITCZ moves meridionally on an interannual basis. Again, as we will see in Sec. 2.4, 
this occurs because the interannual warming and cooling of the eastern equatorial Pacific 
moves the warmest water meridionally. When the equatorial region is warm (the warm phase 
of ENSO), the ITCZ moves onto the equator, when cold, it moves to its northward position. 
 

The annual mean sea level pressure is shown in Fig. 2.8b. The western Pacific, which 
is warm at the surface and has heavy precipitation, is a region of low mean pressure, 
consistent with the rising motion that accompanies the heavy precipitation. The eastern 
Pacific has relatively high pressure which accompanies downward motion and lack of 
precipitation. The subtropics are dominated by the subtropical cyclones (surface high 
pressure areas) and the north Pacific is dominated by the surface expression of the Aleutian 
Low.  

 

 
Fig. 2.10 The annually averaged winds (arrows) superimposed on the annually averaged 
SST. (The heavy dashed line corresponds to the region in which the annually averaged SST 
in the eastern Pacific is less than the zonal averaged at that latitude—a reason why the region 
is called the “cold tongue”.) (From Wang, 1994.) 
 

Fig 2.10 shows the mean surface winds in the tropical Pacific and their relation to the 
mean SST. While the winds are generally to the west (towards the region of low SLP over 
the maritime continent) they have a distinct southerly component across the equator in the 
eastern Pacific, where they converge into the ITCZ which lies over the warm water centered 
at about 6˚N. The mean winds at the center of the ITCZ are weak because they are constantly 
mixed vertically by storms moving through the region. Further west, the center of the ITCZ 
is a confluence zone for the winds with southerly components to the south of the ITCZ and 
northerly components to the north. The surface winds over the warm pool are also weak and 



disorganized presumably due to the vertical mixing by storms and the lack of substantial 
gradients in SLP needed to drive an organized wind system. 
 

That the annual mean precipitation over the tropical Pacific is north of the equator 
implies mean upward motion in the ITCZ region. The zonally averaged mean circulation is 
shown by Fig. 2.11. This is the streamfunction averaged around the entire zonal band. There 
is rising motion north of the equator and sinking into the respective hemispheres in the sub-
tropics. The two cells connected by rising in the ITCZ  are expressions of the Hadley 
circulation.  
 
 

 
 

Fig. 2.11 Mean meridional streamfunction. . (Downloaded from the ECMWF ERA-40 Atlas 
(Kållberg et al., 2005) site http://www.ecmwf.int/research/era/ERA-
40_Atlas/docs/index.html, and used with permission of ECMWF.) 
 

 



Fig. 2.12 The annual mean vertical velocity at 500mb in Pa/sec (in pressure coordinates, 
dashed contours indicate upward vertical velocity). (Plotted and downloaded, with 
permission of ECMWF, from the ECMWF ERA-40 data set (Uppala et al., 2005) at 
http://ingrid.ldeo.columbia.edu/SOURCES/.ECMWF/.ERA-40/.)  
 

Fig 2.12 shows the annual averaged mean vertical velocity in mid-troposphere. The 
maximum upward motion lies over the maritime continent with descent into the south-east 
Pacific off Peru and Chile. This east west circulation over the Pacific, rising in the west 
Pacific and descent in the east Pacific forms the Walker circulation. 
 

The vertical structure of the tropical atmosphere is basically layered (Fig. 2.13). The 
subcloud layer is well mixed and extends up to cloud base. Above a transition layer, the 
shallow cloud layer extends to 2-3 km above the sea surface and is populated by puffy non-
precipitating trade cumulus clouds. Deep clouds extend from cloud base to the tropopause. 
 

 
 
Fig. 2.13 Structure of the trade wind moist layer showing the characteristic subcloud (well-
mixed) and shallow cloud layers in regions of deep convection (A) and in clear areas (B). In 
this diagram, w is the water vapor mixing ratio. (From Malkus, 1958.) 
 
 



 
 
Fig. 2.14 Temperature section across the equatorial Pacific averaged from 2ºS to 2ºN and 
1980-1996 from the TAO array. (From McPhaden et al., 1998.) 
 

Fig 2.14 shows the temperature structure of the ocean near the equator beneath the 
surface of the ocean. Across the entire ocean, there is a region of sharp vertical gradients 
(“the thermocline”) centered at the 20ºC isotherm. Below the thermocline lies cold water and 
above the thermocline warm water. As we will see, the thermocline is deep in the west 
because the mean winds along the equator are westward. The shoaling of the thermocline in 
the east means that cold water is closer to the surface in the east and the Ekman divergence 
on the equator guarantees that upwelling brings the cold water to the surface. 
 

The currents at the surface and below the surface are shown in a cross sectional 
diagram Fig. 2.15. Although the details will vary at different longitudes, the surface currents 
are generally in the direction of the wind near the equator (the South Equatorial Current, 
SEC) and  against the winds north of the Equator (the North Equatorial Counter Current, 
NECC). The NECC flows from the warm western Pacific to the eastern Pacific where it 
keeps the SST warm. Above this warm water lies the heavy convective region, the ITCZ 



 
 
Fig. 2. 15 Cross section of currents in upper ocean of the tropical Pacific. (From Philander, 
1990.) 
 

Below the surface of the ocean, and under the westward moving SEC, lies a rapidly 
moving (currents of order of 1m/sec) current to the east, opposite to the direction of the 
winds, the Equatorial Undercurrent (EUC). The EUC is in the thermocline and, while the 
picture makes it look sort of tubular (like bucatini), it is really ribbon like (more like 
lasagna), being of order 200km wide and a hundred meters deep. The heavy arrows below 
the surface of the ocean show upwelling on the equator, poleward Ekman divergence on 
either side of the equator, and equatorwards replenishment of the surface diverging water at  
a few hundred meters depth.  

2.3 The Annual Cycle in the Tropical Pacific 





Fig. 2.16  Climatological snapshots of SST (January, April, July, and October) in °C in the 
tropical Pacific. (Plotted and downloaded from http://iridl.ldeo.columbia.edu/ using the 
Reynolds et al, 2002, data set.)  
 

The annual variation of the tropical SST is shown in Fig 2.16. While the midlatitude 
ocean is warmest in (northern) summer and coldest in winter, the tropics has March-April as 
its warmest period and September-October as its coolest.  Along the equator, the deviations 
from the annual mean clearly propagate westward (Fig. 2.17) with the majority of the annual 
amplitude confined to the eastern third of the tropical Pacific. Note that in the western 
Pacific, the wind anomaly is westerly in November and December, a marker of the 
monsoonal winds in that region. 
 

 
Fig 2.17 Monthly deviations of a) SST and b) Zonal winds from their annual means along the 
equator. Note that time proceeds upward. Contour interval for SST is .5˚C and for wind stress 
.01N/m2 .(From Yuan, 2005.) 



 
Fig 2.18 Monthly variation of the Hadley circulation. (From Dima and Wallace, 2003.) 
 
 During boreal winter, the northern hemisphere component of the Hadley circulation 
is largest and descends into the winter hemisphere. During boreal summer, the southern 
hemisphere component is largest and again descends into the winter (southern) hemisphere 
(Fig. 2.18). 
 

The thermocline hardly varies annually in the middle third of the basin on the equator 
(Fig. 2.19) but is shallowest in the east when the SST is coldest and deepest when the SST is 
warmest.  
 



 
Fig. 2.19 The annual variation of depth of the 20˚ isotherm (a measure of thermocline depth) 
on the equator in the Pacific based on a compilation of XBT, TAO mooring and Argo CTD 
data for the period 1980-2008, according to the method of Smith (1995). 
 Contour interval 10m. (Courtesy W.M Kessler.) 
 

2.4 The Evolution of ENSO 
 

We saw in Fig. 2.9 (upper) that the locus of variability of SST was in the eastern 
Pacific. The evolution of the SST component of ENSO was first examined in a classic paper 
by Rasmusson and Carpenter (1982) who used a compositing technique to gain enough data 
to define the signal. The signal they define is that of a “canonical” El Niño event; any 
individual event will have some idiosyncrasies The basic idea is that there is enough 
similarity between the various individual phases of ENSO that occur in different years that 
one can define the various stages and use data from different years to define a composite 
stage. This compositing is aided by the tendency of warm and cold phases of ENSO to peak 
around December. The year in which ENSO peaks is usually called year (0) and the year 
before and after year (-1) and year (+1) respectively.  
 

A quick look at the evolution of the SST on the equator is shown in Fig 2.20. 
 



 
Fig. 2.20a. Evolution of SST (left panel) and SST anomalies (right panel) on the equator 
from 1986-2007. In left panel, contour interval is 1°C with heavy line 27°C and temperatures 
less than 27°C dashed. In right panel, contour interval 1°C, heavy line is  0°C, and negative 
SSTAs dashed. (Courtesy Jenny Nakamura. Produced from Hadley Center SST products).  
 



 
Fig. 2.20b Evolution of the mean (left)  and anomalous (right) thermocline (as measured by 
the 20°C isotherm). Downloaded from NOAA/PMEL 
http://www.pmel.noaa.gov/tao/jsdisplay/).  
 

The very warm phase of ENSO during 1997/98 (i.e. the warm phased peaked in Dec. 
1997) is apparent, as are the cold phases during 1988/89 and 1998/2001. Note that the 
thermocline in the east deepened a few months before the peak of the SST and started to 
shallow while the SST was still anomalously warm, again by a few months. An alternate way 
of looking at long series of ENSO phases is through indices such as the widely used indices 
of equatorial SST anomalies NINO 1+2, NINO 3, NINO 4, NINO 3.4. The indices are 
defined as monthly averages of anomalies of SST from their annual march in the regions 
defined by Fig.1.1. 
 

Fig 2.21 shows the Southern Oscillation Index (SOI) defined as the difference of 
Tahiti and Darwin sea level pressure anomalies. Clearly the two series move in opposition 
and the difference makes a more robust index: negative values of the SOI are characteristic 
of warm ENSO phases and positive values of the SOI are characteristic of cold ENSO 
phases.  
 



 
 
Fig. 2.21 Southern Oscillation Index (SOI). Upper Panel: SOI (Pressure Anomalies Tahiti-
Darwin) from NCEP Reanalysis. Middle Panel: Pressure anomalies Tahiti-Darwin. Lower 
Panel: SOI from Tahiti-Darwin in middle panel. (Downloaded from  
http://www.cpc.noaa.gov/products/analysis_monitoring/bulletin/figt2.gif.) 
 

 
 



Fig 2.22. Time series of SST anomalies in the ENSO regions from 1986-2006. (Downloaded 
from http://iridl.ldeo.columbia.edu/maproom/.ENSO/.) 
 

The temperature indices are averaged over the four Niño regions (Fig. 1.1) are shown 
in Fig. 2.22. It is clear from this figure that the peaks of NINO 3, 3.4 and 4 are relatively 
coincident in time, consistent with the flatness of the SST anomalies with time (i.e. lack of 
propagation) in Fig. 2.20. The coastal SST, NINO 1 + 2, exhibits somewhat different 
behavior, especially when no large event prevails.  
 

To see how exactly the anomaly evolves, we turn to the composite analysis, Fig 2.23, 
which gives the evolution of the composite warm phase of ENSO. 





 
 

 
 

Fig. 2.23. Composite evolution of SST from year(-1) to year (+1). (From Harrison and 
Larkin, 1998.) 
 

The first hint of warming occurs in April and May of year (0). There is some growth 
of the warm SST anomaly from May to July of year (0) but after that time, the SST anomaly 



has reached its full westernmost extent in the tropical Pacific and from that time, to its 
maximum in December of year (0) the SST anomaly simply grows in place. The warm SST 
anomaly dies in place in the early part of year (1) and is essentially gone by April of year (1). 
During those months that the  SST anomaly is strong in the eastern Pacific, there are warm 
anomalies in the Indian Ocean and cold anomalies in the North Pacific. The zonal wind 
anomalies on the equator are westerly at the western flank of the warm SST anomaly and 
westerly anomalies also exist in the North Pacific (Fig. 2.24).  
 

A very useful cartoon of the composite is shown in Fig.2.25. Although precipitation 
was not part of the analyses, the region of persistent precipitation normally lying over the 
warm pool in the western Pacific moves eastward into the central Pacific. This tend to 
produce high Sea Level Pressure (SLP) anomalies in the west and low SLP anomalies in the 
central and eastern Pacific where it is now raining. At the peak of the warm phase, the ITCZ 
collapses onto the equator where the need for moisture convergence indicates that the 
meridional wind anomalies near the equator become equatorwards in both hemispheres and 
indicate low level moisture convergence to feed the anomalous rainfall on the equator. The 
zonal wind anomalies exist to the west of the SST anomalies and over the North Pacific. 
There are easterly anomalies in the Indian Ocean consistent with the anomalous divergence, 
i.e. the absence of convergence in the western Pacific region where the usual persistent 
precipitation is no longer, having moved into the central Pacific.  
 
 Lastly, we should comment on the role of heat fluxes into the ocean. We already saw, 
in Fig. 2.6, that on an annual basis there is heat flux into the tropical ocean where the tropical 
ocean is coldest. Barnett et al. (1991) pointed out that this also applies in an anomaly sense: 
the heat flux into the ocean tends to counteract the anomaly, i.e. acts as a negative feedback 
on the SST. Thus warm phases of ENSO have less heat flux into the equatorial Pacific and 
cold phases have more. The value of this negative feedback is about 40 W/m2 per degree C in 
the western Pacific and 10 W/m2 per degree C in the eastern Pacific.  
 



 
Fig 2.24  Zonal wind anomalies near the peak of the warm phase of ENSO. (From Harrison 
and Larkin, 1998.) 
 



 
 
Fig. 2.25. (From Harrison and Larkin, 1998). Diagram of SST and wind anomalies 
throughout the warm phase of ENSO. L and H represent regions of low and high sea level 
pressure anomalies respectively.  
 
 It should not be thought that the phases of ENSO evolve the same way every time. 
Fig. 2.26 shows a number of different warm phases of ENSO as a function of time. 
 

 
 



Fig. 2.26 The evolution of several different warm phases of ENSO averaged over the Niño 3 
region, normalized by the standard deviation over the period 1964-1994. The numbers refer 
to the different years having warm phases during this period. 
 

We see that there is some variation of the warm phases evolution but by and large, the 
warm phases grow during the spring of year (0), peak towards the end of the year (0), and 
decay during the spring of year (+1).  
 

2.5 ENSO Effects  
 

Some effects of ENSO on the rest of the globe will be noted here, but without much 
detail.  

 
Figure 1.4 is a version of the well-known diagram of the global influence of an ENSO 

warm event (after Ropelewski and Halpert, 1987; all of the relationships discussed below 
may be found in that paper or Ropelewski and Halpert, 1996).  As a crude first 
approximation, one may say that ENSO cold events have the opposite effects, but there are 
significant exceptions.  As a general rule, the effects of an ENSO event are strongest and 
most reliable in the tropical Pacific genesis region and on contiguous continents.  When there 
is a warm phase of ENSO one can be fairly certain of heavy rains in Peru, drought in parts of 
Indonesia and fewer typhoons in the western Pacific Ocean.  Typical consequences are 
somewhat less reliable in the global tropics, but still highly likely.  We will deal with four 
additional effects of ENSO: the effects of ENSO on rainfall in the Western Pacific, the 
effects of ENSO on the Indian monsoon, the variation of temperature of the entire tropical 
atmosphere (up to the tropopause) with ENSO, and the effect of the phases of ENSO on 
hurricanes in the tropical Atlantic 

 
There is no question that ENSO has an influence in extra tropical latitudes, but the 

response is less certain than in the tropics. Other factors may intervene, and the extratropical 
atmosphere is characteristically more chaotic and thus less determined by SSTs. In these 
latitudes an ENSO event should be thought of as putting a probable bias in the system rather 
than as a certain cause.  With warm phases of ENSO (El Niño) heavy rains in the Great Basin 
region of the US are more likely and with cold (La Niña) events midwestern U.S. drought 
(1988, for example) and lower corn yields are more likely. Certain patterns are more likely to 
persist, altering the paths of hurricanes, typhoons, and winter storms.  

 
Another way of saying that not all ENSO connections are equally strong and reliable 

is the more general statement that the global impacts of each ENSO event are different. Not 
every warm event is accompanied by the same global variations, nor is the magnitude of 
what variations there are simply related to the strength of the event. Understanding of these 
differences is limited; they have hardly been classified satisfactorily, let alone explained in 
physical terms.  A corollary is that the differences between events are not well predicted.   

 
There are a number of reasons why this might be so. Surely, in some cases failed 

forecasts are a consequence of the intrinsic limits to the predictability of the climate system. 



In other cases it may be that the prediction schemes fail to respond to the idiosyncrasies of 
each event such as the subtle (and not so subtle) differences in the pattern of its SST 
anomalies.  It is known that the global response is sensitive to the location and strength of the 
atmospheric heating in the tropics (e.g. Hoerling et al., 1997), but our understanding of what 
features truly matter is very limited.  

 

 
Fig. 2.27: Rainfall anomalies a) Over Indonesia  and b) Over Queensland Australia during 
warm ENSO years (solid) and cold ENSO years (dashed). The average over all years is 
shaded. (Courtesy of the IRI.) 
 

A brief global tour through the historical record and the events of 1997-1999 will 
illustrate the range of possibilities in ENSO impacts.  In Indonesia and New Guinea it is 
virtually certain that warm ENSO years (El Niño years) are drought years and cold ENSO 
years (La Niña years) bring excess rain (Figure 2.27 top).  The 1997-98 forest fires in 
Indonesia and famine inducing drought in Papua New Guinea fit the pattern, as do the greater 
than average rainfall that occurred during the 1998-99 La Niña.  In Australia the expected 
rainfall anomalies are in the same sense, but are not nearly as reliable (Fig. 2.27b).  Drought 
in Australia during the 1997-98 El Niño was not as severe as the size of the event would have 
suggested.  In Zimbabwe there is a very strong connection in the same sense between ENSO 
and rainfall and an even stronger connection to the maize crop, which integrates rainfall and 
temperature effects (Cane et al 1994).  However, the relationship is not entirely reliable or 
straightforward: 1992 was the most severe drought year in at least the last 150 years in 
Southern Africa, but produced only a moderate El Niño. 
 



 
 
Fig. 2.28 Annual anomaly of  monsoon rainfall where shading indicates average value of 
NINO3 index  

 
Figure 2.28 shows the relationship between ENSO and a measure of the intensity of 

the Indian monsoon, the All India Rainfall index.  It is obvious that poor monsoons are 
generally associated with El Niño events and excess rain with La Niña events, but the 
connection is far from perfect.  Sometimes El Niño year rainfall is average, and sometimes 
there is a poor monsoon without an El Niño event.  Based on this history, if one had been 
asked early in 1997 what sort of monsoon to expect, the forecast would have to have been 
that a poor monsoon was likely.  Indeed, two of the best atmospheric general circulation 
models used for global prediction (the models of the National Centers for Atmospheric 
Prediction (NCEP) and the European Center and Hamburg (ECHAM)) model) predicted 
significantly below average June to September rainfall for India.  In the event, the rainfall 
turned out to be indistinguishable from the climatological normal.  

 
 



 
Fig. 2.29 Zonally averaged temperature anomalies in the indicated latitude bands from the 
Microwave Sounding Unit (MSU) vertically averaged over the atmosphere. The vertical tick 
interval is 0.5K. (From Yulaeva and Wallace, 1994.)   
 

Fig. 2.29 shows the zonally and vertically averaged temperature anomaly for various 
temperature band. The tropical troposphere (here defined as 20ºS to 20ºN) warms of order 
one degree during warm phases of ENSO with  a lag of one or two seasons after the eastern 
Pacific SST anomalies characteristic of ENSO(the lag is not obvious from the Figure). 
 

The pattern of the warming in relation to the precipitation is illustrated in Fig. 2.30. 

 
 
Fig. 2.30  The combined leading SVD mode of Outgoing Longwave Radiation (OLR) and 
residual temperature (i.e. temperature anomalies with domain mean subtracted) from the 



Microwave Sounding Unit (MSU). The shaded region in each quantity indicates the position 
of the extreme of the other. (From Yulaeva and Wallace, 1994.) 
 

Fig. 2.30 shows that the anomalous precipitation (negative OLR corresponding to the 
high cold tops of precipitating cumulonimbus clouds) during warm phases of ENSO moves 
into the central Pacific (upper diagram). The anomalous temperature pattern that goes  with 
this anomalous precipitation pattern is shown in the lower diagram and consists of warm 
centers on the poleward flanks of the region of anomalous precipitation. The upper level 
pressure field mirrors the temperature patterns (higher mean temporaries implies greater 
thickness and therefore anomalous highs coincident with the warm temperature centers) and 
therefore anticyclones. Interpretations of this pattern will be given in Chapter 6 when we 
discuss the atmospheric response to regions of persistent precipitation.  
 
 

 
Fig. 2.31 Hurricane positions on the last day that they exhibit hurricane-force winds (>64 
knots) during the (left panel) 25 warmest and (right panel) 25 coldest years in terms of sea 
surface temperature in the equatorial cold tongue region (6°N-6°S, 180-90°W) during the 
period of record 1870-2007. (Courtesy of Todd Mitchell,  constructed from National Center 
for Atmospheric Research datasets at http://dss.ucar.edu/datasets/ds824.1/.) 
 

Fig. 2.31 indicates that during cold phases of ENSO, there are more hurricanes hitting 
the Atlantic and Gulf Coasts of the United States.  A detailed histogram giving the 
probability of a given number of hurricanes hitting the U.S. coastline (Bove et al, 1998) 
verifies that the probabilities are minimum during warm phases of ENSO and maximum 
during cold phases. As a logical concomitant, hurricane damages (normalized for increased 
coastal development and population over time) also are greater during cold phases of ENSO 
(Pielke, Jr. and Landsea, 1999). 
 

2.6 Variability at Periods Less than One Year 
 

There is continuous variability occurring, at periods less than a year, notably 
including the inevitable turbulent gusts lasting seconds or minutes, organized wave motions 
in the ITCZ of periods of a few days (see Sec. 5.2), and intraseasonal oscillations, the so-
called Madden-Julian Oscillations (see Zhang, 2005 for a complete review).  
 

The MJO is an eastward propagating global wavenumber one disturbance that seems 
to arise from the eastern Indian ocean and work its way eastward across the Indian Ocean and 



the Pacific. It has a locus of convergence that becomes apparent in convective regions where 
it enhances local precipitation and has westerly surface wind anomalies to the west of the 
convergence and easterly surface wind anomalies to the east. The MJO has considerable local 
influence on surface fluxes and travels slowly enough that its surface winds lasts long enough 
to have a role in the ENSO story.  
 

Fig. 2.32 shows a synthesis of the effect of the MJO on surface fluxes. In the deep 
convective regions, which cover a small area compared to the rest of the oscillation, the short 
wave radiation reaching the surface decreases, both the precipitation and evaporation 
increase, and the easterly stress increases.  
 

The importance of the effects of the MJO anomalous winds may be understood as 
follows. Say the MJO has surface wind anomalies of ± 3m/sec. The effect of these winds on 
the ocean will depend on the pre-existing local mean winds, since the stress is proportional to 
the square of the total wind. If the mean wind is westerly, say +1m/sec, then the westerly 
phase of the MJO will give a westerly stress of relative magnitude 16 while the easterly 
phases will give an easterly stress of magnitude 4 If the mean wind is easterly, say -1m/sec, 
the MJO will give a easterly stress of relative magnitude 16 and westerly stress of magnitude 
4. The MJO therefore nonlinearly promotes the pre-existing mean wind stress. These 
considerations will figure in the early stages of the growth of the phases of ENSO.  
 
 

 
 

Fig 2.32. Schematic of the effects of the MJO on the surface fluxes (here, fluxes are positive 
downward). The shortwave (sw), longwave (lw), sensible (sen), latent (lat) and net heat flux 
are in W/m2, precipitation and evaporation in mm/day, and zonal stress xτ in N/m2. (From 
Zhang, 2005.) 

2.7 Decadal Variability 
 

A glance at Fig. 2.20a indicates that, because the evolution of warm and cold phases 
of ENSO are different each time, there must exist a longer term variation to ENSO. Indeed if 
the interannual variability of ENSO is removed from an eastern Pacific SST index, the 
resulting index, called the global residual (GR) represents the effects of the non-interannual 



part of ENSO. Regressing this GR index, which has clear decadal variability, on global SST, 
SLP and surface winds gives a representation of the global decadal variability covarying with 
the tropical Pacific (Fig. 2.33). The decadal pattern is “ENSO-like” having a signature in the 
tropical Pacific that looks like the ENSO pattern but has considerably wider meridional 
extent. The North and South Pacific SST varies out of phases and the Indian Ocean varies in 
phase with the tropical Pacific. The phase relations are similar to those of interannual ENSO 
and seems to indicate that the global effects may just be due to the longer term variation of 
ENSO, but other interpretations are possible (e.g. Vimont, 2005).  
 

 



Fig. 2.33 Global decadal patterns derived from regressing an equatorial Pacific 
index with interannual variability removed, with SST, surface winds, and SLP 
throughout the world. (From Garreaud and Battisti, 1999.) 



3. The Equations of Motion and Some Simplifications 
 

In this chapter we introduce the equations of motion for both the atmosphere and 
ocean and develop some simplifications for later use. While the atmosphere and ocean are 
both fluids, and therefore, despite their difference in density, obey the same basic fluid 
equations, there are some essential differences that make their treatments and simplifications 
very different. We will derive the equations of motion on a rotating sphere and show how the 
equations can be written on an f plane tangent to the rotating sphere. The basic 
simplifications of hydrostatic and geostrophic balance will be motivated and introduced and 
the Boussinesq approximations, where differences of density are important only when 
coupled to gravity, are introduced for both the atmosphere and ocean. For the ocean, the 
existence of standing vertical modes leads to a profoundly useful simplification, the shallow 
water equations (SWE). The SWE turn out to be an effective model for the atmosphere as 
well, though the interpretation there is not straightforward and there are a number of different 
ideas about why it works as well as it does, as discussed in Chapter 5. 
 

The material in this chapter, familiar to those with a background in atmospheric or 
ocean dynamics, is a necessary prerequisite for the mathematical treatments that follow. 
Aside from a few idiosyncrasies, we claim no great originality or excitement here and those 
who know this material are invited to skip it.  The reader should recognize that needed 
notation, concepts, and derivations are collected here. 
 

3.1 Equations Governing the Ocean and Atmosphere  
 

There are a number of similarities and differences between the atmosphere and 
oceans that are dynamically important and should be kept in mind as we develop the 
equations. 
 
a) Motions of interest in both the atmosphere and ocean may be considered shallow. In 
particular, if H is the characteristic scale of vertical motions, L is the characteristic scale of 
horizontal motions and a is the earth’s radius, then motions are shallow when H La� .  
 
b) Both the atmosphere and the ocean may be consider to be rapidly rotating. If U  is a 
characteristic horizontal velocity and Ω  is the rotation rate of the earth rapid means that the 
deviation from solid body rotation is small: U aΩ� . 
 
c) Both the atmosphere and the ocean are stratified fluids (usually stably stratified with 
lighter fluid on top of heavier fluid). The implication is that both gravity and buoyancy are 
important.  
 

It may be noted that properties (a), (b), (c) are general characteristics of geophysical 
fluid dynamics.  
 
d) Both the atmosphere and the ocean have significant bottom topography. 



 
e) The ocean has sidewall boundaries where the atmosphere does not.  
 
f) The ocean has a definite top while the atmosphere does not. The implication is that 
vertically standing modes exist in the ocean whereas outgoing radiation boundary conditions 
for the atmosphere generally imply that such modes do not exist for the atmosphere (more 
about this in Chapter 5).  
 
g) The atmosphere is driven primarily by thermal forcing instigated at its lower boundary; the 
ocean is driven primarily by wind stresses at its surface. Topographic forcing at the bottom of 
the atmosphere and heat fluxes at the surface of the ocean are not unimportant, however. 
 
h) The atmosphere has significant diabatic heating in its interior, in particular latent heat 
release in clouds and the absorption and emission of radiation, while the oceans, by and 
large, do not have internal heat sources. There is some geothermal heating at the bottom of 
the ocean and some internal heating by radioactive decay but, for our purposes, these are 
small and can be neglected.  In some places the water is quite clear, allowing blue-green solar 
radiation to penetrate many tens of meters into the ocean, while in other places abundant 
phytoplankton absorb it close to the surface. The difference can affect the distribution of sea 
surface temperature. For didactic reasons, we will take solar radiation to be absorbed entirely 
at the surface.  
 
i) Both the atmosphere and the ocean are primarily two component systems with the oceans 
being composed of water and salt and the atmosphere composed of air and water (in 
convertible solid, liquid and vapor forms). The atmosphere also has a number of constituents 
that are dynamically minor but are radiatively major, in particular carbon dioxide, methane, 
nitrous oxide and the chlorofluorocarbons, and in addition, radiatively active aerosols. The 
dominant constituents of the atmosphere, air and water vapor, are ideal gases while the 
constituents of the ocean satisfy a highly complex equation relating density to concentrations 
of water and salt as a function of pressure.  
 
j) The atmosphere is a compressible gas, the ocean a nearly incompressible fluid. This 
difference turns out to be rather unimportant for most of the motions we will be interested in 
(but see Chapter 5 where some geophysical motions have the speed of sound waves which 
depend essentially on compressibility). 
 
k) The ocean is dense, with a large heat capacity and large inertia. For a unit area column of 
atmosphere and ocean, 10 meters of ocean has the same weight as the entire atmospheric 
column extending from the surface to the outer reaches of the atmosphere. Since the thermal 
heat capacity of water is four times the thermal heat capacity of air (for equivalent weights), 
the heat capacity of the entire atmospheric column is the same as the heat capacity of 2.5 
meters of the ocean column. Clearly most of the thermal heat capacity of the entire climate 
system resides in the ocean.  
 
l) The ocean is data poor, especially for times before the last few decades, while the 
atmosphere has long had an observing system for weather prediction that is constantly being 



analyzed.  Remote sensing from satellites has added global coverage of the atmosphere and 
of the ocean surface, but nothing directly about the subsurface ocean since electromagnetic 
radiation barely penetrates below the surface. 
 

3.1.1 Equations of Motion on a Rotating Sphere 

 We begin with Newton’s law, m=F A , where d
dt

=
VA  and d

dt
=

rV . We consider 

space dimensions as well as time and take a Eulerian approach: The independent variables 
are: ( ) ( , )t x y z t, = , ,r . The dependent variables (i.e. the properties of the fluid) are: 

, p Tρ θ, , ,...V  where ( , , )u v w=V  gives the horizontal and vertical velocities, p Tρ, ,  
are pressure, density and temperature, … denotes any additional properties (e.g. salinity), and 
θ is potential temperature.  
 

Rewrite Newton’s law in the form  
 

1d
dt ρ

= =
V F' F                                                   (3.1) 

 
where F'  is now force/unit volume and F  is force/unit mass. Note that  
 

( )d dx dy dzx y z t
dt t x dt y dt z dt

∂ ∂ ∂ ∂
, , , = + + +

∂ ∂ ∂ ∂
V V V V V  

 

u v w
t x y z t

∂ ∂ ∂ ∂ ∂
= + + + = + ⋅∇
∂ ∂ ∂ ∂ ∂
V V V V V V V . 

 
We want to take ( )x y,  fixed on the earth’s surface, i.e., in a rotating frame of 

reference, whereas Eq. (3.1) is appropriate to an inertial frame. First consider uniform 

rotation Ω  about an unvarying axis, i.e  0d
dt

≡
Ω  (Fig. 3.1a). 

 



 
Fig. 3.1 Left: Change of arbitrary vector in an absolute rotating system Middle: Definition of 
the vector R. Right:Modification of gravity g by centrifugal force.  
 
 
We will use the following notation for any vector w:  
 

a

d
dt

⎞⎛
⎜ ⎟
⎝ ⎠

w  is the absolute rate of change of w  and 
r

d
dt

⎞⎛
⎜ ⎟
⎝ ⎠

w is the rate of change of w  relative to 

the rotating system. Note that 
a

d
dt

⎞⎛
⎜ ⎟
⎝ ⎠

w  is perpendicular to both Ω  and w  and that  

 

a r

d d
dt dt

⎞ ⎞⎛ ⎛= + ×⎜ ⎟ ⎜ ⎟
⎝ ⎝⎠ ⎠

w w Ω w . 

Eq. 3.1 is a a
a a

d d
dt dt

⎞⎛ ⎞⎛≡ =⎟⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

rA F   but we want an equation for r
r r

d d
dt dt

⎞⎛ ⎞⎛≡ ⎟⎜ ⎟⎜
⎝ ⎠⎝ ⎠

rA . 

 

Now 
a r

d d
dt dt
⎞ ⎞⎛ ⎛= + ×⎜ ⎟ ⎜ ⎟

⎝ ⎝⎠ ⎠
r r Ω r  so that  

 
2

2 ( ) ( )a r
r ra r

d d d d d
dt dt dt dt dt

⎞⎛⎡ ⎤⎞ ⎞⎛ ⎛= +Ω× = + × + × + × ×⎟⎜ ⎟ ⎜ ⎟⎜⎢ ⎥⎝ ⎝⎠ ⎠⎣ ⎦ ⎝ ⎠

r r rA r Ω Ω r Ω Ω r
JG

 

 

                                                      
2

2 2 ( )
rr

d d
dt dt

⎞⎛ ⎞⎛= + × + × ×⎟ ⎜ ⎟⎜
⎝ ⎠⎝ ⎠

r rΩ Ω Ω r . 

 
Dropping the subscripts in the relative (rotating) system gives:  



 
2 ( )a = + × + × ×A A Ω V Ω Ω r                                     (3.2) 

 
The second term in Eq. 3.2 is the Coriolis Force and the third is the centrifugal force.  

 
Take the origin of the coordinate system to be the center of the earth; with the 

vector R as the perpendicular from the axis of rotation to r  (Fig. 3.1b). Then 
  

2( ) ( )× × = × × = −ΩΩ Ω r Ω Ω R R  
and  

22 a
d
dt

+ × = +Ω
v Ω V F R  

 
One important force is gravity ag . We can write the force as a a′= +F F g  where ag  is 

true gravity. Parcels of fluid feel true gravity plus the centrifugal force so that we can 
combine the terms and define the apparent gravity g  as 
 

2
a +Ω = ≡ −∇Φg R g  

 
where Φ  is the geopotential (Fig. 3c). The earth’s surface is approximately a surface of 
constant Φ  and so is not precisely spherical. Now, with the radius of the earth denoted as a,  
 

2 2 5 1 2 6

2

(7 29 10 ) (6 37 10 ) 1
9 81 300

R a s m
g g ms

− −

−

Ω Ω . × . ×
≈ ≈

.
�  

 
so the difference between g  and ag  is small. The difference between the earths radius at the 
equator and at the pole is about 21 km so we may take the earth’s surface (and other Φ =  
constant surfaces) to be approximately spherical. [Veronis, 1973 gives a very thorough 
discussion of the effects of the ellipticity of the earth.]  
 
 We will also take gzΦ =  with g =  constant and z r a= −  so 0z =  at mean sea 
level. This is a good approximation for 100∼ km above sea level or 5 km below it–except 
that it ignores tidal forces. (Alternatively, 1[ ( )]z sfcg−= Φ −Φ .)  
 

Since we are concerned with fluids the pressure force, 1 pρ− ∇ , is also important. We 
now write the momentum equation as  
 

13
3 32d p

dt
ρ−+ × = ∇ −∇Φ+ .

V Ω V F                                           (3.3) 

 
The subscript 3 explicitly recognizes the 3-dimensions, 3F  represents frictional 

forces. Air and water are Newtonian fluids, but if we wish to consider only large-scale 



motions 3F  may stand for the effects of smaller-scale turbulent motions. In the latter case the 
proper form for 3F  is not immediately obvious.  
 

We now seek the equations for the velocity components corresponding to Eq. 3.3.  
Introduce the spherical coordinates: ,λ θ  are longitude and latitude respectively, and 
z r a= −  is the altitude above mean sea level.  
 

Let , ,i j k  be unit vectors in the direction of increasing zλ θ, , .  and let the velocity 
components be u v w= ⋅ , = ⋅ , = ⋅V i V j V k  (see Fig. 3.2) so that we can write 
 

u v w= + +V i j k . 
 

 
 
Fig. 3.2 Sketch of relation between i,j,k  and the rotation axis.  
 

EXERCISE: Determine , ,d d d
dt dt dt

i j k  in terms of u v w, , , , ,i j k . Also determine the components 

of ×Ω V . (The relations 
r

× ×
= , = = , = ×

| × | | × |
r Ω r Ω kk i j k i

Ω r Ω k
 may be helpful.)  

 
 
EXERCISE: Derive Eqs. 3.4 below from Eq. 3.3 using the results of the previous exercise.  
 
 

The momentum equations in component form are : 
 

3 12d utan wf w cos p
dt a z a z

θ θ
ρ

⎡ ⎤+ + × + + ⋅ Ω = − ∇ +⎢ ⎥+ +⎣ ⎦
u k u u i F              (3.4a) 

and 
2 2

3 12 r
d w u v pu cos g F
dt a z z

θ
ρ

+ ∂
− − ⋅ Ω = − − +

+ ∂
                       (3.4b) 

 
where 2f sinθ= Ω  is the vertical component of the rotation vector Ω  and 



 

( )u v= ,u  and 1 1
( ) ( )a z cos a zθ λ θ

∂ ∂
∇ ≡ +

+ ∂ + ∂
i j . 

 
Eqs. 3.4 have an angular momentum principle 
 

1dM p rcos F
dt λθ

ρ λ
∂

= − +
∂

 , where ( )M rcos u rcosθ θ= Ω +  .          (3.5)  

 
EXERCISE: Derive Eq. 3.5 from Eqs. 3.4. 
 

Since z a� , one is tempted to replace a z+  by a in Eqs. 3.4. The resulting equations 
do not have an angular momentum principle. [A detailed discussion appears in Phillips, 1968 
and references therein; also see Veronis, 1973.] The difficulty arises from the terms 
2 /cos w and uw aθΩ  in Eq. 3.4a. A way out is given in the following exercise. 
 
EXERCISE: Starting from the vector invariant form of Eq. 3.3 
 

2
3 3 3

1 1( ) ( 2 )
2

V rcos p
t

θ
ρ

∂ −
+∇ − ×∇× + Ω = ∇ −∇ Φ+ ,

∂
V V V i F  

 
use the approximate relations  

dx dx acos u acos
dt dt

λθλ θ= ; = =  

 
dy dy a v a
dt dt

θθ= ; = =  

and  
dzz r a w
dt

= − ; =  

 
to obtain the component equations  
 

3 1( )d utan pu f v F
dt a x λ

θ
ρ
∂

− + = − +
∂

                                 (3.6a) 

 
3 1( )d utan pv f u F

dt a y θ
θ

ρ
∂

− + = − +
∂

                                 (3.6b) 

 
3 1

r
d pw g F
dt zρ

− ∂
= − +

∂
                                      (3.6c) 

 
and show that Eqs. 3.6 have an angular momentum principle with  



 
( )M acos u acosθ θ≡ Ω + ,  

 
(i.e., M  evaluated as if the parcel of fluid is at 0z = ).  
 

Eqs. 3.6 (i.e., with 2 cosθΩ  terms neglected) may be derived by a scaling argument 
that relies on the stratification being strong enough to inhibit vertical motions. The vertical 
direction–the direction determined by gravity–has been singled out (rather than the direction 
of Ω ). From here on we will work with the momentum equations in the form of Eqs. 3.6, 
and consistently replace r  by a  as a coefficient. The terms proportional to 1/a arise because 
of the curvature of the earth; we will do much of our analysis on planes where they may be 
neglected. Note that all the equations in Eqs. 3.6 are nonlinear.  
 

3.1.2 The Continuity Equation and Equation of State 
 

The continuity equation is: 
 

3 ( ) 0
t
ρ ρ∂
+∇ ⋅ =

∂
V  

 
or, alternately,  
 

3
3

1 0d
dt
ρ

ρ
+∇ ⋅ =V . 

 
In spherical coordinates, with the same approximations as above  
 

31 1 1 ( ) 0d u wvcos
dt acos acos z
ρ θ

ρ θ λ θ θ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

                         (3.7) 

 
(a term 2 /w a  has been neglected).  
 
 

The Equation of State has the form:  
 

( ) 0F p Tρ, , ; =c                                                          (3.8) 
 
where T =  temperature and c  stands for and array of other constituents. For the earth’s 
atmosphere the most important example of c  is some measure of water vapor content such as 
specific humidity q . For the ocean c  is S , the salinity. For other planets and other situations 
there are other possibilities.  
 

Dry air may be treated as a perfect gas:  
 



2 1287p RT R const ms degρ − −= ; = = ;                                   (3.9) 
 
The equation for moist air may be put in the same form by replacing T  by vT , the virtual 
temperature (see Sec. 5.1, Thermodynamic Quantities).  
 

The equation of state for sea water is generally written in the form ( )oF T S Pρ ρ= , , ; 
and is linearized as  
 

[ ]o T S pρ ρ α β γ= − + + .                                           (3.10) 
 
In general α β γ, ,  are not constant but for near surface work the approximation α β,  
constant and 0γ =  is acceptable. For temperatures well above freezing 0α > in accord with 
the intuitive expectation that density is greater in water that is colder (or saltier; 0).β >  
 

3.1.3 Constituent Equations  
 

In general, a constituent c (e.g. water vapor, salinity, carbon dioxide etc.) per unit 
mass is governed by an equation of the form  
 

3d c Sources Sinks Diffusion
dt

ρ = − + .                                 (3.11) 

 
For water vapor q , a source would be evaporation and a sink condensation of liquid water; 
for salinity S  the source-sink is evaporation-precipitation and is localized to the ocean 
surface. [Note that salt is not actually added to the ocean (except perhaps in river runoff) but 
the concentration of salt in water changes by the addition and subtraction of fresh water.] 
Active chemicals can have very complicated right hand sides to their equations.  
 

3.1.4 The First Law of Thermodynamics  
 

The entropy form of the First Law is  
 

d J
dt T
η
=                                                           (3.12) 

 
where η =  entropy per unit mass, and J  is the rate of heating per unit mass by irreversible 
processes.  
 

For a dry atmosphere, the ideal gas law is p RTρ=  so that  
 



p p
d dT Rdpd c c

T p
θη
θ

= = −  

 

where ( ) p

R
c

oT p pθ = /  is the potential temperature, i.e. the temperature a parcel of air of 
temperature T  and pressure p  would have if brought adiabatically to pressure 

( 1000 )op mb= . Hence  
 

p

d J
dt c T
θ θ= .                                                     (3.13) 

 
Generally the heating term J includes radiation, latent and sensible heating, and diffusion and 
conduction of heat. 
 

3.1.5 Boundary Conditions 
 

Equations 3.6, 3.7, 3.10 and 3.8 are 6 equations in the variables u v w p Tρ, , , , ,  and S  
or q . Eq. 3.11 provides an equation for S  or q . Let’s ignore these for the present-- assume 
dry air and S =  constant. Then we have 6 equations in 6 unknowns if the friction and heating 
terms are specified externally or as functions of the calculated variables.  
 

For a solution to these equations, we need boundary conditions.  
 
For the atmosphere these are: 
 
(a) At the lower surface, denoted by 0 0( , )z z x y= , ow z= ⋅∇u  so there is no normal flow at 
the surface. Near the surface friction becomes far more important than in the free 
atmosphere. We will consider this more carefully in Chapter 4. 
 
(b) At the top of the atmosphere (or at least at such a low pressure that there is not much 
more atmosphere above that point) we impose radiation conditions: energy fluxes (wave 
energy) are outward.  However, numerical models have tops and often impose 0w = at the 
top. As we will see in Chapter 5, this may lead to spurious vertically standing modes.  
 
For the ocean, the boundary conditions are:  
 
(a) At the bottom of the ocean ow z= ⋅∇u  or some frictional form.  
 
(b) At the top surface of the ocean, a kinematic condition:  either 0w =  (rigid lid) or 

topdz
w

dt
= , which can be made into a condition on the pressure. Also continuity of pressure 

across the interface (0) atmp P=  (dynamic condition).  



 
(c) At the side boundaries of the ocean, the boundary condition depends on whether the fluid 
is taken inviscid or frictional.  
 
Frictionless: 0⋅ =u n  where n  is the vector normal to the boundary  
 
Frictional:   
 

no slip: 0=u ; 
 

free slip: 0⋅ =u n  and  tangential stress vanishes: ( ) 0
n
∂

× =
∂

k u . 

 
(Note that friction requires more boundary conditions.) 
 
(d) At the interface between the atmosphere and the ocean, the stresses across the interface 
are equal: wind water=τ τ . Stresses are not directly observed and are generally derived from 
near surface velocities using a bulk formula:  Dcρ= | |τ u u  where Dc is the drag coefficient 
(see Chapter 4). Dc is the same for air and water so that, since 1000water airρ ρ≈ × , 

30 .air wateru u≈ ×  
 

3.2 The f-plane and the β-plane 
 

A major simplification of the equations on a rotating sphere is the f plane 
approximation. 
 

Our equations are  
 

3
2

1[ ]d u tanf p
dt a

θ
ρ

− + × = − ∇ +u k u F                              (3.14a) 

 
3 1

r
d pw g F
dt zρ

∂
= − − +

∂
                                     (3.14b) 

 

3 3( ) 0
t
ρ ρ∂
+∇ ⋅ =

∂
V                                       (3.14c) 

 
where ( )u v= ,u , 3 ( , , )u v w=V , 2 sinf θ= Ω  and  
 

3d u v w
dt t x y z

∂ ∂ ∂ ∂
≡ + + +
∂ ∂ ∂ ∂

, 

 



with                                                     
x y
∂ ∂

∇ ≡ +
∂ ∂

i j , 

and  

3
tan

x y z a
θ∂ ∂ ∂

∇ ≡ + + −
∂ ∂ ∂

i j k j . 

 
The equations for an f plane follow by taking a →∞  while y  remains finite thereby 

eliminating curvature terms. Taking f =  constant defines an f-plane; a plane rotating at a 
rate 1

2 f . Alternately, view the f-plane as a piece of the sphere where the relevant length 
scale L  is small enough so that we may ignore the curvature of the earth and the variation of 
f .  

 
We may retain the simpler geometry of the plane while variation of rotation rate with 

latitude is taken into account by putting  
 

0f f yβ= +  

where 0 0( )f f y y= =   and 0( )df y
dy

β = is the local variation of f with latitude. This configuration 

is known as the beta plane (or β -plane). 
 
 

3.3 The Hydrostatic Approximation  
 
Consider a part of motionless column of fluid with density ρ , thickness zΔ ,and area 

A.  The mass of the parcel is being pulled down by the force of gravity: g A zρ Δ .The parcel 
stays in place because this force is balanced by the pressure difference between bottom and 
the top of the parcel: 
 

[ ]( ) ( ) ;p z p z Az A gA zρ− + = Δ  
 

or 

.dp g
dz

ρ= −  

 
For obvious reasons this relation is known as “hydrostatic balance”. It turns out that, 

to a good approximation, it holds for large scale motions in the atmosphere and ocean. 
 

3.3.1 The Hydrostatic Equations, with Formalities 
 



We now proceed to formally justify the hydrostatic approximation. We will focus on 
the atmosphere and follow Phillips, 1973. Our starting equations  are the inviscid forms of 
Eqs. 3.4 and 3.7:  
 

12d tan wf u cos w p
dt a z a z

θ θ
ρ

⎡ ⎤+ + × + + Ω = − ∇⎢ ⎥+ +⎣ ⎦
u k u u i               (3.15a) 

 
2 2( ) 12dw u v pcos u g

dt a z z
θ

ρ
+ ∂

− − Ω = − −
+ ∂

                        (3.15b) 

 
2 0d w w

dt z a z
ρ ρ ∂⎡ ⎤+ ∇ ⋅ + + =⎢ ⎥∂ +⎣ ⎦

u                           (3.15c) 

 
where 
 

1d u v w
dt t a z cos a z zθ λ θ

∂ ∂ ∂ ∂
≡ + + +
∂ + ∂ + ∂ ∂

 

and 
1 1 1 (cos

a z cos cos
θ

θ λ θ θ
∂ ∂⎡ ⎤∇⋅ ≡ + .⎢ ⎥+ ∂ ∂⎣ ⎦

i j  

 
First write  

( ) ( )p p z p x y t z∗= + , , ,  
and 

( ) ( )z x y t zρ ρ ρ∗= + , , ,  
 

where p g
z

ρ∂
= −

∂
, so the mean fields are defined to be hydrostatic. Note that only p∗  enters 

dynamically (i.e. in Eqs. 3.15). For the motions to be hydrostatic, the variable parts p ρ∗ ∗,  
must be; it is not enough that the mean part is hydrostatic.  
 

We introduce characteristic scales for the motions to be considered:  
 
L = horizontal length scale of the motion (1/4 wavelength, say)  
 
H = vertical length scale of the motion  
 
U = magnitude of horizontal velocity u, v  
 
W = magnitude of vertical velocity w  
 
τ  = time scale of motions.  
 



Using these scalings, we can scale: 
  

1 1 1
x y L z H t τ
∂ ∂ ∂ ∂

; ;
∂ ∂ ∂ ∂
∼ ∼ ∼ ∼  

 

(it could be that L
U

τ = , the advective time scale).  

 
To start off we assume: 

 
(i) L a≤  
 
(ii) H L≤ .  
 
(iii) It may be that orH L L a<< <<  but in any case we assume that H a<< .  

As a consequence of (iii) we may replace a z+  by a  since [1 ]Ha z a
a

+ ≤ + ; we will 

do so from here on without further comment. This, if done properly, also eliminates w  etc. 
metric terms and 2 cosθΩ  terms resulting, as before, in Eqs. 3.6. 
 

Now consider Eq. 3.15a. There are two cases to consider:  
 
(a) Slow motion 1 fτ − <<  or 1f τ− << .  
 

 In this case du U fU
dt τ

<<∼  so that  

 
p LfUρ∗ ∼ .                                                   (3.16) 

 
(b) Fast motions: 1 fτ − ≥  so that  

p UP L
ρ τ

∗

=∼ .                                              (3.17) 

 
Now consider the continuity equation and use the adiabatic relation 2

sdp c dρ=  

(where sc RTγ= is the speed of sound  in the atmosphere) and Eqs. 3.9 and 3.13 with J=0 
to obtain  
 

2

1 0z
s

dp w
c dtρ

+∇⋅ + =u  

or 

2 2

1 0z
s s

dp g w w
c dt cρ

∗

− + +∇⋅ =u .                                    (3.18) 



 
Define the length 2

sD c g= /  and assume  
 
(iv) D H≥ .  
 
The order of magnitude of each of the terms in Eq. 3.18 is respectively: 
 

2

1 0
s

p w w U
c D H L
I II III

ρ τ

∗

+ + + ∼

                                  (3.19) 

 

Since H D≤ we must have  W W
D H

≤ . 

 
(a) Suppose the mean balance is 0I II+ ≈ so that 2( )sW HP c τ/∼ .  
 
Then in (3.15b)  
 

2 2

1while
s

dw W HP p P
dt c z Hτ τ ρ

∗ ∗ ∗∂
∂

∼ ∼ ∼  

 
Hence  
 

2
21 if

s

dw p H
dt z c

τ
ρ

∗ ⎞⎛∂
<< >> ⎟⎜∂ ⎝ ⎠

 

 

In the atmosphere, 
4

1

10 30
300s

H m s
c ms−
∼ ∼ and in the ocean, 

3

1

5 10 3
1500s

H m s
c ms−

×∼ ∼ . Our interest is 

in motions with timescales of  many days, so this condition is clearly satisfied. In the case 

where τ  is the advective timescale L Uτ /∼ ; 
s

H
c

τ >> , is equivalent to sc H
U L

>> , which is 

certainly true if 1H L/ << . 
 
(b) Suppose the term I in Eq. 3.19 is small so the balance is 0II III+ ≈ . Then 
 

soH dw HW U U
L dt Lτ

∼ ∼  

 

If Eq. 3.17 holds, i.e. fast motions, then 1
z

L Up
Hρ τ

∗ ∼  so 



 
21 * if 1 ordw p H L H

dt z Lρ
∂ ⎛ ⎞<< << >>⎜ ⎟∂ ⎝ ⎠

 

 
If  Eq. 3.16 holds, i.e. slow motions, then P LfU∼   so 
 

21 * 1if or ( ) 1dw p HU L fU H L
d z L H fτ ρ τ τ

∂
<< << / <<

∂
 

 
In this case of slow motion 1( ) 1fτ − << . So in either case 
 

1 if 1dw p H
dt z Lρ

∗∂
<< <<

∂
. 

 

(c) If the balance is 0I III+ ≈ then HW U
L

∼  and the above arguments hold (and then some).  

 
The Coriolis term is the equation for w,  2 cos u fUθΩ ∼ . Now in either Eq. 3.16 or 

3.17 P LUf≥ so 1
z

Lp fU
Hρ

≥ .   Hence the Coriolis term is clearly negligible compared to 

*1
zp

ρ
 if / 1.H L�  

 
It is easy to show that if Eq. 3.15b is replaced by the hydrostatic equation, then 

2 cos wθΩ  is negligible in Eq. 3.15a. The shallow approximation neglects this and all terms 

in 
2 2w u v

a a
+

, .  

 
There are two major implications of the use of the hydrostatic equation instead of Eq. 

3.15b. The first is that there is no longer a prognostic equation for the vertical velocity w . 
The vertical velocity becomes a diagnostic quantity: it takes on whatever values it needs to 
assure hydrostatic balance. In any case, for large scale problems, dw dt/ is too small to 
compute. In this sense, hydrostatic balance is forced on us. This does not mean 0dw dt/ = , 
only that it is negligible compared to other terms in the force balance. The second implication 
is that buoyancy oscillations are ruled out. Static instability is no longer automatically 
handled by the equations because the modified equations have built in that the horizontal 
scale of motions is much greater than the vertical scale ( )L H>>  which eliminates 
convective motions in which .L H≈   Such convective motions are “sub grid scale” and 
modelers must parameterize them in terms of variables at the larger scales the models do 
allow. 

With 1H L/ <<  and 
s

H
C

τ >> , the full set of approximate equations become:  



 
1[ ] 0d tanf u p

dt a
θ

ρ
+ + × + ∇ =u k u                             (3.20a) 

 
p g
z

ρ∂
= −

∂
                                                  (3.20b) 

 
1 0d w

dt z
ρ

ρ
∂

+∇⋅ + =
∂

u                                            (3.20c) 

where 
d u v w
dt t acos a zθ λ θ

∂ ∂ ∂ ∂
≡ + + +
∂ ∂ ∂ ∂

. 

 
We also have the First Law of Thermodynamics; in its adiabatic form, in terms of 

potential temperature:  
 

2

0dln dln N w
dt dt g
θ θ ∗

= + =  where 2 lnN
z
θ∂

=
∂

.                        (3.20d) 

 
 

3.3.2 Boussinesq Equations.  
 

Since the density variations of water – e.g. in the ocean – are very small, it is 
attractive to ignore the slight variations in the inertia of the fluid and take ρ  to be constant in 
the momentum balance. The variations of density in the continuity equation are similarly 
small, so it is a good approximation to take ρ = constant, which effectively renders the fluid 
incompressible. However, we do not want to remove the important influence of stratification, 
so we must allow the variations in buoyancy and thus cannot simply say ρ = constant.  The 
Boussinesq equations accomplish all these desirable goals. 
 

While the formal derivation of  the Boussinesq approximation, is complicated and 
will not be given here, the basic idea of this approximation is simple:  
 

constantoρ ρ≈ = except where ρ  is coupled to gravity. 
 

Therefore, with subscripts representing differentiation: 
 

1 1
x x x

o

p p P
ρ ρ

≈ =  

 

where 
0

pP
ρ

=  is the dynamic pressure and since 



 

3 3 0d
dt
ρ ρ+ ∇ ⋅ =V , 

 
taking ρ  to be constant yields 
 

3 0∇⋅ =V  
 
which means that the fluid acts like an incompressible fluid. BUT oρ ρ−  is important when 

coupled to gravity: i.e. let op p p′= +  where o
o

p g
z

ρ∂
= −

∂
 so that ( )o

p g
z

ρ ρ
′∂
= − −

∂
.  

 

Define 1

o

P p
ρ

′≡ . Then 

0

o

P g b
z

ρ ρ
ρ

∂ −
= − ≡

∂
, 

 
where b  is the buoyancy force (or in more common parlance, the buoyancy). 
 

The First Law may be now be written as  
 

d Q
dt
ρ
=  

 
where Q  is the rate of heating (in density units). Therefore 
 

2

2
S

db g w B
dt c

− =  where ( )

o

gQB
ρ

= − , 

 

or, since 2

1
200S

g
c km

≈   for the ocean, the first law simply becomes: 

 
db B
dt

= . 

 
We note that this is certainly a good approximation in the upper ocean. We also note that the 
Boussinesq approximation does not require hydrostatic balance and is often used to study 
convection. 
 

3.3.3 Hydrostatic Balance and Pressure Coordinates  
 

We have shown that the hydrostatic relation 



 
p g
z

ρ∂
= −

∂
                                                        (3.21) 

 
holds for the large scale motions in the atmosphere and oceans. When Eq. 3.21 holds the 
equations for the atmosphere may be simplified by changing to pressure coordinates.  
 

First define the geopotentional gzΦ =  so that the hydrostatic relation becomes  
 

1 RT
p pρ

∂Φ
= − = −

∂
.                                                 (3.22) 

 
In pressure coordinates p  replaces z  as the vertical coordinate. To derive the new 

equations let '( ( ) ) ( )s x y z x y p s x y pτ τ τ, , , , , , = , , ,  and note that for any function ( )s x y p τ, , , :  
 

' '

y p t y z t x y t y p t

s s s z
x x z x, , , , , , , ,

∂ ∂ ∂ ∂⎞ ⎞ ⎞ ⎞⎛ ⎛ ⎛ ⎛= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎝ ⎝ ⎝⎠ ⎠ ⎠ ⎠
 

 
and similarly for y  and t . In the vertical  
 

' 1 's s z s
p z p g zρ
∂ ∂ ∂ ∂

= ⋅ = −
∂ ∂ ∂ ∂

 

 
and with p∇ ≡  2-dimensional ∇  on constant p  surfaces we have:  
 

p z p
ss s z
z
∂

∇ = ∇ + ∇
∂

. 

 
In particular 

  

0 p z p z p
pp p z p g z
z

ρ∂
= ∇ = ∇ + ∇ = ∇ − ∇

∂
 

 
so that 

1
z pp

ρ
∇ =∇ Φ . 

 
This makes sense in that, while there is no pressure gradient on a constant pressure surface to 
accelerate the flow, there is a gravitational force because the surface is not at a constant 
height. In other words, the fluid tends to flow downhill under the influence of gravity. 
 

The equations in pressure coordinates , with w replaced by ,dp dtω ≡ / are then:  
 



p
d f
dt

+ × = −∇ Φ+
u k u F ,                                           (3.23a) 

 

1RT p
p

ρ∂Φ
= − / = − /

∂
,                                           (3.23b) 

 

0p p
ω∂

∇ ⋅ + =
∂

u ,                                                  (3.23c) 

and  

p
dT RTc w Q
dt P

− = ,                                               (3.23d) 

 
where  
 

p
d
dt t p

ω∂ ∂
≡ + ⋅∇ +
∂ ∂

u . 

 
Note that in this form of the equations the pressure gradient term is linear and the continuity 
equation is like the incompressible one. Hence it is formally like the Boussinesq equations 
applicable to the ocean.  Note also that the 2 cos wθΩ  term is gone.  
 

The disadvantage of this set is that the lower boundary condition is now quite 
complicated. At the ground, o ogw g z= ⋅∇ = ⋅∇Φu u  and 
 

p

dz dgw g
dt dt t p

ωΦ ∂Φ ∂Φ⎞⎛= = = + ⋅∇Φ +⎜ ⎟∂ ∂⎝ ⎠
u  

 

Also, 1
p ρ

∂Φ
= −

∂
 so  

( ) p ot
ω ρ ∂Φ
= + ⋅∇Φ − ⋅∇Φ

∂
u u  at op p= .  

 
But op  changes in time (and space), which is awkward. So most models with 

topography follow Phillips, 1957, and use opσ ρ= /  as vertical coordinate. At the ground 

1σ = and 0d
dt
σ
= . The equations get messier - extra terms appear - but computers are 

undaunted by this extra complexity. 
 

3.3.4 Ocean Dynamic Height  
 

The hydrostatic relation may be written as  



 

p
α∂Φ

= −
∂

 

 
where 1α ρ−=  is specific volume.  
 

Using this form of the hydrostatic relation,  differences of geopotential can be written 
as  
 

2

1
1 2

p

p
dpαΦ −Φ = −∫ . 

 
Oceanographers usually work with specific volume anomalies; i.e. write 

35 o pα δα α , ,= +  where the last term is the reference specific volume at 0T C= D  and salinity 

S 35=  /o
oo  (parts per thousand). Now define  

 
2

1

p

p
D dpδα= ∫                                                   (3.24) 

 
as the dynamic height anomaly. To see its meaning consider that  
 

1 2p p pD∇ = ∇ Φ −∇ Φ . 
 

Now suppose the geopotential surface 2Φ  is "flat", i.e. 2 0p∇ Φ = . Then D  
determines the pressure gradient force at level 1. Typically, level 2 is taken as a reference 
level such as 1000 decibars (approximately 1000 m) and D  is then the dynamic height 
(anomaly) relative to 1000 decibars. The concept is useful because the flow at 1000 m (or 
500 m for that matter) is so weak compared to the near surface flow that  
 
 2 1∇Φ << ∇Φ  
 
so D  is an excellent approximation to the pressure forces.  
 

3.4 Geostrophy  
 

The Quasi-Geostrophic (Q-G) approximation is central to much of oceanography and 
meteorology. This is especially true for midlatitudes, but the concept also is essential for 
understanding equatorial dynamics.  In recognition of its importance, derivations, formal and 
informal, can be found in virtually any textbook for ocean or atmosphere dynamics. Our 
recommendation for a formal derivation bundled with valuable insights and interesting 
history is the original Charney (1948) paper on geostrophic scaling.  We will restrict 
ourselves here to a heuristic discussion. For simplicity – and a bit of a change – we will work 



with the atmosphere in pressure coordinates.  Everything easily carries over to a Boussinesq 
ocean, and just as easily to a compressible ocean or atmosphere in z-coordinates.  
 

We begin by defining the geostrophic velocity (ug,vg) to be the velocity that would 
balance the Coriolis force against the geopotential height gradient:  
 

gfu
y

∂Φ
≡ −

∂
 and gfv

x
∂Φ

≡
∂

, or  g
pf × = −∇ Φk u                            (3.25) 

 
Now the question is whether the actual velocity is equal to the geostrophic velocity to a good 
approximation.  Comparing to the full momentum balance (3.23a), we see that in regions 
where friction is small (i.e. away from boundaries in the ocean or atmosphere), this equality 
demands that the acceleration du/dt be small compared to the Coriolis term. If the 
characteristic scales for f, velocity, temporal variations and spatial variations are f0, U, T, L, 
respectively, then this translates into the conditions 
 
 1 and  /           o oT f U L f− � �  
or 

-1
0  and  / 1;o of T R U f L≡� �  

 
that is, the timescale of the motions of interest must be long compared to an inertial period, 
and the Rossby number, R0 must be small.  Another interpretation of the Rossby number 
being small is that the relative vorticity, / / ,v x u yζ = ∂ ∂ − ∂ ∂  must be small compared to the 
planetary vorticity , in particular, 0R fζ = .  The reader is invited to plug in typical numbers 
for synoptic scale motions in the atmosphere or ocean and verify that these conditions are 
met; the flows at these scales are in geostrophic balance. The system is then also hydrostatic. 
  

An important equation is obtained by differentiating the geostrophic relation with 
respect to p and using the hydrostatic relation (3.22) to obtain: 
 

1
p p pf

p p p ρ
⎡ ⎤∂ ∂ ∂Φ

× = − ∇ Φ = −∇ = −∇⎢ ⎥∂ ∂ ∂⎣ ⎦

uk .                          (3.26) 

 
For the atmosphere the equation of state may be written as or 1/ / ,p RT RT pρ ρ= =  so 
 

.p
Rf T

p p
∂

× = ∇
∂
uk                                                     (3.27) 

 
This relation, known as the “thermal wind equation”, clearly shows the dependence of 
geostrophic wind shear on quasi-horizontal temperature gradients. 
 

Another important concomitant of geostrophy is that the horizontal velocity field is 
approximately non-divergent. Taking the (vertical component of the) curl of the geostrophic 
relation,  



 

( ) ( ) 0fu fv
x y x y y x

⎞⎛∂ ∂ ∂ ∂Φ ∂ ∂Φ ⎞⎛− − = − − − =⎜ ⎟⎟⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 

or 
 

0f vβ∇ + =ui .                                           (3.27) 
 

If the scales of motion are not too large, so that 0f Lβ� then this means the velocity 
must be nearly non-divergent. Even if 0f Lβ≈ , the divergence 0Rδ ζ≈ so is smaller by a 
factor of a Rossby number than the vorticity. Note that if f is constant 0β = so geostrophy 
then implies exact non-divergence.  It is also worth noting that geostrophy actually requires 
sufficient stratification so that vertical motions will be small, and in accord with the 
continuity equation 3.23c, the flow can then be horizontally non-divergent (see, e.g. Charney 
1948). 
 

Returning to the last equation 3.27, we can use the continuity equation 3.23c to write 
it as 
 

df v f
dt p

ωβ ∂
= =

∂
 

 
a relation (one of two) known as the Sverdrup relation. It states that the advection of 
planetary vorticity is balanced by vortex stretching. Note that the relative vorticity ζ of a fluid 
parcel is neglected relative to the planetary vorticity f since by our scaling, ζ 0R f≈ . 
 

Geostrophy is a balance: a static diagnostic relation between the velocity and the 
geopotential height (or pressure, if we were in z coordinates) gradient. It cannot tell us how 
either evolves. It implies nothing about cause: it does not mean that the velocity causes the 
height gradient or vice versa. It only states that, somehow, the two have mutually adjusted to 
be in geostrophic balance. (“Geostrophic adjustment” is a fascinating topic with a large 
literature.) 
 

There is an evolution equation for geostrophically balanced flows, the “quasi-
geostrophic (Q-G) potential vorticity equation”.  Formally, it may be derived by expanding 
the equations in powers of a small parameter, the Rossby number R0. [As we saw above, the 
geostrophic scaling gives f:ζ:δ = 1:R0:R0

2.] The leading order is the geostrophic relation and 
the next order is an evolution equation for the Q-G potential vorticity. Less formally, if we 
take the curl of the horizontal momentum equations (3.23a) the leading terms, the Coriolis 
terms and the geopotential height gradient, are eliminated and the resulting time dependent 
equation for the relative vorticity allows the evolution of the flow to be calculated: 
 

lower order terms ( . . .)
g

g g gd
v f l o t

dt
ς

β+ + ∇ =ui  

 



where 
 

g gd
dt t

∂
≡ + ∇
∂

u i , 

 
and the superscript or subscript “g” indicates geostrophic quantities. From the continuity 
equation (3.23c) we may replace g∇ ui with pω−∂ ∂  and then use the energy equation 
(3.23d) (with Q=0 for simplicity) in a Q-G variant,  
 

1 . . .g

p

d T T l o t
dt p c

ω
ρ

⎡ ⎤∂
+ − =⎢ ⎥

∂⎢ ⎥⎣ ⎦
 

 
to eliminate ω in favor of T: 
 

1
1 . . .

g
g gg

p

d d TTv f l o t
dt p p c dt
ς

β
ρ

−⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ + − =⎢ ⎥⎨ ⎬∂ ∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
. 

 
Since the geostrophic velocity is approximately non-divergent we may define a 

streamfunction ψ such that 
 

2; ;   so  and ,g g g Rv u T
x y p fp
ψ ψ ψψ ς∂ ∂ ∂

= = − ∇ = =
∂ ∂ ∂

 

 
with the last relation being a consequence of the thermal wind relation (Eq. 3.27).  
Substituting these relations in the equation above yields the Q-G potential vorticity equation 
in terms of the single variable ψ: 
 

2 . . .gd
f S l o t

dt p p
ψψ

⎧ ⎫⎞⎛∂ ∂
∇ + + =⎨ ⎬⎟⎜∂ ∂⎝ ⎠⎩ ⎭

                                     (3.28) 

 

where the stability factor S =

1
_

2
0

_
1 ,

p

f p T
R p cρ

−
⎡ ⎤
∂⎢ ⎥−
⎢ ⎥∂
⎣ ⎦

0f  is the mean value of f and the overbars 

are the horizontal means so that 
_ _

( ) and ( )T p pρ vary only in the vertical. In deriving this 

equation we swapped the order of gd
dt

and 
p
∂
∂

; to do so we used the fact that, because of the 

thermal wind relation, there is no advection of temperature by thermal wind (the vertical 
shear of the geostrophic wind that appears in the thermal wind equation); i.e. 
 



0.p
pT f

p p R p
∂ ∂ ∂

∇ = × =
∂ ∂ ∂
u u uki i  

 
The quasi-geostrophic equations are a filtered system, allowing the evolution through 

a succession of geostrophically balanced states while eliminating the modes of motion that 
bring about these balances.  For quasi-geostrophy it is inertia-gravity waves that make the 
adjustments so the large scale slow motions stay in geostrophic balance. It is remarkable that 
it is possible to use the conservation of quasi-geostrophic potential vorticity to evolve the 
flow without having to worry about the details of how inertia-gravity waves make it happen.  
 

3.5 Simple Layered Models of the Ocean  

3.5.1 Shallow Water Equations  
 

A simple system arises from the primitive equations when we apply them to a 
homogenous fluid ( )constρ = , shallow enough so we may approximate 0u z∂ /∂ = . Since it 
is hydrostatic  
 

( ) ( ) ( )
h

z a az
p g p p z gdz p z g h z pρ ρ ρ= − ⇒ − = − ⇒ = − +∫  

 
where ap  is the pressure of the overlying atmosphere at the top surface of the fluid which we 
will take to be spatially uniform. Hence  
 

1 for allp g h z
ρ
∇ = ∇  

 
and  
 

d f g h
dt

+ × = − ∇ +
u k u F                                      (3.29a) 

 
where F  stands for all frictional forces, including surface wind stress.  
 

The continuity equation is the incompressible one:  
 

0zw u+∇⋅ = . 
 
Integrate from 0z =  where 0w =  to z h= : 
  

0 ( ) ( ) ( )
h h

o o
w h dz w h dz h h= + ∇ ⋅ = +∇ − ⋅∇∫ ∫u u u  

 
( ) ( )w h h h= − ⋅∇ +∇⋅u u  



But 
 

( ) dh hw h h
dt t

∂
≡ = + ⋅∇ .

∂
u  

 
Therefore:  

( ) 0h h
t

∂
+∇ ⋅ =

∂
u .                                                 (3.29b) 

 
Eqs. 3.29 form the shallow water equations. They are clearly nonlinear. 
 

We can linearize the shallow water equations by writing h h H′= + ; h H′�  and 
'= +u u u  with 0=u . Then, dropping the primes gives the shallow water equations: 

 
( )x

t xu fv gh F− + = ,                                           (3.30a) 
 

( )y
t yv fu gh F+ + = ,                                         (3.30b) 

 
0th H+ ∇⋅ =u .                                              (3.30c) 

 
An alternate form is obtained by letting the geopotential 2andgh c gHΦ = = :   
 

( )x
t xu fv F− +Φ = ,                                          (3.31a) 

 
( )y

t yv fu F+ +Φ =                                           (3.31b) 
 

2 0t cΦ + ∇⋅ =u ,                                            (3.31c) 
 
where c is the gravity wave speed on a fluid of depth H.  
 
 
EXERCISE: Suppose the bottom is not flat and has the form ( )D x y, . What are the 
corresponding shallow water equations?  
 
 

3.5.2 Transport Equations 
 

Assuming that the Rossby number 0 / 1R U fL= � , where as in Sec. 3.4, U and L are 
characteristic velocity and length scales respectively, we can define the vertically integrated 



transport as  
h

D

dz
−

= ∫U u   where we integrate from the assumed flat bottom at z D=−  to the 

surface at h+H, where h is the perturbed surface height: 
h

D

h H dzρ
−

+ = ∫ .  

The boundary conditions are w=0 at z=-D and dh hw
dt t

∂
= ≈

∂
at z=h. The governing equations 

are now: 
 

0 Df gH h
t

∂
+ + ∇ = −

∂
U k × U τ τ   

 
and 

0h
t

∂
+∇ =

∂
Ui  

 
where 0τ and Dτ  are the stresses at the top and bottom respectively. If we now assume quasi-
geostrophy (Sec. 3.4) 0 0and y xf U gHh f V gHh≈− ≈ and define a transport stream function, 

andy xU Vψ ψ=− =  then 0fh
gH

ψ= . Now the vorticity 2
x yV Uζ ψ= − =∇ . Taking the curl of 

the transport equations yields: 
 

0 0
hV f

t t
ζ β κζ∂ ∂
+ − =∇× −

∂ ∂
τ , 

 
where the last term is a usual linear form for the bottom stress. In terms of the stream 
function, the vorticity equation becomes: 
 

2 2 2
0[ ] t xλ ψ βψ κ ψ−∇ − + =∇ − ∇×τ   

 

where 
0

gH
f

λ = is the Rossby radius of deformation. We will see later that this vorticity 

equation and its generalization will give the planetary wave equations.  
 

3.5.3 1 ½ Layer Model 
 

Consider an ocean of depth H for which the shallow water equations apply, i.e., the 
depth is small compared to the characteristic scale of the motion.  
 

Since ρ  is constant within the layer it follows that 0u z∂ /∂ =  so that u  is 
independent of depth. Consider, for example, the thermal wind relation--but we must also 
assume that there are no stresses within the layer which allow a velocity shear. Integrating 



through the layer gives the non-forced version of Eqs. 3.30 where h is the deviation of the 
upper surface from its flat value: 
 

t xu fv gh− = −                                                  (3.32a) 
 

t yv fu gh+ =−                                                  (3.32b) 
 

( )t x yh H u v=− +                                             (3.32c) 
 

These are the shallow water equations of a shallow fluid of depth H. 
 

Now consider an shallow ocean consisting of a layer of the same undisturbed depth 
H  and density ρ ρ−Δ  on top of a motionless layer of density ρ . Let the deviations of the 
upper surface be h  and the deviations of the lower surface be bh  as shown in Fig. 3.3. 
 

 
Fig. 3.3  Schematic structure of the ocean with the lower layer at rest. 
 

The pressure at a point z below the undisturbed layer is calculated hydrostatically as  
 

( ) ( )p z gH gzρ ρ ρ= + − Δ .                                         (3.33) 
 

When there are deviations of the depth of the upper layer, the pressure at the point z is  
 

( ) ( ) ( )( )b bp z g h H h g z hρ ρ ρ= + + + + Δ − .                              (3.34) 
 

Because the bottom layer is motionless, no change of upper layer depths can change 
the hydrostatic pressure in the motionless layer else the lower layer would move. Therefore, 
the hydrostatic pressure given by Eqs. 3.33 and 3.34 must be the same. This gives: 
 

h  

bh

H, ρ  

,z ρ ρ+ Δ  



bh hρ
ρ

=
Δ

                                                      (3.35) 

 

which means that the lower surface must move by the large factor of ρ
ρΔ

 more than the 

upper surface in order to make sure the lower layer remains motionless.  For the upper layers 
of the tropical ocean, / 500.ρ ρΔ ∼  Hence the upper layer thickness and in the upper layer 
momentum equation 
 

1 1 1( ) bp h z h hρ
ρ ρ ρ ρ

Δ
∇ = ∇ + = ∇ = ∇  

 
so we can write Eqs. 3.32 in term of bh  as 
 
 

't bxu fv g h− =−                                                   (3.36a) 
 

't byv fu g h+ =−                                                   (3.36b) 
 

( )bt x yh H u v=− +                                                  (3.36c) 
 

where 'g gρ
ρ
Δ

=  is known as the reduced gravity. The wave speed in this system is 

'c g H=  and an alternate to reduced gravity, we can write the equations in exactly the 

same form as Eqs. 3.32 but with eH Hρ
ρ
Δ

=  replacing H in Eq. 3.32c so that the new 

(equivalent) depth is about 500 times smaller than the original depth of the active layer. If 
H=200m, He=40cm and c=2m/sec.  
 

We see that simply by putting the layer of depth H on a motionless denser fluid, the 
effective depth becomes eH , a much smaller equivalent depth, or the effective gravity 
becomes much smaller, 'g . The undulations of the interface layer become large.  
 

3.5.4 2-Layer Model 
 

As a natural extension of the above, we now allow the lower layer to move.  Consider 
a two layer ocean with an upper layer of mean depth 1H , density 1ρ , lying over a layer of 
mean depth 2H ,  density 2ρ . Let 1h and 2h be the deviations of the surface and interface 
respectively measured from the bottom of the ocean.  
 



The linear equations for the upper layer are  
 

1
1 1

1 1

1 s If p
t Hρ

∂ −
+ × + ∇ =

∂
u τ τk u                                 (3.37a) 

and  
1

1 1 0h H
t

∂
+ ∇⋅ =

∂
u .                                          (3.37b) 

 
For the lower layer:  
 

2
2 2

2 2

1 I Bf p
t Hρ

∂ −
+ × + ∇ =

∂
u τ τk u                               (3.38a) 

 
2

2 2 0h H
t

∂
+ ∇ ⋅ =

∂
u .                                         (3.38b) 

 
where s I B, ,τ τ τ  are stresses at the top, interface and bottom, respectively.  
 

Assuming the pressure above the fluid may be taken zero and integrating the 
hydrostatic relation zp gρ= −  from the surface 1 2z h h= ,+  to a depth z , in layer 1 yields:  
 

1 1 1 2 1( ) [ ]p z g h h zρ= + − .  
 
Hence 
 

 1 1 2
1

1 [ ]p g h h
ρ
∇ = ∇ + .                                        (3.39) 

 
Similarly:  

2 1 1 2 2 2 2 2[ ] [ ]p g h h h g h zρ ρ= + − + − ;  
 

1
2 1 2 1 2 1

2 2

1 [ ]p g h g h g h h g hρ δ
ρ ρ

∇ = ∇ + ∇ = ∇ + − ∇                  (3.40) 

 
2 1

2

where 1ρ ρ ρδ
ρ ρ
− Δ

= = �  

 
We can recast the 2 layer equations 3.37 and 3.38 into the SWE (shallow water 

equation) form. Define 1 1 2 2a a= +u u u  where 1 2a a,  are constants, and form 1(a 3.37a) + 
a 2 ( 3.37b): 
  



1 2 1 1 2 2 1{[ (1 )] [ ] } s ef g a a h a a h a H
t

δ∂
+ × + ∇ + − + + = /

∂
u k u τ            (3.41) 

 
(For simplicity we take 0I B= =τ τ  ). Now let 1 1 1 2h b h b h= +  and form 1(b 3.37b) + 
b 2 ( 3.38b): 
 

1 1 1 2 2 2[ ] 0h b H b H
t

∂
+∇⋅ + =

∂
u u                               (3.42) 

 
For Eqs. 3.41 and 3.42 to take the form of the SWE with velocity u , mean depth eH , 

and variable depth h  requires that  
 

1 2 1 1 2 2 1 1 2 2[ (1 )] [ ]a a h a a h h b h b hδ+ − + + = = +                     (3.43) 
 

1 1 2 2 1 1 1 2 2 2[ ]e eH H a a b H b H= + = +u u u u u                       (3.44) 
 
Eqs. 3.43 and 3.44 must hold for all 1 2,u u  and 1 2h h,  so the coefficients of each of these 4 
variables must be equal:  
 

1 2 1 1 2 2(1 )a a b a a bδ+ − = ; + = ,  
 

1 1 1 2 2 2e ea H H b a H H b= ; = .  
 
So  

1 1 2 2 1 1 1(1 ) eH a H a b H H aδ+ − = = ;  
 

2 1 1 2 2 2 2eH a H a b H H a+ = = ;  
 

1 1 11

2 2 2 2

(1 )
e

H H a a
H

H H a a
δ ⎞ ⎞ ⎞⎛ ⎛ ⎛

⎟ ⎟ ⎟⎜ ⎜ ⎜
⎟ ⎟ ⎟⎜ ⎜ ⎜
⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟

⎝ ⎝ ⎝⎠ ⎠ ⎠

−
=                                           (3.45) 

 
which is an eigenvalue problem for eH , the equivalent depth. eH  satisfies 
 

1 2 1 2( )( ) (1 ) 0e eH H H H H H δ− − − − =  
 
or  

2 1 2
1 2 1 2 1 2[( ) 4 ]

2e
H H H H H HH δ /+ ± + −

= . 

 
Since (for the ocean) 1δ � , the 2 solutions are approximately  

 



1 2
1 2 1 2

1 2
e

H HH H H H H
H H
δ+ ≈ + − ≈ +

+
                              (3.46a) 

and 
1 2

1 2
e

H HH
H H
δ− ≈

+
.                                            (3.46b) 

 
For the + mode,  

1 1

2 2

a H
a H

≈ ;  

 
e.g. 1 1 2 2eH H H+ ≈ +u u u  is the total transport of the water column. This mode is called the 
barotropic mode. The currents are approximately equal in the two layers, the equivalent 
depth of the fluid is equal to the actual mean depth and the barotropic mode basically acts as 
if the fluid were of constant density from top to bottom. 
 
For the – mode,  

1
1 2

1 2

1 Ha a
H H
δ⎡ ⎤

≈ − −⎢ ⎥+⎣ ⎦
 

 
so the motions in the 2 layers are opposite. This is called the baroclinic mode and has 
approximately zero net transport. The two modes are sketched in Fig. 3.4. 
 

 
Fig. 3.4 Sketch of vertical velocity structure of horizontal velocities for barotropic mode 
(left) in which velocities are substantially the same in the two layers and the baroclinic mode 
(right) in which the modes are in opposite directions in such a way that the net (vertically 
averaged) transport is zero. 
 

Note that if 2 1H H�  then 1eH Hδ≈  and 1 2a a≈ −  in the baroclinic mode. The 
current is much stronger in the upper layer: zero transport 1 2 2 1 1u u H H⇒| / |=| / |� . Suppose 
that layer 2 is infinitely deep. There can therefore be no motion in this layer – or there would 
be infinite energy. If 2 0=u  then 2 0p∇ = . Hence, from Eq. 3.40,  



 
1 2 1( ) 0h h hδ∇ + − ∇ = .                                              (3.47) 

 
Now 1 2h hη = +  is sea level; hence the slope of the interface between the two layers is 1δ −  
times the sea level slope. . It is easy to show that as 2H →∞ the equations for the upper layer 
are just the equations for the 1½ layer model of the previous section: 
 

1
1 1

1

S If g h
t H

∂ −′+ × + ∇ =
∂
u τ τk u                              (3.48a) 

 
1

1 1 0h H
t

∂
+ ∇⋅ =

∂
u                                         (3.48b) 

 
where g gδ′ =  is reduced gravity.  
 
EXERCISE: We have ignored Iτ  and Bτ . Suppose 1 2( )I Iκ α= −τ u u  and 2B Bκ=τ u . What 
values can I Bκ κ α, ,  have to allow a separation into baroclinic and barotropic modes?  
 
 

3.6 Vertical Ocean Modes in a Continuously Stratified Fluid 
 

We saw that, in layer models, the barotropic and baroclinic modes were properties of 
the difference of density in the various layers. We can extend the concept of equivalent 
depths and standing modes to the case of continuously varying density in the ocean. Because 
the atmosphere has no top, these considerations do not apply and we will delay consideration 
of the modes (or lack of them) for the atmosphere to Chapter 5.  
 

The linearized Boussinesq equations in a stratified ocean are : 
 

0

1u pfv
t xρ

∂ ∂
− =−

∂ ∂
                                                 (3.49a) 

 

0

1v pfu
t yρ

∂ ∂
+ =−

∂ ∂
                                                 (3.49b) 

 
p g
z

ρ∂
=−

∂
                                                        (3.49c) 

 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

                                                 (3.49d) 

 



0 0dw
t dz
ρ ρ∂
+ =

∂
                                                   (3.49e) 

 
where the basic stratification is assumed to be a function of z only: 0 0( )zρ ρ=  and the 

boundary conditions are taken to be 0w =  at the bottom of the ocean z D= − and w
t
η∂

=
∂

 at 

the top, where η is sea level. It is also assumed that the  basic state has zero velocities. We 

can define a buoyancy 0

0

( )b z g ρ ρ
ρ

⎞⎛ −
= ⎟⎜

⎝ ⎠
 and in terms of buoyancy, the hydrostatic and 

continuity equations become: 
 

0

1 p b
zρ
∂

=
∂

                                              (3.49c´) 

and 
 

2 0b N w
t

∂
+ =

∂
                                         (3.49e´) 

 
where the Brunt-Vaisala or buoyancy frequency is given by 
 

2 0 0

0

g bN
z z
ρ

ρ
− ∂ ∂

= =
∂ ∂

. 

 
We will look for solutions via separation of variables into functions of the form 

 
� �

0

( , , ) ( ( , , ), ( , , ), ( , , )) ( )pu v u x y t v x y t gh x y t A z
ρ

= �  

 
in view of Eqs. 3.49a,b we assume the same vertical structure for 0., , /u v P ρ .On the other 
hand while, because of Eq. 3.49d, w must have a different z structure: 
 

l( , , ) ( )w w x y t B z= . 
 

We can eliminate b between Eqs. 3.49c´ and 3.49e´: 
 

2

0

1 p b N w
t z tρ
∂ ∂ ∂

= =−
∂ ∂ ∂

 

so that 
� l 2( , , ) ( ) [ ( , , )] ( ) ( )dg h x y t A z w x y t N z B z

t dz
∂ ⎡ ⎤=−⎢ ⎥∂ ⎣ ⎦

.                (3.50) 

 



Taking the z derivative of Eq. 3.49e’  
 

� l
2

2( , , ) ( , , ) ( ) ( , , ) ( )d du x y t v x y t A z w x y t B z
x y dz dz

⎡ ⎤∂ ∂
+ =−⎢ ⎥∂ ∂⎣ ⎦

� .                 (3.51) 

 
Divide Eq. 3.50 by 3.51 to yield: 
 

�

�

2

2

2

( , , ) ( ) ( )

( , , ) ( , , ) ( )

g h x y t N z B zt
du x y t v x y t B zx y dz

∂
∂ =

∂ ∂
+

∂ ∂
�

.                           (3.52) 

 
Since the left hand side of Eq. 3.52 is a function of (x,y,t) but not z, and the right hand 

side is a function of z only, the only way they can be equal everywhere is if both sides are 
equal to a constant. Call this constant −gHe. Then Eq. 3.52 becomes the two equations: 
 

2 2

2 ( ) 0
e

d NB z
dz gH

+ =                                          (3.53) 

and  
� �( , , ) ( , , ) 0eh x y t H x y t

t
∂

+ ∇ =
∂

ui .                            (3.54) 

 
Eqs. 3.49a and 3.49b can now be written 
 

� � � 0f g h
t

∂
+ × + ∇ =

∂
u k u .                                          (3.55) 

 
Equations 3.54 and 3.55 are the shallow water equations for a fluid of depth He. For 

obvious reasons He is called the equivalent depth. But remember, it is just a separation  
constant--in certain circumstances, the equivalent depth can be negative--atmospheric tides 
are a prime example; see (Lindzen, 1967). 
 

The vertical structure is determined by Eq. 3.53 (called the vertical structure 
equation) plus boundary conditions. For a flat-bottomed ocean with bottom at z=−D, w=0 or 
equivalently, B=0 at z=−D.  

 
At the top, z=0, 0( 0)p z gρ η= =  where η , the sea level, deviates only slightly from 

z=0. Therefore  
 

0

1 ( 0) ( ) ( 0)dp z w z w z
g t t dt

η η η
ρ

∂ ∂
= = ≈ = = ≈ =

∂ ∂
 

or 



� l( ) ( )h A z w B z
t

∂
=

∂
. 

 
Then, from Eq.s 3.49e´ and 3.54 

 
� � l ( )( ) [ ] ( )e e
h dB zA z H A z H w
t dz

∂
=− ∇ =

∂
ui , 

or 

e
dBH B
dz

= at z=0.                                                 (3.56a) 

 
To make things still simpler, one often assumes a “rigid lid” at z=0 so w(z=0)=0 or  

 
B=0 at z=0.                                                          (3.56b) 

 
As an example, we can return to Eq. (3.53) and take N2=constant. The solutions are 

then  
 

cos sinB mz mzα β= +  with 
e

Nm
gH

=                                 (3.57) 

 
The bottom boundary condition, B=0 , implies a relationship between α and β  which we 
can write as  
 

sin (   )B m z Dγ= + .                                            (3.58) 
 
The top boundary condition, either (3.56a) or (3.56b), determines the eigenvalues He (via m). 
If the boundary condition is (3.56b) then we must have 

 
sin   0      where   1,  2,  3...mD mD n n= ⇒ = =  

so that 
 

2 2 2

2 2 for 1,2,3,...
( ) ( )e

N D DH n
g n H nρπ π

= = =                    (3.59) 

 

where 
1 12 1NH

g zρ
ρ

ρ

− −
⎞⎛ ⎞⎛ ∂

= =⎟⎜ ⎟⎜ ∂⎝ ⎠⎝ ⎠
is the scale height for ocean density. In the real ocean, 

200H kmρ ≈  so that  
2

1D N D
H gρ

= �  

 
and He is small. In fact, He < 1m in the real ocean. 



 
Since He is small – in particular, small compared to the vertical scale of B(z) – it 

follows that the solution (3.59) with the rigid lid condition (3.56b) is also the approximate 
solution with the free surface condition (3.56a). Note that all these modes are internal, or 
baroclinic modes. They owe their existence to the stratification, and the vertical structure 
function A for u, v, p changes sign with depth. (Note that the continuity equation implies that 

  dBA
dz

∼ ). In addition, however, the free surface allows an additional mode, the external or 

barotropic mode. Substituting the expression for B(z) given by Eq. 3.58 into Eq. 3.56a yields 
the eigenvalue equation  
 

tan( )  emD mH=                                                   (3.60) 
 
In addition to the internal modes with eH small, equation (3.60) has a solution with eH large. 
If 1mD� , then 
 

tan( )
e

mDH D
m

= ≈ . 

 
EXERCISE: Verify that with eH D= , it is true that 1mD� .  
 

Then with 1mD� it follows from Eq. 3.58 that ( ) w z z D∼ +  and A(z) is 
approximately independent of depth. 
 

The rigid lid approximation, that w = 0 at the surface, does allow an external mode of 
sorts. The requirement that there be no net divergence at any point in the water column 
eliminates the possibility of inertia-gravity waves, where the restoring force is gravity acting 
on the variations in surface elevation. But it does not preclude non-divergent motions; in 
particular, non-divergent Rossby waves are allowed. 
 

3.7 The Shallow Water Equations on a Sphere and Equatorial Beta Plane  
 

Earlier we saw that the linear motions in a two layer fluid could be described by two 
sets of shallow water equations: one for the barotropic mode and one for the baroclinic mode. 
The equations for each mode are identical in form, differing only in the equivalent depth, h , 
in each set. One may derive the same form for a fluid with n  layers in which case n  sets of 
shallow water equations are obtained for n  modes, each with its characteristic equivalent 
depth. For a continuously stratified ocean; ( )zρ ρ= , one may separate the motions into an 
infinite set of vertically standing modes, with characteristic equivalent depths, each of which 
is governed by the shallow water equations. Hence much insight into the motions in the 
ocean - and into models of the ocean - may be derived from an analysis of the Shallow Water 
Equations:  
 



0t f p− × +∇ =u k u                                           (3.61a) 
 

0tp gh+ ∇ ⋅ = .u                                          (3.61b) 
 
These are the equations governing a shallow homogeneous ocean of depth h  or the 
horizontal structure of a vertical mode with equivalent depth h . As we have seen, in forced 
problems h  may be negative and the idea of waves on a shallow ocean of negative depth 
must be abandoned. For the free modes we consider here, 0h > .  
 

Eqs. 3.61 would describe the motions on an f-plane if f =  constant or a non-rotating 
fluid if 0f = . To investigate the free oscillations on a sphere, we first write  
 

(( ) ( ( ) ( ) 2 ( )) exp [ 2 ]u v p U V aP i s tθ θ θ λ ω, , = , , Ω − Ω               (3.62) 
 
to obtain  
 

1( ) 0i U sin V is cos Pω θ θ −− − + =                                   (3.63a)  
 

0i V sin U dP dω θ θ− + + / =                                  (3.63b) 
and  

1 ( ) 0disU Vcos i P
cos d

θ ωε
θ θ
⎡ ⎤+ − = ;⎢ ⎥⎣ ⎦

                       (3.63c) 

 

where
2

2 a
gh

ε
⎛ ⎞Ω

= ⎜ ⎟
⎝ ⎠

is called the Lamb parameter. Solving for U  and V  gives  

 
2 2 1( )s dPU P sin sin

cos d
ω θ ω θ
θ θ

−⎡ ⎤= + − ,⎢ ⎥⎣ ⎦
 

 
2 2 1( )dPV s tan P sin

d
θ ω ω θ

θ
−⎡ ⎤= + − ,⎢ ⎥⎣ ⎦

 

 
and substituting in Eq. 3.61 we obtain the Laplace Tidal Equation:  
 

2 2 2 2

2 2 2 2 2 2 2

( ) 1 ( ) 0
( ) ( ) 1

d dP s s P P
d d

μ ω μ ε
μ ω μ μ ω μ ω ω μ μ
⎡ ⎤ ⎡ ⎤− +

− + + =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦
      (3.64) 

 
where sinμ θ≡ . This equation has been well studied; we summarize a number of properties 
of its solutions (cf. Longuet-Higgins, 1968; Lindzen, 1970). 
 
1) For latitudes μ ω<  the equation 3.64 is hyperbolic; for μ ω>  it is elliptic.  
 



2) The singularities at ω μ= ±  are apparent; solutions are bounded there.  
 
3) Eq. 3.64 with the boundary conditions at 1μ = ±  forms an eigenfunction-eigenvalue 
problem with ε  (or equivalently h ) the eigenvalue.  
 
4) For a given s  the eigenfunctions P  are orthogonal on the sphere.  
 
5) The eigenvalues nh  are real.  
 

In general there are no closed form solutions to Eq. 3.64. Solutions are generally 
found by writing P  as a sum of associated Legendre polynomials (cf. Longuet-Higgins 
(1968). The resulting functions, called Hough functions, after Hough (1898) who first found 
such solutions, have been extensively tabulated by Longuet-Higgins (1968). A very useful 
summary is given in Moura (1976). Many of the properties of planetary waves on spheres 
can be obtained by considering the equations on a beta plane. Much of this discussion 
follows Lindzen (1967) and Philander (1978). 
 

The basic idea in the β -plane approximation is to expand the trigonometric functions 
that appear in  Eq. (3.63) about a reference latitude oθ   
 

( ) ando o ox a cos y a f f yλ θ θ θ β= ; = − = +                   (3.65) 
 
where  

22 and
oo o o

dff sin cos
dy aθ θθ β θ=

Ω
= Ω ≡ | = .  

 
Thus the only effect of the sphericity of the earth that is retained is the (now linear) 

variation of f. Eqs. 3.61 then become (with 0f f yβ= + ) 
 

0t xu fv p− + = ,                                                 (3.66a) 
 

0t yv fu p+ + = ,                                                (3.66b) 
 

( ) 0t x yp gh u v+ + = .                                         (3.66c) 
 
When 0 0f = , we are on an equatorial beta plane.  
 



4. Boundary Layers on Both Sides of the Tropical Ocean 
Surface 

Sea surface temperature (SST) is crucial for atmosphere-ocean interactions. Since 
the sea surface is the common interface between the atmosphere and ocean, either system 
can change the SST though exchanges of heat and momentum between the two. In 
general, the regions on both sides of the sea surface are turbulent. In order to understand 
those turbulent fluxes of heat and momentum capable of changing the SST, we have to be 
able to characterize the boundary layers on both sides of the interface. The SST can 
change directly because of changes in boundary layer mixing, and, in addition changes in 
boundary layer mixing can change the fluxes themselves. For example, an atmospheric 
boundary layer growing into a vertically sheared wind (say the wind increases upward) 
will entrain more momentum into the boundary layer and increase the stress at the 
surface. This in turn can change the evaporation and sensible heating into the atmosphere 
and consequently the heat flux into the ocean.  
 

The nature of the boundary layers in the tropical atmosphere and ocean are very 
different and we will have to treat each boundary layer in a manner that respects this 
difference. The tropical atmospheric boundary layer is driven from below by buoyancy 
forcing at the ocean surface and is unstable. The tropical ocean boundary layer is also 
heated at the surface, so warm water overlies cold creating stable conditions. Mixing has 
to be forced by wind driving from above by wind stresses at the surface. 
 

The tropical atmospheric boundary layer over the ocean is convectively mixed by 
the buoyancy generated by sensible heat from the surface and by the light weight of water 
vapor evaporated from the ocean surface. The mixing elements are convective plumes 
which have large vertical velocities and are dominated by vertical, rather than horizontal, 
velocities. By contrast, the ocean is stirred mechanically predominantly by wind stresses 
at the sea surface. The mixing elements are eddies whose velocities tend to be more 
homogeneous in the vertical and horizontal dimension. The ocean mixes down according 
to the working by the wind stress and stops when the mixed layer can no longer entrain 
heavier laminar fluid upward. The atmospheric boundary layer mixes upward according 
to buoyant working from the surface and reaches equilibrium when no additional lighter 
laminar fluid can be entrained downward into the turbulent boundary layer.  
 

We discuss the atmosphere and ocean separately because of this essential 
difference in character. We begin by introducing some essential basic concepts and 
relations common to both the atmosphere and the ocean that are inherent in the geometry 
of well mixed turbulent layers. The key concept is entrainment. 
 

4.1 Mixing, Inversions, and Entrainment-General Concepts 
If we consider a stable profile of potential temperature in the atmosphere (heavy 

fluid below light fluid) and instantaneously mix the density profile to height ha with no 
addition of heat, the profile will exhibit discontinuities (Fig. 4.1) simply as a result of the 
mixing. Note that in this example there is no entrainment of fluid from the region above 
z=ha, and that that the fluid in each region is unchanged. 



 
 
Fig. 4.1 The effect of adiabatically mixing an initial stable potential temperature profile to 
height ah .in the atmosphere  
 
EXERCISE: If the initial temperature profile is given by T = Ts+Γz, how big is the 
discontinuity at ha after mixing? 
 
EXERCISE: Suppose a fluid with an initial profile ρ(z) is mixed uniformly without 
entrainment or addition of heat to a height ha. Show that if the initial profile is stable; i.e. 
ρ(z) decreases with height, then the potential energy of the final profile is greater than that 
of the initial profile. Note the implication that energy must have been added in the process 
of mixing.  Note too, that if the initial profile below ha were everywhere unstable (density 
always increases with height) then the mixing would decrease the potential energy. 
 

The discontinuity (or near discontinuity) of the profile is a characteristic feature of 
the interface between a well mixed boundary layer and a stably stratified fluid. For the 
atmosphere, a discontinuous drop in density at a given height corresponds to a 
discontinuous rise in temperature (as shown) so that this is usually referred to as an 
inversion. The normal mechanism of mixing is in some way turbulent so that the density 
discontinuity marks the interface between a turbulent fluid and a stably stratified laminar 
fluid. It is a characteristic feature of turbulence that it tends to grow invasively into the 
laminar fluid and it does this by the mechanism of entrainment: the turbulent elements 
tend to draw some laminar fluid into themselves and thereby spread the turbulence. To do 
this of course, the turbulence must have enough energy to do the work of drawing the 
lighter laminar fluid downward and mixing it into the denser turbulent fluid below ha. 
 

We define the entrainment velocity ew as the rate per unit area at which a volume 
of laminar fluid passes through the interfacial layer at ha. It is proper to call it a velocity 
in that a velocity is a flux (the volume of fluid per unit area crossing the interface). For 
the atmosphere, with the turbulent layer below as in Fig. 4.1, ew must be negative, while 
for the ocean, with the turbulent layer above, it must be positive. . If as usual, the ambient 
vertical velocity /dz dt  is denoted by w then 

 
a

e
dh w w
dt

= − .                                                     (4.1) 

 

ha 



Eq. 4.1 says that if there is no entrainment (we=0) then the boundary layer top at 
az h= moves vertically with the rest of the fluid at the rate w. If the entrainment rate (-we) 

exceeds the ambient rate of downward motion –w then the depth of the turbulent fluid 
will increase. If the opposite is true (-w >-we) then the depth of the turbulent layer will 
decrease. This could be the case even while entrainment of fluid from above (we<0) 
persists. The depth of the turbulent layer remain constant in the special case w=-we where 
the rate that fluid is added by entrainment is exactly balanced by the rate at which it is lost 
due to ambient divergence. Similar considerations apply to the ocean except that the 
entrainment of laminar fluid is upward since the well mixed turbulent layer is driven 
downward from the surface. 

 
In general, in order to examine the changes of density due to boundary layer 

mixing, we need an explanation of four separate factors: the height of the interface as it 
changes, the magnitude of the discontinuity at the interface, the rate of entrainment of 
mass through the interface, and the energy source for the work needed to entrain the 
laminar fluid through the interface. This energy source also maintains the turbulence. Eq. 
4.1 relates interface height and entrainment rate, and as for example in the first exercise 
above, the assumption of  uniformly mixed turbulent layer allows the discontinuity to be 
determined.  The difficult issues are the entrainment rate and its relation to energy 
sources. In the typically stable tropical ocean mixed layer the energy is supplied by the 
wind, while in the typically unstable tropical atmosphere it is supplied by buoyancy 
fluxes at the surface. We now turn to the atmospheric surface layer. 
 

4.2 The Atmospheric Marine Boundary Layer  

4.2.1 Definitions  

a. Turbulent fluxes and Reynolds averaging 
 

The vertical flux of a quantity s, i.e the amount of s per unit area crossing a horizontal 
interface is ( )ws  where the overbar represents horizontal averaging and w is the vertical 
velocity, i.e. the volume per unit area crossing the interface. In the presence of turbulence, 
each quantity can be divided into an area-averaged part and a part that is due to the small 
scale variations characteristic of turbulence: ' and 'w w w s s s= + = + , where the horizontal 
average of the primed quantities vanishes. Then the Reynolds average is  

 
' 'ws ws w s= + . 

 
At the surface, the mean vertical velocity vanishes and the only possible flux is the 

turbulent flux. In particular, the flux of moisture is from the surface is  
 

( ' ')qF w qρ=  

 
where q is the non-dimensional mixing ratio of the mass of water vapor to the mass of air 
in a unit volume of air and  
 

( ' ')wρ=−τ u  



 
is the momentum flux (stress) at the interface. An upward moisture flux from the surface 
would have upward turbulent elements on the average carrying larger amounts of 
moisture than the downward turbulent elements. Similarly, a positive wind stress would 
have the downward elements carrying more westerly wind than the upward elements 
thereby delivering westerly momentum to the surface.  
 

Other fluxes, buoyancy, heat, dry and most static energy (Chapter 5) etc. will be 
similarly defined.  
 
 
b. Friction Velocity: 
 

For a given stress at the ocean surface τ , the friction velocity u∗ is defined as:  
2u

ρ∗
| |

≡
τ                                                         (4.2) 

 
so that u∗  defines a characteristic velocity characteristic of the stress in a medium of 
density ρ .  
 
 Since the stress at the air-sea interface is continuous from the atmosphere to the 
ocean,  

2 2
air water( ) ( )u uρ ρ∗ ∗= =τ  

 
2

air water
2

water air

( ) 1000
( )

u
u

ρ
ρ

∗

∗

= =  

 
therefore  

air water( ) 30( )u u∗ ∗∼ . 
 

Typically for 1=τ  dyne/cm2 (or 0.1 Newton/m2) 
 

water( ) 1u cm sec∗ = /  
and 

air( ) 33u cm sec∗ = / . 
 
c. Monin-Obukhov Length: 
 

We can define  a length: 
 

3( )
( ' ')s

uL
k b w

∗≡                                               (4.3) 

 
which measures the vertical distance above the surface in which the mechanical 
production of turbulence is comparable to the buoyant production of turbulence.  
 



The term ( ' )sb w′  is the work done by buoyancy (against gravity) near the surface 
(subscript s). The buoyancy is measured by vθ , the virtual potential temperature, (☼ see 
Sec. 5.1—Thermodynamic Quantities) and 3( )u∗ ∝ ⋅τ u  is the work done by mechanical 
stirring by the wind stress working on the surface of the ocean, 4k = .  is the von Karman 
constant. In terms of more familiar quantities,  
 

1( ' ') ( ' ') ( ' ') ( ' ')vs s ss
v v

gb w w g w q wθ θ δ
θ θ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
 

 
where q is the water vapor mixing ratio and .61δ = --see Sec. 5.1. The buoyancy of air is 
increased by heating it or by adding relatively light water vapor to it. 
 

The Monin-Obukhov length is a length over which the mechanical and buoyancy 
effects are comparable. Thus for a mixed layer of depth h : if h L>> , the layer is 
convectively driven and if h L< , the layer is mechanically driven.  
 
EXERCISE: If there are 4 mm/day of evaporation and the Bowen ratio (the ratio of 
sensible to latent heating) is .1, what is the Monin-Obukhov length (in meters).  
 
 
d. Characteristic Turbulent Magnitudes 
 

The moisture flux from the surface is ( ' ')sw qρ  where q  is the mixing ratio of 

moisture. The latent heating from the surface is then ( ' ')sL w qρ  where L is the latent heat 
of condensation (not to be confused with the Monin-Obukhov length—the context will 
indicate which is meant). Near the surface, the eddies are mechanically driven so that the 
vertical and horizontal values are about the same. Therefore we can define characteristic 
scales near the surface in analogy to Eq. 4.2: 
 

* *( ' ')sw kuθ θ=                                               (4.4a) 
and 

* *( ' ')sw q ku q= .                                             (4.4b) 
 

4.2.2. The Surface Layer 

For a fluid near any rigid boundary, in the absence of any heat and moisture 
fluxes, the velocity follows a classic logarithmic profile (“the law of the wall”): 
 

*

0

( ) lnu zu z
k z

=                                                   (4.5) 

 
where 0z is the “roughness length”.  While there have been discussions of the dependence 
of 0z  on roughness and various other things (e.g. see Kraus and Businger, 1994), we will 
soon see that the roughness length is related to the neutral drag coefficient. The roughness 
length is of order .02cm over the ocean.  



 
In the presence of upward fluxes from the surface, the profiles are assumed to 

have universal forms which depend on these fluxes (“Monin - Obukhov Similarity 
Theory”.) Within a single Monin - Obukhov length of the surface the mean profiles of 
temperature, wind and moisture are not well mixed They take the forms: 
 

h
d z
dz kz L
θ θ ϕ∗ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 ,   w

dq q z
dz kz L

ϕ∗ ⎞⎛= ⎜ ⎟
⎝ ⎠

,   and  m
du u z
dz kz L

ϕ∗ ⎞⎛= ⎜ ⎟
⎝ ⎠

.              (4.6) 

 
This scaling seems to match the observations (but with some slight variants in the 

literature) if we take: 
 

1
2

.74 1 9h
z z
L L

ϕ
−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, 

1
2

1 16m
z z
L L

ϕ
−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, and 

1
4

1 15w
z z
L L

ϕ
−⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. 

 
Note, in particular, that at 0z = , ( ) 1m z Lϕ / = , so that  

 

0z

u u
z kz

∗

=

∂
=

∂
 

and we recover 
 

( 0)
o

u zu z ln
k z
∗≈ = . 

 
Note also that under neutral conditions, i.e. ' 0b w′→ ,  so that L →∞ and again, 

( )
o

u zu z ln
k z
∗= . 

 
Define the neutral drag coefficient DnC  as  

 
2 2 2

10( 10 )Dn DnC u z m C u u
ρ ∗= = = =
τ

 

 
in the absence of heat and moisture fluxes from the surface, where the drag coefficient is 
conventionally defined at 10m, the nominal height of a ship in olden times. Then  
 

10
10

o

uu ln
k z
∗=  so that 2 2 2

10 2

1 10

o

u u ln
k z∗

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

and  
2

2 10Dn

o

kC
ln

z

= . 

 
With 0z =.02 cm, DnC =.0014 and this is conventionally the value of the neutral 



drag coefficient for stress.  
 

In the presence of heat and moisture fluxes, one can define a similar relation 
between stress and winds at 10m: 
 

2
10DC u

ρ
=

τ
                                                  (4.7) 

 
but now the drag coefficient DC depends on the fluxes according to the similarity 
relations: the source of this variation of drag coefficient with fluxes can be traced to 
changes of the profiles with fluxes according to the similarity relations. Since the profiles 
change with fluxes, the conventional 10 meter wind used in Eq. 4.7 occurs at different 
points in the vertical profile as the fluxes change and this changes the effective drag 
coefficient in Eq. 4.7. Although we will not give the results here, the similarity relations 
Eqs. 4.6 can be integrated to give explicit profiles for the winds, temperature and 
moisture near the interface. As z L� , the profiles approach their mixed layer values as 
in Fig. 4.2. 
 

 
 
Fig. 4.2. Profiles of , ,orqθ τ  above the sea surface.  
 
 

4.2.3 Fluxes and Entrainment in the Convectively Mixed layer.  

 
We will assume that the atmospheric boundary layer is convectively mixed and 

that the mixed layer height is large compared to the Monin-Obukhov length.  
 

Let the sensible heat flux at the surface into the atmosphere be ( )swθ ′ ′ .   
 

The mixed layer temperature mθ can be changed by the vertical convergence of 
this flux and so satisfies, neglecting radiation for the moment,  
 

md d w
dt dz
θ θ ′ ′= − . 

L 



 
Since the layer is well mixed 
 

 0md
dz
θ

=  implies 
2

2 0d w
dz

θ ′ ′− =  

 
so that  
 

( )w az bθ ′ ′ = +  
 
in the interior of the mixed layer. We note that this linear dependence of fluxes in the well 
mixed layer is unique to well mixed layers: it could not have been derived as down 
gradient diffusive transfer no matter how high the diffusion coefficient.  
 

The constant b can be evaluated by noting that at 0z = , ( )sb wθ= ′ ′ . 
 

To find the other constant, a, we need to know the heat flux at the top of the 
boundary layer h. If we now allow undulations in the mixed layer depth so that there can 

be horizontal advection, the entrainment velocity is dhw
dt

−   where the derivative is now 

the substantial derivative and, as before w  is the ambient vertical velocity. 
 
There is an inversion at the interface of strength ,i mθ θ θΔ = −  the difference 

between the potential temperature of the laminar fluid slightly above the discontinuity 
iθ and the mixed layer potential temperature .mθ  The heat balance at the inversion is 

 

( )i
dhw w
dt

θ θ⎞⎛ ′ ′− Δ =⎜ ⎟
⎝ ⎠

. 

 
In general the heat flux at the interface will be downward, either because the 

mixed layer is growing, or because there is a downward environmental velocity, or 
perhaps because of some combination of the two.  
 

At z h= , ( ' ')iah b wθ+ = +  so that  
 

 ( ) ( )m s id w w
dt h
θ θ θ′ ′ ′ ′−

= . 

 
To know how convective boundary layers rise, we need an additional equation for 

the discontinuity which is simply  
 

i md d d
dt dt dt

θ θθΔ = −  

 



                                  
( )( ) is www

h
θθ⎡ ⎤′ ′− .′ ′

= +Γ − ⎢ ⎥
⎢ ⎥⎣ ⎦

� . 

 

If, in the presence of 0w ≠ , we look for an equilibrium solution 0d dh
dt dt
θΔ
= = , 

then  
( ) ( )s iw wh

w
θ θ′ ′ ′ ′−

=
−Γ

 

 
and  

( )iw wθ θ ′ ′Δ = , 
 
and we still need a relation for ( )iwθ .′ ′   
 

Tennekes 1973, whose method we have followed in the above, recognized that it 
takes work to bring heat down from above the mixed layer into the mixed layer since the 
warmer laminar air is lighter than the cooler turbulent air. The rising plumes gain 
buoyancy and energy from the surface and lose some to dissipation in the interior of the 
mixed layer. What is left after dissipation is available to do the work needed to bring the 
lighter fluid downward into the boundary layer. For most situations, 2( ) ( )i sw wθ θ= −.′ ′ ′ ′  
seems to be the right choice (Tennekes, 1973) so the equilibrium solutions are  
 

1 2( )swh
w

θ. ′ ′
=

−Γ
                                           (4.8a) 

 
and  

2( )sw
w

θθ
′ ′.

Δ =
−

.                                        (4.8b) 

 
If we know the surface forcing, the temperature gradient Γ  into which the mixed 

layer is rising, and the vertical velocity in the environment, then we can find h  and θΔ  
in the convective mixed layer according to Eqs. 4.8. The extension to moist boundary 
layers and the shallow cloud layer is given in Sec. 5.5. 
 

4.3 The Ocean Mixed Layer 
Mixed layers below the tropical ocean surface are stable and wind stirred from the 

surface and further stabilized by downward heat flux through the sea surface: they require 
a different treatment than the one for convective boundary layers over the tropical sea 
surface. Furthermore, they see no solid boundary at their upper extent and so the law of 
the wall need not apply. The models for mixed layers may be divided into two broad 
classes: 1. Bulk Mixed Layer Models and 2. Mixing parameterizations. 
 



4.3.1 Bulk Mixed Layer Models  

Bulk mixed layer models of the ocean assume assumes a structure like that shown 
in Fig. 4.3. The boundary layer extends to a depth z = -h and, since the layer is assumed 
well mixed, surface quantities can be identified with boundary layer quantities. In 
particular, the temperature of the boundary layer is the sea surface temperature. There are 
slight corrections to this statement because the molecular “skin” layer near the surface 
can support a small temperature difference, especially in calm conditions, but for the sake 
of clarity, we will ignore this. 
 

 
Fig. 4.3 Schematic diagram of temperature in a mixed layer extending to depth –h below 
the ocean surface. Density would have an analogous structure but decreasing with 
increasing distance upward from the bottom.   
 
 

In the mixed layer, i.e. for z h> − , all variables are assumed well mixed: 
 

0T S
z z z

∂ ∂ ∂
= = =

∂ ∂ ∂
u . 

 
We will assume that all the fluxes of heat, momentum, etc. entering the ocean 

though the surface goes into the mixed layer – none gets below, with the possible 
exception of penetrating solar radiation (blue green light).  We will also assume that the 
properties of the ocean below the entrainment zone, [ ]z h δ= − +  are unchanged by the 
physics of the ocean mixed layer. So far this is much like the treatment of the atmosphere 
in Section 4.2. 
 

Note that while it is generally true that 0T S
z z z

ρ∂ ∂ ∂
, , =

∂ ∂ ∂
 in the ocean mixed layer, 

it is less true for 
z
∂
∂
u  which tends not to be so thoroughly well mixed. We also know that 

the other assumptions are only approximately true: there is some mixing of heat and other 
quantities out of the base of the mixed layer.  

 
We will first describe bulk layer formulations; examples include (i) Kraus and 

z = -h 
Δ



Turner, 1967, Denman and Niiler (e.g. Niiler and Kraus, 1977), Denman, 1973 ; (ii) 
Pollard, Rhines and Thompson (1973), or Price, 1979 and Price et al., 1986 (iii) a 
constant depth layer. There are different parameterizations for ocean mixed layer physics 
(we return to them below), but regardless of which we use, we already specify a great 
deal when we fix on the bulk model structure shown in Fig. 4.3. Often in model physics 
parameterizations the model structure is more important than the actual physics used: 
simply specifying that the quantities are well mixed in the boundary layer can be a major 
improvement over alternate structures. The simplest choice (iii) sometimes works 
surprisingly well and is usually better than no mixed layer at all. 

 
Suppose for the moment that one or another of these parameterizations provides a 

way to determine the entrainment velocity ew , the volume flux per unit area through the 
base of the ocean mixed layer:  
 
 

( )m e
h h w
t

∂
+∇ ⋅ =

∂
u .                                           (4.9) 

 
EXERCISE: Show that Eq. 4.9, which may be derived in the same manner as Shallow 
Water Equation 3.29b is equivalent to Eq. 4.1. 
 

Note that for the ocean, the environmental velocity can usually be neglected and 
that at the base of the mixed layer, the entrainment velocity is upward.  
 

A generic equation for a quantity c  (e.g. )c T S≡ , :  
 

c
c Fc c w q

t z z
∂ ∂ ∂

+ ⋅∇ + =− +
∂ ∂ ∂

u                                  (4.10) 

 
where F is a diffusive flux and cq  a source or sink term and u  is the horizontal velocity. 
Combining Eqs. 4.9 and 4.10 and integrating yields: 
  

( ) ( )
o

m m e e TOP BOT ch
hc h c w c F F q dz

t −

∂
+∇ ⋅ − = − +

∂ ∫u            (4.11) 

 
or  
 

1[ ]
o

e
m m m e ch

w Fc c c c q dz
t h h h −

∂ Δ
+ ⋅∇ + − = +

∂ ∫u                     (4.12) 

 
where ec  is the value of c in the ocean interior just below the turbulent boundary layer. 
 

In Eq 4.9 we see that the mixed layer depth can be steady if the divergence in the 
surface layer, ( ) eh w∇⋅ =u . (In the ocean the surface layer divergence is approximately 
the same as the Ekman pumping since the geostrophic divergence is small; 

( ) 0g O fβ∇⋅ = / ≈u .) 
 



4.3.2 Mixed layer parameterizations  

 
We will obtain the salient properties of the steady ocean mixed layers two 

different ways: by considering the conditions implied by a critical Richardson number, 
and by considering the turbulent energetics of the layer. 
 
4.3.2a The Critical Richardson Number 
 

Let ou  be the initial ocean mixed layer velocity, mu  its velocity after deepening, 
and Du  the velocity of the fluid initially just below the ocean mixed layer. (Here we treat 
the velocity as a scalar—it refers to either of the horizontal components). We assume 
momentum is conserved as the mixed layer deepens from h  to h h+ Δ .  
 

0 0 0( ) ( ) [ ]m D Du h h u h u h u h h u u h+ Δ = + Δ = + Δ − − Δ  
 
so that  
 

0
0m

u hu u
h h
Δ Δ

= −
+ Δ

                                               (4.13) 

 
where o o Du u uΔ = − . Let KE =  Kinetic Energy; then the change of KE as a result of 
deepening is: 
 

2 2 2 2
0

0

1 1[ ] [ ]
2 2m D m

KE u u h u u h
ρ
Δ

= − Δ + −  

 

                      2 2 2 2
0 0

1 1[ ][ ] [ ]
2 2m Du u h h u u h= + − + Δ + − Δ  

 

                           0 0 0 0
1 1( ) ( )
2 2m Du u u h u u u h= − + Δ Δ + + Δ Δ  

 

                                       0 0 0 0
1 1[ ] [ ]
2 2m D mu h u u u h u u u= − Δ Δ − = − Δ Δ − + Δ  

 

                                        2
0

1 0
2

hu h
h h

= − Δ Δ <
+ Δ

.                             (4.14) 

 
Heat and salt are conserved in the deepening ; therefore buoyancy is conserved:  

 
0( )m eh h h hρ ρ ρ+ Δ = + Δ ,                                   (4.15) 

 
and the notation for ρ  subscripts is the same as that for u. The Potential  Energy is  
 

PE g z dzρ= ∫  



 
so that  PE is increased by pushing warm water down.  
 

2 2

0
( ) ( )

2 2 2m e
h h h h hPE g hρ ρ ρ

⎞⎛ ⎧ ⎫+ Δ + Δ
Δ = − + Δ⎨ ⎬⎟⎜

⎩ ⎭⎝ ⎠
 

 

0
1 ( ) 0
2 Dg h hρ ρ≈ − Δ > .                                                      (4.16) 

 
Therefore  

0
2

0

( )
( )o

g hPE
KE u

ρ
ρ
ΔΔ

=
−Δ Δ

. 

 
The Richardson number iR  is defined as 
 

2

2 2i

g
NzR

u u
z z

ρ
ρ
∂
∂= =

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                           (4.17) 

 
and the analogous bulk Richardson number BR  is:  
 

2 2
0 0 ( )B

g g hhR
uu

h

ρ
ρ

ρ ρ

Δ ⎞⎛
⎜ ⎟ Δ⎝ ⎠= =

ΔΔ ⎞⎛
⎜ ⎟
⎝ ⎠

                                    (4.18) 

 
so that 
 

B
PE R
KE

Δ
=

Δ
. 

 
The Richardson number measures the ratio of the stabilizing effect of density 

stratification to the destabilizing effect of vertical shear. For large vertical shear the 
Richardson number is small and for a large enough vertical shear, the system is unstable.  
 

The mixed layer depth is determined by: i. The conservation rules for momentum 
and buoyancy Eqs. 4.13 and 4.15; ii. The condition that all the changes go into the ocean 
mixed layer without leaking to the ocean below; iii. The well mixed assumption plus the 
condition that  
 

1B c
PE R R
KE

Δ
= = ≤

Δ
 

 
where cR is the critical bulk Richardson number: the mixed layer mixes down until h is 



deep enough so that .B cR R=  At this point the ratio of the PE gained by mixing to the KE 
lost due to mixing is equal to Rc. 
 

In real applications, the critical Bulk Richardson number is not precisely defined 
with different authors using different values: Pollard, Rhines and Thompson (1973) use 
1
4 1cR< ≤  while Price (1979) uses 0.7. If the mixed layer could be identified with the 
shear layer, Kelvin-Helmholtz instability would imply that 1

4cR = . But this would violate 
our well mixed condition that says that says that the vertical shear of the currents in the 
mixed layer vanishes. The form Eq. 4.18 makes clear that the shear envisaged is 
measured by the difference between the well mixed value and the value just below the 
mixed layer. The mixed layer grows until the shear becomes just small enough to stabilize 
the layer.  
 

The exact value of cR  probably doesn’t matter too much. We can see this by 
noting that if there is forcing at the surface by a wind stress τ  and a buoyancy B over a 
time tΔ : 
 

0

0

; .t g B tu b
h h
τ ρ

ρ
Δ Δ Δ

Δ = ≡ Δ =  

 
At the end of this time interval: 
 

2

2 2 2( )i
bh B thR
u tτ

Δ Δ
= =

Δ Δ
 

 
so that  

1 2
cR th
B

τ
/Δ⎡ ⎤= ⎢ ⎥⎣ ⎦

                                          (4.19) 

 
and the depth depends relatively slowly on cR , as the square root. We can see clearly 
from Eq. 4.19 that buoyancy (or heating) is stabilizing: more B  results in smaller h . We 
also see from 4.19 that the longer the wind acts, the deeper the mixed layer. We note still 
further that since 1 2( )ch R t /∝ Δ , the smaller cR  ,the longer the forcings must act to give 
the same h . This is expected from the interpretation that the smaller Rc the smaller the 
fraction of the kinetic energy lost when the layer deepens available to raise its potential 
energy; i.e. the smaller Rc is the greater the fraction of energy that is simply lost. 
 

Why does the ocean mixed layer stop growing? Because the surface layer current 
u and hence the shear Δu do not keep increasing even if the wind continues unabated.  
Typically,  the Coriolis effect stops the current from increasing since the Ekman balance 
hu fτ /∼ will eventually obtain. On the equator, the pressure gradient force or other 
forces prevents the currents from accelerating without limit. 

 
What if heating goes on forever? For each time increment t  a “new” mixed layer 

forms at the (same) depth h  given by Eq. 4.19. Heat is continually put into the mixed 
layer so its temperature keeps increasing.  In reality, the heat flux into the ocean depends 



on the SST so the heating will decrease as the temperature increase. 
 
 
4.3.2b Turbulent Kinetic Energy Balance  
 

In this approach, originally due to Kraus and Turner (1967), the TKE (turbulent 
kinetic energy) balance determines the entrainment rate. It uses the form of the vertical 
profile in Fig. 4.3. The essential idea is that the net wind energy that goes into mechanical 
stirring is used to raise the potential energy of the water column. The net wind energy 
generation is taken to be 3mu∗  ( 3

sfc muτ ∗⋅ ∝u ) with m  a constant. Some versions add an 
additional dissipation proportional to h , i.e. of form hε− :  
 

3( )PE mu h
t

ε∗
Δ

= − .
Δ

                                            (4.20) 

 
Now  

2
3( )

2
m

e
dbd hPE hM w b mu h

dt dt
δ ε∗= + = −                               (4.21) 

 
where the buoyancy 0 0( ) /b g ρ ρ ρ= −  and  ( )M x x=  for 0x >  and ( ) 0M x =  
otherwise.  

 
But all the surface buoyancy forcing B  goes into the mixed layer 

 

( )m
e

dbh M w b B
dt

δ+ = ,  

so that 
3( )

2 2 e
h hB M w b mu hδ ε∗+ = − .                           (4.22) 

 
In the absence of environmental vertical velocities, equilibrium will obtain when 

the mixed layer stops deepening and, therefore, when the entrainment velocity 
vanishes: 0ew = . This implies  
 

32
2

muh h
B ε

∗
∞= ≡

+
                                                   (4.23) 

 
which is ocean version of the Monin Obukhov length: in the absence of dissipation, the 
tendency of mechanical stirring to deepen the mixed layer is balanced by the stabilizing 
effect of a positive buoyancy input. We may write Eq. 4.22 as 
 

( ) ( )[ 2 ]ehM w b h h B ε∞Δ = − +  
 
showing that the layer will continue to deepen until it reaches the depth h∞ . If h h∞>  
there is not enough wind energy to hold the mixed layer depth where it is; the layer must 
become shallower. Instead of thinking of the mixed layer as getting shallower one may 
take the point of view that a new mixed layer, shallower than the old one, forms. 



 
Now consider an environmental upward velocity (upwelling) w. An equilibrium 

value of h is obtained when when ew w= . As above 
 

( 2 )( )ew h b B h hε ∞Δ = + −  
 
and if the mixed layer density is constant then ew B Bδ =  so  
 

( 2 )( )hB B h hε ∞= + −  
or 

2
2 2 2
B hh h
B

ε
ε

∞
∞

+
= ≈

+
. 

 
The surprising result is that regardless of upwelling strength the equilibrium depth 

is half the Monin-Obukhov depth.  
 

4.3.3 Non-Bulk Models – Mixing at all z.  

This has been a common approach in numerical general circulation models of the 
ocean where mixed layers are not well defined due to the limitations of vertical 
resolution. Some regard must be given to the need for mixing differently in the mixed 
layer than in the interior of the ocean. This approach cannot successfully simulate a 
mixed layer for two reasons: first, the lower boundary of the mixed layer can be resolved 
only to the accuracy of the vertical discretization and second, the mixing coefficient 
required to thoroughly mix the boundary layer would have to be infinite. Yet, the practice 
of numerical modeling is full of compromises and simulating large (but not infinite) 
mixing coefficients will suffice in most circumstances.  
 

The problem is to parameterize the mixing terms which take the form: 
 

( )u u w
t z

∂ ∂ ′ ′= −
∂ ∂

" , 

 

( )v v w
t z
∂ ∂ ′ ′= −
∂ ∂

" , 

and 

( )T w T
t z

∂ ∂ ′ ′= −
∂ ∂

" . 

 
The basic eddy parameterization is to take mκ  as the eddy viscosity (for 

momentum), and Hκ  as the eddy diffusivity (for heat) by writing 
 

( ) ( )m
u vu w v w
z z

κ ∂ ∂′ ′ ′ ′− , = ,
∂ ∂

 

and  



H
Tw T
z

κ ∂′ ′− =
∂

. 

 
There are a number of approaches for the representation of Hκ  and mκ : 

 
a. The simplest is H mκ κ, =  constant.  
 

In general this is too simple and inaccurate but there is one important application 
and this is the Ekman layer (Ekman 1905). The basic idea of the Ekman layer is that there 
must be a surface stress layer in which momentum must be transferred from the wind to 
the water. Pressure can’t "boundary layer" near the surface so the balance is the "Ekman 
balance":  
 

2

2/ mf
z z z z z z

κτ ρ ν ν
ρ

⎞⎛∂ ∂ ∂ ∂ ∂ ∂⎞⎛× = = = =⎜ ⎟⎟⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

u u uk u  

 
where we define a dynamic viscosity / .mν κ ρ≡  The last equality follows from the 
assumption that ν = a constant. The obvious depth scale in this simplified problem is the 

Ekman depth,
1 2

Ekmanh
f
ν

/
⎞⎛

= ⎟⎜
⎝ ⎠

. Integrate through the surface layer depth 

1 2

*uO O
f f
ν

/
⎞ ⎞⎛ ⎛

= =⎟ ⎟⎜ ⎜
⎝ ⎝⎠ ⎠

 to where the stress vanishes: The transports are the Ekman drifts: 

y

EU
f
τ

=  and 
x

EV
f
τ

= − . These are independent of the particular form of the mixing 

coefficient ν . The vertical velocity out of the bottom of the Ekman layer is called the 

Ekman pumping: ekw
f
⎞⎛

= −∇× ⎟⎜
⎝ ⎠

τ . 

 
b. Richardson Number dependent coefficients 
 

The basic idea here is to make ( ) ( )m m H HRi Riκ κ κ κ= ; =  e.g. Munk and 
Anderson (1948). The most widely used version is due to Pacanowski and Philander, 
(1981):  

(1 )
o

m bmnRi
νκ ν
α

= +
+

 

and 

(1 )
m

H bHRi
κκ ν
α

= +
+

 

 
where:  
 

2 150o cm sν −=  , 2n = , 5α =  , 2 11bm cm sν −=  and 2 10 1bH cm sν −= . . 
 

As compared to the data, the Pacanowski and Philander parameterization gives 



values that are too high at high Ri  and too low at low Ri . It lacks the sharp transition at 
2 3cRi Ri= ≈ . − . . 

 
c. Turbulence Closure Schemes  
 

Here (e.g. Mellor-Yamada 1982) the coefficients are parameterized by quantities 
that depend on the level of turbulence: 
 

m MlqSκ =  and H HlqSκ =  
 
where 21

2 q =  turbulent Kinetic energy; l  is a turbulent length scale; and M HS S,  are 
stability functions taken to be  functions of q  and are small for 23cRi Ri> .∼  and large 
for cRi Ri< .  
 

The turbulent kinetic energy, q , is governed by  
 

2 2

22 2q s
d q qlqS P P
dt z

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞∂

− = + − ;⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
where sP  is shear production; wP  is buoyancy production; and ε  is dissipation assumed 

to take place in turbulent eddies so that 
2

1

q
l

ε
β

= where 1β  is assumed constant]. 

 
d. KPP, a Profile Parameterization with non-local mixing 

 
At present, the most widely used parameterization of boundary layer mixing, valid 

for all states of the ocean mixed layer in ocean general circulation models is the so called 
KPP, the K profile parameterization (Large, McWilliams and Doney, 1994). Based on 
theory and observational evidence, KPP assumes specific shapes for the vertical profiles 
of quantities in the mixed layer rather than taking them to be constant. fluxes of a quantity 
χ  are defined by: 

 

' 'w K
zχ χ
χχ γ∂⎛ ⎞=− −⎜ ⎟∂⎝ ⎠

 

 
where the profiles of the diffusivity is given by  
 

( ) ( )K hw Gχ χ σ σ=  
 
where h is the boundary layer depth, ( )wχ σ is a profile of the turbulent velocity scale, 

( )G σ is a nondimensional shape function of the nondimensional depth z
h

σ = . The 

vertical velocity profile, taken from universal profiles from boundary layer theory for 
both stable and convective boundary layers, the profile is approximated by 

2( ) (1 )G σ σ σ= −  and the nonlocal transport term is given by a set of transports that 



depend on the condition of the boundary layer.  
 

Finally we note again that in the tropical oceans the ocean mixed layer is never 
convective for long periods of time. The net heat flux is almost always downward into the 
ocean, thereby stabilizing the layer. Since the net heat flux acts as a negative feedback to 
SST, anomalous warm conditions have less net heat flux and anomalous cold conditions 
more net heat flux downward into the ocean. The ocean outside the tropics does become 
convective – in the winter in particular -- and any parameterization for the global ocean 
must account for this possibility.  
 



5. Atmospheric Processes 
This chapter deals with the basic atmospheric processes involved in coupled 

atmosphere-ocean interactions over the tropical oceans, and in particular, those processes 
needed for a description and analysis of ENSO. 
 

In order to begin the discussion, we have to define some basic atmospheric 
quantities, in particular, the virtual temperature, the dry static energy and the moist static 
energy. In terms of these quantities, we examine dry adiabatic ascent, i.e. the temperature 
changes that would exist if a dry parcel were lifted without the addition of heat, and moist 
adiabatic ascent, i.e. the temperature changes that a saturated moist parcel would have if 
lifted with the only internal source of heat being the condensation of parcel water vapor 
and the subsequent rain out of the water from the parcel. 
 

We then use a classic diagnosis of waves in the tropical Pacific ITCZ to illustrate 
some unusual differences between tropical and midlatitude atmospheric motions. In 
particular, the horizontal divergences in these tropical waves are large, in 
contradistinction to the midlatitudes where geostrophy constrains the horizontal 
divergences (and therefore the vertical velocities) to be small. The reason for these large 
tropical divergences is that heating of the atmosphere by deep clouds does not produce 
much temperature change. Rather, cloud heating by deep cumulonimbus clouds produces 
synoptic vertical velocities whose adiabatic cooling just balances the cloud condensation 
heating. The vertical velocity is a measure of divergence and we can therefore say that the 
essence of tropical atmospheric dynamics is that regions of deep cumulonimbus heating 
drive divergent circulations rather than changing environmental temperatures. Thermally 
driven circulations include Walker circulations, Hadley circulations, and teleconnections 
to higher latitudes.  
 

We next examine the basic process that determines the state of the tropical 
atmosphere: the heating of the atmosphere by clouds. We use a set of simple arguments 
and models based on the small fractional area covered by the active clouds in a 
horizontally homogeneous environment to indicate that deep clouds do two distinct 
things. If precipitation equals evaporation (P=E) over a large synoptic region, the deep 
cumulonimbus clouds are randomly distributed, there is no net synoptic vertical mass 
flux, and the latent heating of the clouds is realized outside the clouds by subsiding 
motion compensating the upward motion in the clouds. Since the clouds cover a fractional 
area very small compared to one, the motion almost everywhere, between the clouds, is 
downward. In regions of P>E, regions of thermal forcing, there is upward synoptic 
motion but we show that the motion almost everywhere (i.e. between the clouds) is 
unchanged from the P=E case: the interpretation is that synoptically converged air, which 
would be expected to cool the environment, instead rises in the clouds without cooling the 
environment—deep cumulonimbus clouds are therefore in some sense like insulated 
tubes. That the air almost everywhere subsides and never changes regardless of whether 
P=E, P<E, or P>E, is a realization of the previously noted result that thermal forcing 
does not change temperatures. It also indicates that in regions of thermal forcing, the heat 
is not effected by additional subsidence compensating the heating but rather by the lack of 
cooling of the environment by the synoptic upward motion. The discussion will make use 
of the profound connection between large scale heat and moisture budgets in the tropics 
since both arise almost entirely from the condensation in deep cumulonimbus clouds.  



 
We use the heating of deep clouds to describe the basic structure of the tropical 

atmosphere in the absence of horizontal temperature gradients and indicate that the 
tropical atmosphere can be considered to be composed of three vertical layers. The first is 
a near surface layer where heat and moisture from the surface mix the atmosphere by dry 
plumes up to the bottom of the cloud layer (the lifting condensation level). The second is 
a shallow cloud layer where the shallow clouds condense and re-evaporate without 
precipitating leading to a moist layer extending to two or three kilometers above the 
surface. The third layer is the interior of the atmosphere where the stratification is set by 
the deep cumulonimbus clouds. The properties of such a model of the tropical atmosphere 
are stable even if horizontal temperature gradients at the surface are included.  
 

Three examples of thermally driven circulations are given. The zonally averaged 
Hadley circulation driven by zonally averaged heating is explored in both its linear and 
nonlinear forms. A popular linear model for thermally driven circulations in the tropics is 
the Gill model which is then discussed and found to be difficult to justify as an 
explanation as an explanation for surface winds. An augmented linear theory for thermal 
forcing by an isolated heat sources is described that does explain the conditions under 
which thermal forcing of the atmosphere can drive surface winds. The pattern of the 
surface wind forcing resembles the Gill model and this no doubt is responsible for its 
considerable popularity.  
 

We proceed to a simple discussion of the basic process that anchors the regions of 
deep cumulonimbus convection to regions of warm sea surface temperatures. The basic 
process is simple and was first described by Lindzen and Nigam: warm water implies low 
overlying pressure so that surrounding air converges into the vicinity of the warm water. 
The boundary layer winds as given by the Lindzen-Nigam mechanism also satisfies the 
Gill equations. 
 

Once justified and understood, the Gill model is a useful heuristic for thermally 
driven surface winds in the tropics. The modifications needed to use the theory for 
surface winds in atmospheric anomaly models concludes the chapter.  
 

5.1 Thermodynamic Quantities  

5.1.1 Virtual Temperature vT  

 
We first introduce the concept of virtual temperature which allows us to compare 

the relative buoyancy of dry and moist parcels. 
 

The equation of state of dry air is (where p is the pressure):  
 

d d dp R Tρ= , 
 
while the similar equation of state of water vapor is (where ve  is the partial pressure of 
water vapor): 

v v ve R Tρ=  



 
where ,v dρ ρ  are the densities of water vapor and dry air and the dry and vapor gas 
constants are, respectively,  
 

,
29 18d v
R RR R= =  where 8 4 JR

mole K
= .

⋅
is the universal gas constant. 

 
Note that water vapor (H2O atomic weight 18) is lighter than air, which has a 

mean atomic weight of 29, being composed of about 80% nitrogen (N2) and about 20% 
oxygen (O2) with numerous additional small constituents. 
 

Define the vapor mixing ratio q as v dqρ ρ≡ so that the pressure of the mixture is  
 

mixturep [ ]d v v v d dp p e T R Rρ ρ= = + = +  
 

[ ]d d
v d

R RT q
m m

ρ ρ= + . 

 
The density of the mixture is d vρ ρ ρ= + (1 )d qρ= + , so that  

 
 

mix 1d
d

d v

mRp T q
m m

ρ
⎡ ⎤

= +⎢ ⎥
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1
1d

qTR
q

ρ
ε

⎡ ⎤= +⎢ ⎥+ ⎣ ⎦
 

 

 1 [1 ]d d
qTR q R T qρ ρ δ
ε

⎡ ⎤≈ + − = +⎢ ⎥⎣ ⎦
 

 

where 1 1 61δ
ε

= − = .  and 62v

d

m
m

ε = = .  where m is the relevant atomic weight.  

 
We can now define the virtual temperature  

 
[1 ]vT T qδ= + ,                                                 (5.1) 

 
so that the mixture satisfies an equation of state which resembles the ideal gas law:  
 

d vp R Tρ= .                                                     (5.2) 
 
Note that the equation of state for the mixture uses the dry gas constant.  
 
 



5.1.2 Saturated Vapor ( )sq T   

 
When a parcel of air has water evaporated into it until it can’t hold any more, then  

 
( )vsat sq Tρ ρ≡ , 

where 
( )( ) vsat s v

s
d v

e T R Tq T
p R T

ρ
ρ

/ .
= =

/
 

 
622 ( )se T
p

.� . 

 
By the Clausius-Clapeyron equation ☼  
 

622 1 1( )s
o

q T exp c
p T T

⎡ ⎤⎛ ⎞.
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
                                             (5.3) 

 
where  

273oT = K  and 17 67 oc T= . . 
 
For example at 1000p mb=   (30 ) 27sq C gm kg= /D  and (10 ) 8sq C gm kg= /D . 
 
while at 500p mb= , ( 10 ) 1 5sq C gm kg− = . /D  and (20 ) 2 5sq C gm kg= . /D . 
 

In general, the saturated mixing ratio gets very small above the lowest two or 
three kilometers of the atmosphere, mostly because it is cold.  
 

5.1.3 Dry adiabatic ascent  

 
Under adiabatic conditions (i.e. condensation is not occurring so that no heat is 

added to the parcel) a parcel of unit mass, if raised, expands, and its temperature 
decreases. If lowered, the parcel contracts and compresses, so the temperature of the 
parcel goes up. Potential temperature θ  is the actual temperature a parcel would have if 
brought adiabatically to a standard pressure op , usually taken to be 1000hPa. 
 

opT
p

γ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, where 2 7 pR cγ = / = /                                ( 5.4)  

so that at op p Tθ= , = . 
 

As the pressure changes by raising or lowering a parcel, θ  stays the same and the 
T  of the parcel changes according to:  
 



o

pT
p

γ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

 

Since we don’t add heat, θ  is constant so that 0d
dz
θ
= .The temperature gradient of 

a parcel raised or lowered adiabatically may be found from (5.4) as follows 
 

1 1 1 1 10 ( );

1 1 1 1 .
p

d dT dp dT g
dz T dz p dz T dz p

dT gg g
T dz RT RT T c

θ γ γ ρ
θ

γ ρ γ
ρ

= = − = − −

= − = − = −
 

 
Hence  

ad p

dT g
dz c

⎞⎛ = −⎜ ⎟
⎝ ⎠

                                                     (5.5) 

 
which determines the temperature a parcel will have if raised adiabatically. Note that the 
dry adiabatic lapse rate / pg c−  is − 9.8K/km. 
 

Now consider a parcel raised adiabatically in an atmosphere of background 
stratification  
 

env

dT
dz

⎛ ⎞ = −Γ.⎜ ⎟
⎝ ⎠

 

 
At height z , the force per unit mass on the parcel is  
 

( ) ( )
( )

envz zF g
z

ρ ρ
ρ
−

= −  

 
so that if the parcel arrives at z  with density ( ) ( )envz zρ ρ> , then the force will be 
downward and the parcel will sink back toward its original level. At a level z 
 

( ) ( )env
env

p pz z
RT RT

ρ ρ= ; =  

 
so that 

1
( )

1
( ) ( ) ( )

1 ( ) ( )
env

env

envT zT z T z T zF g g
T z T z

−
≈ − = −

/

−
 

 
i.e. if the temperature of parcel is cooler than that of the environment, the parcel will sink 
back toward its original position. Now, the temperature of the environment is  
 

0env envT T z= − Γ  



 
where T0 is the environmental temperature at 0z = , and the temperature of a parcel 
starting at 0z =  is: 

0parcel
p

gT T z
c

= −  

so that 

env
p

g
c

F g z
T

− Γ
= −  

 
And a parcel will be stable (will sink back: 0)F <  if 
 

env
env

p

dTg
c dz

> Γ = −  

 
i.e. the environmental lapse rate must be less steep than the adiabatic lapse rate.  
 

Note that 
p

g
c

= 9.8ºC/km while in the tropics, envΓ ≈ 6ºC/km. 

 
Since the acceleration of the parcel z F=�� ,  
 

( ) 0env
p

g g dTz z
T c dz

⎞⎛
+ + = .⎟⎜⎜ ⎟

⎝ ⎠
��  

 
Define 
 

2 [ ( ) ]env
p

g g dTN
T c dz

≡ +                                               (5.6) 

 
where N  is the Brunt-Vaisala frequency. N  is the frequency the parcel will have when 
adiabatically displaced from its neutrally buoyant position. When 2 0N > , the 
environmental stratification is stable and the parcel will vertically oscillate with 
frequency N. When 2 0N < , the environmental stratification is unstable and the parcel 
will move far from its neutral position.  
 

Note that, since  
 

p

d g dT
dz T c dz
θ θ ⎡ ⎤
= +⎢ ⎥
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, 

 
2 g dN

dz
θ

θ
= ;                                                     (5.7) 

 
while in the ocean  



 
2 ( )( )

( )
g d zN z
z dz

ρ
ρ

≈ − . 

 
A commonly used quantity is the dry static enthalpy s: 

 
ps c T gz= +                                                    (5.8) 

 
so that 

p
ds dTc g
dz dz

= +  

 
and  

lnp p
ds T d dc c T
dz dz dz

θ θ
θ

= = . 

 
We see that s  is conserved in dry (i.e. non-condensing) ascent.  
 

The gross dry static energy profile of the tropical atmosphere looks like Fig. 5.1. 

 
Fig. 5.1  Schematic of stable stratification of troposphere. zm is mixed layer height, zT is 
height of tropopause.  
 

The dry static energy is constant in the bottom mixed layer, zm, has a positive 
slope up to the tropopause zT, and then is very stable in the stratosphere above the 
tropopause.  
 

If a parcel rises from the mixed layer, it will have a temperature ( ) /m ps gz c−  
while the environment will have a temperature. ( ) / ps gz c− . 
 
Therefore,  

0m m
parcel env

p p p

s gz s ss gzT T
c c c
− −−

− = − = <  

zm 

zT 

s 



 
and the parcel will sink back.  
 
 

5.1.4 Moist adiabatic ascent  

When a moist parcel is lifted from near the surface, the temperature first falls 
adiabatically until the parcel saturates (i.e. s  stays constant until saturation). After 
saturation the moist static enthalpy h,  
 

ph c T gz Lq= + +                                                    (5.9) 
 
stays constant. Note: the liquid is assumed to rain out so that h  is constant as the vapor 
condenses.  
 

EXERCISE: What is the relationship between h  and e
p

Lqexp
c T

θ θ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 where eθ  is 

equivalent potential temperature.  
 
 
EXERCISE: The buoyancy of a rising parcel is proportional to parcel envT T− . Prove that 

( )parcel env p envT T h h∗− ∝ −  where ( )env p en sat envh c T gz Lq T∗ = + +   
 
Since the environment holds less and less vapor as it gets colder aloft, a typical 
environmental profile looks like Fig. 5.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     Lq 
Fig. 5.2 Schematic of the moisture structure of the tropical atmosphere. See text for 
explanation. 
 
 
The saturated environmental h*env first decreases upward and then increases as the 
environmental value of q*, the saturated value of the vapor mixing ratio, decreases with 

hc 
s

LCL 

zT 

h*
h



temperature according to the Clausius-Clapeyron relation (Eq. 5.3). 
 

In general the Lifting Condensation Level (LCL) is at or near the top of the mixed 
layer. Parcels rise from within the mixed layer and conserve their value of h--this is the 
cloud hc in the diagram. Since the parcel becomes saturated at the lifting condensation 
level, the cloud hc is saturated above the lifting condensation level. Therefore, a mixed 
layer parcel will rise with constant ch  until it loses its buoyancy which is proportional 
to ( )ch h∗− . The parcel (cloud) will reach the tropopause at height Tz  if  
 

( )T m M

T M T

ds s z s Lq
dz z z z

−
= ≈

−
.                                         (5.10) 

 
This means that the water vapor condensing out of the cloud parcel supplies enough 
bouyancy to the parcel to overcome the dry static stability of the troposphere. 
 

The moist adiabatic lapse rate is given when *h  is constant:  
 

* *( *) 0p
dh d dT dqs Lq c g L
dz dz dz dz

= + = + + =  

 
so that 

*( )
p p

dT L dq g
dz c dz c

=− −                                                    (5.11) 

 
is the moist adiabatic lapse rate. We can get an estimate of the average moist adiabatic 
lapse rate throughout the troposphere by examining Fig. 5.2. An alternate to Eq. 5.11 is  
 

M
p

T LCL

Lqds dTc g
dz dz z z

= + =
−

 so that 

 

( )
M

p p T LCL

LqdT g
dz c c z z

=− +
−

. 

 
We can estimate the average moist adiabatic lapse rate throughout the troposphere from 
Eq. 5.11 by noting that   
 

*  at  and q* 0 at M LCL Tq q z z z z= = ≈ =   
 
Since / 2500pL c ≈ , 16T LCLz z km− = , and .02Mq = , so that the second term is about 
+3.3K/km. The gross moist adiabatic lapse rate in the tropics therefore is about 
-6.3K/km . 
 

Notice that the difference of hc and h* is exaggerated in fig. 5.2. The parcel has 
only a small buoyancy above the LCL and therefore, since the cloud is saturated, the 
difference between the saturated cloud moist static energy and that of the saturated 
environmental h* is, in fact, quite small. Remember also that the environment is NOT 



saturated—the quantity h* is useful because (hc-h*) measures the buoyancy. Since the 
environmental lapse rate above the mixed layer is determined by moist parcels raised 
from the mixed layer, and the buoyancy of these parcels is small, the lapse rate of the free 
atmosphere is close to moist adiabatic. We will examine a model for this in Sec. 5.4. 
 
 

5.1.5 Buoyancy flux from the surface 

 
Since comparing virtual temperatures measures the relative buoyancy of two 

parcels, the buoyancy flux from the surface is defined as: 

v
v

gF wθ
θ

′≡ ′  

 
and it is this flux that mixes the boundary layer.  
 

There are two sources of buoyancy - heat flux and water vapor flux (remember - 
water vapor is lighter than air so evaporation produces light vapor which produces 
buoyancy).  
 

Since we are near the surface where 0p p= , v vTθ = , and since 
 

(1 )vT T qδ= + , 
 

vw T w T T q wδ′ ′ ′ ′ ′≈ +  
 
neglecting he third order quantity w q T′ ′ ′ . 
 

Define the sensible heat flux from the surface  
 

pS c T wρ ′ ′=  
 
and the latent heat flux  

LE Lq wρ ′ ′=  
 
where 62 5 10L x J kgK= . /  and 7

2 (287)pc J kgK= / . 
 

Also define the Bowen ratio to be the ratio of sensible to latent heat from the 
surface, b=S/LE,  so that  
 

1 11' ( ) [1 07 ]p
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p p p

c TS T Sw LE S b bT c L c L c
δδ

ρ ρ ρ ρ

⎡ ⎤
⎢ ⎥− −
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⎣ ⎦

= + = + ≈ + .′             (5.12) 

 
We see that for b ∼ .07, the latent and sensible heat contribute equally to the 

buoyancy flux from the surface. It turns out that this is indeed the order of magnitude of 



the Bowen ratio in the tropics. 
 

5.2 The Diagnosis of Reed and Recker  
Reed and Recker, 1971, and since then many others, examined 5 day waves in the 

ITCZ of the western Pacific using data gathered by an enhanced observing system 
implemented to monitor the thermonuclear bomb tests of the 1960s. Then, instead of 
averaging, which would have wiped out the structure of the waves since the wavelength 
was not constant, they averaged all waves into 8 separate bins and constructed a 
composite wave from the results. The composite wave structure is shown in Fig. 5.3.  

 
Fig. 5.3 The wave composited by meridional wind speed (m/sec). The trough and ridge, T 
and R, have near zero meridional winds and N and S have meridional winds from the 
north and south respectively. (From Reed and Recker, 1971.) 
 

Since these disturbances are in the ITCZ, the mean vertical velocity averaged over 
the entire wave is upward, and this is accomplished by low level convergence necessarily 
concomitant with upper level divergence (Fig. 5.4). 
 

 
Fig. 5.4  Wave composite of horizontal velocity divergence (upper panel), in units of 
10-5 per sec) and vertical velocity (lower panel) in units of 10-5 mb/sec. (From Reed and 



Recker, 1971.) 
 
The precipitation through the various phases of the wave is shown in Fig. 5.5 left. 

At the peak of the wave, the rainfall is 2>  cm/day which corresponds to a heating rate of 
about 6K/day. [Note that 21mm/day 29W/m⇐⇒  and 100 W/m2 heats an atmospheric 
column 0.8º/day---see Appendix 1.] 
 

 
 

Fig. 5.5: Left Panel: Precipitation (cm/day) in the various parts of the composite wave 
(the dot-dashed line gives an estimate based on the moisture budget) and , Right Panel: 
temperature structure (degrees K) through the wave.(From Reed and Recker, 1971.)  
 

We would expect the moisture budget to be  
 

0

3001 ( )
mb

p
P E q dp

g
= + ∇⋅ +∫ u  storage 

 
and while there are observational problems, the budget is roughly satisfied. As Fig. 5.6 
shows, most of the convergence of moisture into the trough part of the wave occurs at low 
levels, below 2km.  
 
 

 
Fig. 5.6 Moisture convergence at trough (category 4) and next bin to the east of the 
trough (category 5) in units of 10-8 /sec. (From Reed and Recker, 1971.) 
 



What is truly extraordinary in this diagnosis is shown in Fig. 5.5, right. Although 
the heating rates are of order 6°/day in the trough part of the wave, the temperature 
response is no more than 0.1°/day, two orders of magnitude smaller. Thus, see that 

despite large amounts of precipitation, 0s
t

∂
≈

∂
 so that the basic heat balance is 

 

R
dsw Q Q
dz

ρ = + .                                               (5.13) 

 
It is hard to overemphasize the importance of Eq.5.13. It basically says that the net 

heating, (Q+QR), rather than changing temperatures, produces vertical velocities and 
therefore drives circulations. It is a crucial fact about the tropics that all its various 
circulations are thermally driven. This is a basic difference from the dynamics of mid-
latitude circulations where quasi-geostrophy implies that the divergent circulations are 
small (see Sec. 3.4) where the ratio of divergence to vorticity is of order of the Rossby 
number. In the tropics, the divergence is of order of the vorticity and thermally driven 
divergent circulations are the essence of the tropics.  
 

5.3 How Clouds Heat 
This section is based on the classic paper of Yanai, Esbensen, and Chu, 1973. 

They derived a set of relations that allowed them to use the data set previously mentioned 
in Sec. 5.2 to diagnose the properties of clouds in the tropics.  
 

The essence of the argument is that the active cumulus clouds that heat the tropics 
cover a very small fractional area of the tropics, something of order 2 or 3%. (this only 
includes the active core of the cumulonimbus clouds—the cirrus outflow, which is 
dynamically inactive, but radiatively active, may cover a much larger fractional area). 
Thus while great amounts of latent heat are produced in the atmosphere, the fractional 
area covered by deep clouds is so small that it is simply not possible for the condensed 
heat to diffuse from the clouds into the environment. It is possible, however, for the deep 
cumulonimbus clouds to have large amounts of moisture converged into their base and, 
because the vertical velocities within the clouds are so large, to rain many times the local 
evaporation. As will be also be shown below, we have to distinguish between the heating 
that balances the mean evaporation (here taken spatially uniform, for the sake of 
simplicity) and the heating that occurs when, in the presence of mean evaporation, there is 
localized precipitation that exceeds the evaporation. In this latter case, the cumulative 
effects of deep clouds produce heating because the air going up into the clouds, which 
normally would produce large scale cooling, does not produce cooling. In this sense the 
air going up into the clouds have large scale synoptic effects but the clouds themselves 
act like insulated pipes—the clouds heat by the synoptically rising air not cooling. In this 
view, the mean evaporation sets the net number of deep cumulonimbus clouds in the 
tropics estimated to be of order 2000 deep cumulonimbus clouds around the tropics 
(Malkus, 1962). It is these cumulonimbus clouds that are responsible for establishing and 
maintaining the mean state of the tropical atmosphere (see Sec. 5.4). Local precipitation 
greater than evaporation corresponds to bunching of deep cumulonimbus clouds. Local 
precipitation less than evaporation corresponds to scattering and thinning of deep 
cumulonimbus clouds. This point of view, first pointed out to us by R.S. Lindzen, will be 
explained in more detail below. 



 
We start by considering the budgets of both heat and moisture. Since all the heat 

realized in the atmosphere was produced by convergence of low level moisture, 
considering both budgets is always a good scientific strategy in the tropics.  
 

Define the quantities 1Q  and 2Q : 
 

1 s wDs s sQ
Dt t z

ρ ρ ρ ρ∂ ∂= = + ⋅∇ +
∂ ∂

u  

 
where s  is the environmental dry enthalpy per unit mass and the averaging is defined by: 
 

average a over all areas cloud and non cloud
average a over non cloud area only
average a over cloud area onlyc

a
a
a

≡ − −⎧
⎪ ≡ −⎨
⎪ = .⎩

�  

 

2
Dq q qQ q w
Dt t z

ρ ρ ∂ ∂ ⎞⎛= − = − + ⋅∇ +⎜ ⎟∂ ∂⎝ ⎠
u . 

 
1Q  is the apparent heat source and 2Q  is the apparent moisture sink. The dynamic 

equations governing heat and moisture are then: 
 

1 ( )RQ Q L c e s w
z
ρ∂ ′ ′= + − −

∂
                                (5.14) 

 
and  

2 ( )Q c e q w
z
ρ∂= − + ′ ′

∂
                                   (5.15) 

 
where RQ  is the radiative heating rate (per unit volume), c  is the condensation rate of 
water vapor (per unit volume) due to the clouds, e  is the evaporation rate of cloud liquid 
water and the last terms in Eqs. 5.14 and 5.15 are the vertical convergence of the heat and 
moisture fluxes due to the ensemble of clouds. 's , 'q and 'w are the anomalies of dry 
static energy, moisture, and vertical velocity respectively at the level z and the overbar is 
the horizontal average at level z. 
 

We have assumed, on the right hand sides of Eqs. 5.14 and 5.15 that the horizontal 
convergence of flux due to clouds vanishes, i.e. that clouds do not converge net moisture 
or heat by their horizontal motion, i.e. that the same number of clouds of the ensemble 
stay within the averaging area. 
 

We would like to simplify the right hand side of Eqs. 5.14 and 5.15 so that 
measurements of the observable quantities 1 2 RQ Q Q, ,  can tell us something about the 
properties of cloud ensembles.  
 

Assume that we have a horizontal area large enough so that many clouds are 



included. The fractional area σ  covered by the clouds is assumed to be small. This will 
be the BASIC ASSUMPTION: 1σ <<   
 

Then the average over both cloud and non-cloud areas gives: 

 

(1 )cs s sσ σ= + −�  
 
where cs  is dry static energy in the cloud ensemble and s�  is the dry static energy between 
the clouds. Then  
 

( )cs s s sσ= + −� � . 
 

Since observations show that the temperature difference between the cloud and 
noncloud regions, is small (this is equivalent to the clouds being almost neutrally buoyant 
as noted in the previous section) 
 

c ms s Lq s− < << .� �  
 
Therefore  

( )s s O σ≈ + .�  
 
Similarly  

( )q q O σ≈ + .�  
 

We see that the static enthalpy and the moisture averaged over both cloud and 
non-cloud regions are given by the values between the clouds since the fractional area 
covered by the clouds is so small.  
 

When we look at the vertical mass flux averaged over between cloud and non-
cloud areas, the situation is quite different:  
 

j(1 )( )( )cw wwρ σ σ ρρ= + − ,  
 
but the vertical velocities in clouds are so large that  
 

k1( ) ( )( )cw O wρ ρ
σ

∼  

 
and we cannot make any simplifications. Hence we can approximate s  and q  by ignoring 
cloud effects, but not so for mass flux: 
 

j
cM M M= +  

 
where M wρ=  is the net synoptic mass flux in a region (given by the total convergence 



of air entering the region from the sides), cM  is the mass flux in the clouds, and jM =  

mass flux between the clouds. In general, only M  is directly observable from synoptic 
observations.  
 
Three cases will help to fix ideas:  
 
a) 0M =  so that there is no net mass flux into the region from the sides so that the 
averaged vertical velocity is zero. [Later, taking the region to be the entire tropics, we 
will consider that 0M = .] There can still be clouds and precipitation as long as the mass 
flux between the clouds balances the vertical mass flux in the clouds. In this case there is 
no net large scale mass convergence and therefore there is no large scale moisture 
convergence. One way this can happen is that there is a random distribution of deep 
cumulonimbus clouds whose precipitation simply balances evaporation. In this case 
j

cM M= − . 
 

There is an intimate relationship between the moisture budget and the low level 
mass budget. If we converge no moisture into the region, then P E= . There must be 
precipitation balancing evaporation and there must be the correct number of deep 
cumulonimbus clouds to make this happen. If we make a model of the moisture structure 
that almost all the water vapor mq is well mixed and confined to within 2 km of the 
surface, then flux balance into the atmosphere above 2km requires  
 

c mP E M q= = . 
 

This is the tropical water budget. It follows that /c mM E q=  implying that 

between the clouds, j / mM E q= −  almost everywhere (i.e. in the approximately 98% of 
the area between the active deep clouds). Outside of the clouds, which is almost the entire 
area, the motion is downward. Therefore, the steady heat budget of the atmosphere must 
be  
 

j
R mLP Q LE Lq M= = = − ;  

 
the radiatively heat loss of the free atmosphere RQ  is balanced locally by the heating due 
to downward motion. We have, for the purposes of illustration, neglected the specific 
radiative effects of the deep cumulonimbus clouds and in particular their cirrus outflows 
which are known to be important. It is important to remember for this example that the 
synoptically measured vertical velocity is zero, yet, almost everywhere, the motion is 
downward—the net upward mass flux in the clouds just balances the slow downward 
motion between the clouds. 
 
b) j 0M = , implies cM M= . All the mass goes up into the clouds and is exported 
laterally. There is no descending motion and nothing to balance radiative cooling of the 
clear air between the clouds, i.e. almost everywhere. This is a most unrealistic case. The 
measured synoptic mass flux is upward but, almost everywhere (between the clouds) 
there is no upward or downward motion. 
 



c) j0 0 0cM M M≠ , ≠ , ≠ : There are now no simplifications. We have to consider 
convergence in the region, partitioned into upward vertical mass flux in the clouds and 
environmental mass flux outside the clouds.  
 

We return to the problem of evaluating the vertical convergence of the heat and 
moisture fluxes in equations 5.13 and 5.14. We first evaluate the flux terms carried by the 
cloud ensemble.  
 

( ) ( )c cs w M s s Oρ σ′ ′ ≈ − +  
and 

( ) ( )c cq w M q q Oρ σ′ ′ ≈ − + . 
 

In order to further evaluate the vertical derivatives in Eqs. 5.13 and 5.14, we need 
a cloud model.  
 

To illustrate, lets assume the cloud ensemble can be characterized by a single 
( )cM z . The clouds comprising the ensemble will entrain environmental air and detrain 

cloud air and ( )cM z  will be the mass flux left in the ensemble due to all the clouds that 
have detrained below level z. We further assume a cloud detrains (i.e. stops rising) only 
where it has lost buoyancy, i.e. at cs s= .  
 

Call the entrainment rate ε , the detrainment rate d . The cloud model is then the 
set of budget equations for the cloud ensemble:  

 

MasscdM d
dz

ε= − , 

 

Heatc c c
d M s s ds Lc
dz

ε= − + , 

 

Moisturec c c
d M q q dq c
dz

ε= − − . 

 
This is our cloud model. We can now use the cloud model to evaluate the vertical 

derivative of cloud flux:  
 

( ) c
c c c c c

M ss w M s s M s s M
z z z z z
ρ∂ ∂ ∂ ∂ ∂′ ′ = − = − −

∂ ∂ ∂ ∂ ∂
 

 

( )c c
ss ds Lc s d M
z

ε ε ∂
= − + − − −

∂
 

 

( )c c
sd s s Lc M
z
∂

= − + −
∂

. 

 



But clouds detrain where 0cs s− =  so that  

 

c
ss w M Lc

z z
ρ∂ ∂′ ′− = −

∂ ∂
                                      (5.16) 

 
Similarly  

( ) c
c c c c c

M qq w M q q M q q M
z z z z z
ρ∂ ∂ ∂ ∂ ∂′ ′ = − = − −

∂ ∂ ∂ ∂ ∂
 

 

( )c c
qq dq c q d M
z

ε ε ∂
= − − − − −

∂
 

 

( )c c
qd q q c M
z

∂
= − − − ;

∂
 

 

( )c c
dqq w M c d q q

z dz
ρ∂ ′ ′ = − − + −

∂
                         (5.17) 

 
Using Eqs. 5.16 and 5.17 in 5.14 and 5.15 gives the final expression for how the cloud 
ensemble heats and moisturizes: 
 

1 c R
Ds dsQ M Le Q
Dt dz

ρ= = − +                                                (5.18) 

 

2 ( )c c
Dq dqQ M e d q q
Dt dz

ρ− = + = + + −                                        (5.19) 

 
The first two terms on the right hand side of Eq. 5.18 describe how the cloud 

ensemble heats the atmosphere. The first term is a direct heating term where positive 
mass flux in the clouds act on the stable atmospheric stratification. The second term is the 
cooling due to evaporation of liquid that has detrained from the clouds.  
 

The three terms on the right hand side of Eq. 5.19 describe how the cloud 
ensemble moisturizes the atmosphere. Since 0

dq
dz

< , the first term describes drying due to 

upward motion in the clouds. The second term is the moisturizing due to evaporation of 
liquid water from detraining clouds, and the third is direct injection of moisture to the 
environment by detraining clouds. 
 

Yanai et al. were able to use the observed values of Q1 and Q2 and some 
reasonable assumptions on the other terms to diagnose the mass fluxes and other 
properties of the cloud ensemble using data from the synoptic network set up in the 
western Pacific to monitor the aforementioned nuclear tests.  
 



      
 

 Fig. 5.7 The synoptic mean mass flux M , the cloud mass flux Mc and the mass flux 
between the clouds jM as diagnosed from observations. (From Yanai et al., 1973.)  
 
 

 
 
Figure 5.8 The entrainment and detrainment rates as diagnosed from observations. (From 
Yanai et al., 1973.) 
 

Fig. 5.7 shows the synoptically observed M , the diagnosed cloud mass flux Mc, 
and the inferred mass flux between the clouds jM . Fig. 5.8 shows the entrainment and 
detrainment in the cloud ensemble. Clearly from Fig. 5.8 the mass flux has a large amount 
of low level detrainment (below 700 hPa) and a large amount of detrainment at the top of 
the troposphere. The simplest interpretation of these results are that the distribution of 
clouds is essentially bi-modal, with deep and shallow clouds. The shallow clouds are 
mostly below two or three kilometers above the surface and the deep clouds essentially 
extend to the tropopause. This interpretation gains added weight from considerations of 
the heat and moisture balances of the atmosphere: 

 



 
Figure 5.9 The heat balance as diagnosed from observations.(From Yanai et al., 1973) 

 
Figure 5.10 The moisture balance as diagnosed from observations. (From Yanai et al., 
1973) 
 

Fig 5.9 indicates that the major part of the heating is accomplished by the cloud 
mass flux term. We see from Fig 5.10 that the evaporative cooling (coming from 
detrained liquid water ) is only large in the lower 2 km. and from Fig 5.8 that most of the 
detrainment of liquid and vapor also occurs only at lower levels, while the drying of the 
atmosphere occurs throughout the atmosphere, due to the Mc of deep clouds. The action 
of the shallow clouds therefore seems mostly confined to the lower levels of the 
atmosphere and mostly seems to involve moisturizing these levels. 
 

This leads us to suggest a major simplification, namely that the tropical 
atmosphere may be considered to be deep precipitating cumulonimbus clouds interacting 
with a moist boundary layer consisting of shallow clouds. The major action of the deep 
clouds is to precipitate and the major action of the shallow clouds is to moisturize the 
moist boundary layer. The deepest clouds can only reach the tropopause if they don’t 
entrain very much and the shallow clouds can only effectively moisturize the boundary 
layer if they don’t precipitate. Because deep clouds are assumed to rain out all their 
moisture, they have none left upon reaching their detrainment level near the tropopause. 
Because they have become so cold on detrainment near the tropopause, they have no 



moisture left to detrain. The equations for deep non-entraining clouds then become: 
 

1 c R
dsQ M Q
dz

= +  

 

2 c
dqQ M
dz

= − . 

 
Let us go back to our model of moisture confined to a boundary layer of depth 

about 2 km.  
 

1 c R
ds s ds dss M Q M Q
dt t dz dz

ρ ρ ρ∂
≡ + ⋅∇ + = = +

∂
u . 

 
Assume we can neglect s∇  since the horizontal temperature gradients are 

relatively small. Then  

( )c R
s dsM M Q
t dz

ρ ∂ = − +
∂

 

 
j( ) R

s dsM Q
t dz

ρ ∂ = − +
∂

.                                             (5.20) 

 
Eq. 5.20 indicates that all the temperature changes are due to subsidence between the 
clouds and radiation. As we have seen, the temperatures hardly change in the tropical 
atmosphere so that the same between-the-cloud subsidence always balances the radiative 
cooling between the clouds. 
 

Now let us return to the general case (c): 0M ≠  and consider the moisture 
budget: P E=  + moisture converged in to a tropical domain A by mean motions. Since 
all the moisture to speak of is in the boundary layer:  
 

0

1 mz

mP E dz q dA
A

ρ= + ∇ ;∫ ∫ ui  

or 

m mP E w qρ= + . 
 
Since we have assumed that all the water going up into high clouds is precipitated out, the 
precipitation is equal to the moisture flux in clouds going up above the boundary layer: 
 

c mP M q= .  
 
Therefore  

c m
m m

P EM w
q q

ρ= = +  

 
And, since  



 
j

m cM w Mρ= − , 
 

j
m

EM
q

= −                                                        (5.21) 

 
independent of the mean synoptic mass flux mM wρ=  and therefore independent of the 
convergence that leads to precipitation. The downward motion between the clouds (i.e. 
the downward motion almost everywhere) is the same regardless of whether or not there 
is precipitation, or equivalently, whether or not there is an Mc.  
Now consider the heat budget:  
 

c Rm

ds dsM Qw
dz dz

ρ = +  

 

[ ] Rm
m

E ds Qw
q dz

ρ= + + ;  

 

R
m

E ds Q
q dz

− = . 

 
Hence  

j
R

dsM Q
dz

= . 

 
We see that the radiative cooling of the atmosphere is balanced by the subsidence 
between the clouds which as we have seen is independent of the precipitation. Note that 
this downward motion will also dry the air.  
 

Alternately, we may write  

R
m

E ds Q
q dz

− =  

 
and find the total heat budget  
 

0 0
( ( ) )T Tz z

R T m
m m

E ds EQ dz dz s z s
q dz q

= − = − −∫ ∫  

 

( )m
m

E Lq LE
q

= − = − ;  

 
so that radiative cooling is balanced by evaporation even when there is precipitation 
present. (Recall from Fig. 5.2 that ( )m T mLq s z s= − .) As a corollary to Eq. 5.21 and the 
heat budget, we notice that temperature doesn’t change in the presence of local regions of 



precipitation or in regions where precipitation is absent. This provides a rationale for the 
result in the previous section that the temperature in regions of large thermal heating 
remains constant.  
 

The net result of these consideration is that it is enlightening to think of deep 
cumulonimbus clouds simply as conduits for upward mass fluxes. The total number of 
such clouds is given by the evaporation and this number of clouds may be considered 
randomly distributed when P=E with no synoptic mass flux: 0M = . The mean heating of 
the atmosphere is given by the downward mass flux between the clouds jM  and if this 
downward mass flux can be said to compensate anything, it is the radiative cooling of the 

atmosphere: j
R

dsM Q
dz

− = .  That jM does not depend on whether or not P>E or P<E 

means that the deep cumulonimbus clouds can be considered simply to bunch together 
(P>E) or disperse apart (P<E). When there is upward synoptic mass flux, ( 0M > ), the 
normally expected added compensatory adiabatic cooling does not occur. In fact since 
j

cM M M= −  stays constant, any additional mass flux M  goes up into the clouds as 
additional cM . When 0M < , there are fewer clouds in the region and more of the mass 
flux between the clouds is synoptic mass flux. The downward motion almost everywhere 
stays constant regardless of synoptic scale convergence or divergence, although the 
interpretation will be different for each. This means that the old idea of compensating 
subsidence must be modified: subsidence does compensate the mass flux in the clouds 
due to evaporation. But when deep clouds congregate, i.e. when there is local upward 
synoptic vertical velocity, the between-the-cloud subsidence does not change so that there 
is no additional subsidence compensating the low level convergence.  

 
Consider the circulation in the two cases P E>  and P E<  and let X be a positive 

quantity:  
 

 
P E>  

 

 
P E<  

 
    c mP M q E X= = +   c mP M q E X= = −  

c
m m

E XM
q q

= +  c
m m

E XM
q q

= −  

m

XM
q

=  and j
m

EM
q

=−  
m

XM
q

= −  and j
m

EM
q

=−  

 
We see that regardless of the magnitude of X, the downward motion jM  in both 

cases is the same everywhere because the heat goes up in the clouds, i.e. the part of the 
heating due to net moisture convergence is balanced by adiabatic cooling of the mean 
motion. It is almost as if the clouds were insulated pipes. In convergent regions, many 

insulated pipes gather together and P>E yet the between-the-cloud motion is j
m

EM
q

= − . 

In divergent regions, the insulated clouds disperse and thin out and the synoptic mass flux 



M is downward and P<E, yet it is still true that j
m

EM
q

= − . In both cases, the vertical 

motion, almost everywhere, is the same and is given by 
m

E
q

− . Since the downward 

motion almost everywhere (i.e. the between-the-cloud downward motion) does not 
change, the temperature does not change even in regions of heavy precipitation where the 
latent heating is large. 
 

The key assumption in making this grand interpretation was horizontal 
homogeneity--that E is the same everywhere and that horizontal temperature variations 
are small. When there are horizontal temperature variations, such as the east-west surface 
temperature gradient in the tropical Pacific, much of the preceding survives as 
atmospheric interior motion with the interior being connected to the surface through a 
boundary layer. The observed temperature structure above the boundary layer is very 
nearly identical in the eastern and western tropical Pacific ocean. 

 

5.4 A Model for the Vertical Structure of the Tropical Atmosphere  
This section will indicate that the typical schematic structure of the tropical 

atmosphere, Fig. 5.11, is a robust and ubiquitous feature that can be understood in terms 
of the roles of convection in carrying vapor, liquid, and heat. It will further show that in 
the absence of ocean dynamics the temperature of the surface of the ocean is determined 
by a one dimensional radiative-convective equilibrium in the atmosphere. Deviations 
away from this radiative convective equilibrium temperature are due to ocean dynamics 
forced by heat and momentum fluxes at the ocean surface.  
 

 
Figure 5.11 Schematic of the vertical structure of the tropical atmosphere (From 
Sarachik, 1978.) 
 

Assume a tropical atmosphere on top of an ocean with no mean horizontal 
transports (of anything) in either the atmosphere or the ocean: for the purposes of this 
discussion, we will assume complete horizontal homogeneity. 
 

The resulting atmospheric state is in radiative moist-convective equilibrium and 
its properties can be calculated by one dimensional considerations. Vertical diffusion will 
guarantee that the ocean will be at a constant temperature throughout its depth which will 
therefore be the temperature at the surface. Everything (the vertical structure of the 



atmosphere, the SST, the evaporation rate etc.) can be calculated solely in terms of the 
solar constant. The only assumptions will be on the radiative properties of the system, and 
some assumptions on the wind variance. In the spirit of this book, the presentation will be 
simplified. More complex radiative-convective calculations can be found in the literature.  
 

The structure of the resulting equilibrium tropical atmosphere can be described in 
terms of the convective elements. The bottom boundary layer is a mixed layer whose 
mixing is due partly to the sensible heat from the surface and partly from the evaporation 
from the surface. The convective elements mixing the heat and vapor are invisible 
plumes. The mixed layer rises until it reaches the lifting condensation layer. Deep and 
shallow clouds break out in such a way as to keep the top of the mixed layer just below 
the lifting condensation level. The shallow clouds (trade cumulus) are small and highly 
entraining so they detrain within the shallow cloud layer without precipitating. The deep 
cumulonimbus clouds rise to the tropopause and precipitate heavily thereby determining 
the lapse rate of the free atmosphere to be moist adiabatic. The system is in dynamic 
equilibrium: the shallow cloud layer is held to about 2km by the downward motion in the 
environment. 
 

We might consider each of the layers illustrated in Fig 5.11 as a layer 
characteristic of the nature of the convective elements and their relationship to the forms 
of water. The mixed layer is characterized by invisible plumes and is partly driven by the 
light weight of water vapor without condensation. The shallow cloud layer is driven by 
the condensation and subsequent re-evaporation of water leaving as a net effect the 
mixing and moisturizing of the shallow cloud layer. The deep cumulonimbus clouds 
condenses water with the water falling as precipitation. The realization of the heat of 
condensation in the cumulonimbus clouds occurs in the downward motion outside the 
clouds which balances the radiative cooling of the free atmosphere and sets the lapse rate 
of the free atmosphere at the moist adiabatic lapse rate. 
 

We assume horizontal homogeneity and, in equilibrium, because there is no 
convergence or divergence,  
 

c mP E M q= =  
 
where cM  is the mass flux in the deep cumulonimbus clouds and mq  is the mixed layer 

moisture. With no net low level convergence, 0wρ = ,  and we see that c
m

EM
q

= +  and 

j
m

EM
q

= − . The downward motion, almost everywhere, is given by jM . 

 
We assume we know the net radiation at the surface netR : in a one dimensional 

model, it is best not to assume too much about the properties of clouds so that radiative 
transfer though the clouds is finessed by assuming the net radiation at the surface is 
known. Because the ocean has no net transports, there is no heat flux into the ocean so 
that at the surface.  
 

netR LE S= +  
 



where S  is the sensible heat transfer from the sea surface into the atmosphere.  
 

We will take the radiative cooling in the free atmosphere to be given by Rayleigh 
cooling 
 

( ) ( )e
R

T z T zQ ρ
τ
−

=  

 
with a fixed radiative cooling rate τ taken to be about 15 days and ( )eT z  is the radiative-
dry convective equilibrium temperature structure, i.e. the temperature structure that would 
exist if there were radiation and dry convection but no moist processes.  
 

In the free atmosphere, the heat balance is  
 

( )c e
ds E dsM T T
dz q dz

ρ
τ

= + = − . 

 
The lapse rate is determined by moist convection due to the deep cumulonimbus 

clouds. The atmosphere is assumed dry above the Trade Inversion (TI) since the deep 
clouds are non entraining and we assume that precipitation out of the rising clouds 
reaches the surface and doesn’t re-evaporate on the way down.  
 

The mean lapse rate of the free atmosphere is  
  

( )T m m m

T m T m T

s z s Lq Lq
z z z z z

−
= ≈

− −
 

 
so that 

( ( ) ( ))e
T

LE T z T z
z

ρ
τ

≈ −  

or  

0

( ( ))
Tz

p eLE c T T z dzρ
τ

= −∫                                     (5.22) 

 
We will use this later to calculate Tz . (Once we know Tz  and the temperature at the 
tropopause, we know ms ).  
 

We relate ms  and mq  to their surface value p sc T  and ( )sat sq T  by the similarity 
relations;  

 

( ) ( )dT dq qf z L g z L
dz kz dz kz

θ∗ ∗
∗ ∗= / = /  

 
where andw T u S E q w u qθ∗ ∗ ∗ ∗′ ′ ′ ′≈ = = ≈  and u∗  is specified. (There is no mean wind 
but there is wind variance.) L∗  denotes the Monin Obukhov length.  



 
If we integrate the moisture and temperature equations we have s mT T− =  some 

function of ( )u z L∗ ∗, /  and ( )sat s mq T q− =  some other function of ( )q z L∗ ∗, / . The exact 
expressions are given in Sarachik (1978). 
 

So once the E, and S are known, the relationship between surface and mixed layer 
quantities are known.  
 

The mixed layer temperature is calculated from the heat balance  
 

0

( ( ))
Tz

p eLE c T T z dzρ
τ

= −∫  

 
The radiative equilibrium temperature profile is assumed to be a profile given for 
radiative dry convective equilibrium. We know that such a profile exists because radiative 
equilibrium calculations alone (e.g. Manabe and Möller, 1961) give a statically unstable 
troposphere which is then unstable to dry convection. Dry convection will then mix the 
troposphere to a depth 1z  so that  
 

1e o aT T z z z= −Γ <  
 
and 1stratT T for z z= >  where  

a
p

g
c

Γ = .  

 
The profile we are calculating is  
 

m t TT T z z z= − Γ <  
 
where  

m
t a

p t

Lq
c z

−Γ = − Γ  

 
and  

strat TT T z z= >  
 
i.e. we are assuming an isothermal stratosphere at its radiative equilibrium value.  
 
EXERCISE: Do the integration in Eq. 5.22 and show that:  
 

2
2
1

1 2
2 2

m m
T

Lq Lq LEz z
g g g

τ
ρ

⎞⎛
= ± + +⎟⎜

⎝ ⎠
. 

(Keep τ
ρ

 constant.). Note that this result says that the effect of evaporation is clearly to 

raise the tropopause over its non-moist value z1. 



 
Once we have Tz , we know tΓ . Then we know ( )m strat t t mT T z z= −Γ − .   

 
We know mz  implicitly in terms of mq  and mT  because it is the lifting 

condensation level.  
 

We also know that the mass flux into the trade cumulus clouds is the mass flux 
necessary to hold the mixed layer to the lifting condensation level. i.e.  

 
( )( ) 1 2 [ 07]( ) pv s

TC m v s
m

c TwM z S bw
z L

δθ
θ

′′= . = + .′′Γ
 

and  
2( )

( )
v

v
TC m

w
M z
θθ

′. ′Δ =
−

. 

 
The partition of sensible and latent is gotten by noting that all the sensible heat is used in 
balancing radiation in the mixed layer.  
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ρ
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−

=
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⎝ ⎠

∫

∫
 

 
or  

( )mz m e
o

T TS ρ
τ
−

≈ ∫  

 
[Note that we may need a small correction due to entrainment at interface].  
 

The height and jump across the TI  layer is obtained by considering the TI  layer 
as a convective boundary layer but the closure relation involves 'e wθ ′  since moist 
convection mixed the layer. It is held down by the mass flux compensating the deep 
cumulonimbus clouds.  
 

There are now enough relations to determine everything in terms of the specified 
netR . The results are almost totally insensitive to u∗ .  

 
We find by doing the calculation (Sarachik, 1978, 1985) that, for the known solar 

constant, and the observed (radiative equilibrium) temperature of the tropical 
stratosphere, the resulting surface temperature is 27ºC, the evaporation rate is 5.8 mm/sec, 
the trade inversion height is 2km, and the tropopause height is of order 15km. These 
values are close to those of the western Pacific where the heat flux into the ocean is 
certainly small so that this should be the region of the ocean in which the ocean dynamics 
participates least in the sea surface temperature. 
 

The basic result of this section is that the mean state of the tropical atmosphere 
can be simply understood in terms of deep cumulonimbus clouds interacting with a 
boundary layer composed of shallow clouds. Since, as we saw in the previous section, the 



bunching or dispersal of deep cumulonimbus clouds into regions of P>E and P<E 
respectively, changes neither the mass flux between the clouds or the mean temperature: 
this mean state is therefore robust under these various conditions. 
 

5.5. Theories of Thermal Forcing of the Atmosphere 
In this section, we will give three examples of thermal forcing of the atmosphere. 

The first is the zonally averaged Hadley circulation, the second is the Gill model so 
commonly used in models and interpretations of the tropical atmosphere, and the third is 
the linear theory of forcing by an isolated heat source. The two dimensional (zonally 
averaged) Hadley circulation is one of the most basic thermally forced circulations in the 
tropics and the papers by Schneider and Lindzen (1977b) and Schneider (1977) give 
credence to the important role of the Hadley circulation in the general circulation of the 
earth, in particular in the maintenance of the midlatitude jet. [Note that the simple 
thermally forced theory must be completed by the addition of mid-latitude eddies.] The 
simple Gill model has been a standard tool used by both modelers and diagnosticians for 
describing the atmospheric response to thermal forcing in the atmosphere yet it raises 
severe problems of interpretation. We will do the full linear problem of the forcing of the 
tropical atmosphere by an isolated thermal source and use the full solution to decide on 
the applicability of the simplified Gill model. The crucial application of the Gill model is 
determining the surface winds forced by thermal sources determined by SST anomalies. 
In particular, as we saw in Chapter 2, the evolution of ENSO indicates that the surface 
winds are westerly to the west of a warm anomaly and this property of the Gill model has 
been one of the sources of its popularity. A critical evaluation of this property will be 
given in Sec. 5.7.  
 

5.5.1 The Zonally Averaged Hadley Circulation  

The following exposition is based of the work of Schneider and Lindzen (1977b) 
and Schneider (1977). This work changed the paradigm for the role of the Hadley 
circulation in the earth’s general circulation. It shows that the full nonlinear (but two 
dimensional) Hadley cell has dynamics constrained by angular momentum conservation 
producing stronger than observed subtropical jets. The role of the eddies is then to move, 
broaden, and weaken the jet. This contrasts with the earlier observational work of Victor 
Starr and collaborators on the physics of “negative viscosity”—the idea that the eddies 
associated with the atmospheric jets flux angular momentum into the jet to strengthen 
them. The interaction of jets and eddies is currently an area of active research. 
 

The basic idea is that we are looking for steady 2 dimensional motions in the yz  
plane that are independent of x . The circulations is assumed to be driven by cloud 
heating.  
 

( )[ ] x
t x y z xu uu vu wu yv p Fρ β+ + + − = − +  

 
[ ]t x y z yv uv vv wu yu pρ β+ + + − = −  

 
0x y zu v w+ + =  
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z RT

ρ∂
= − = −

∂
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p

dT QwN
dt c

+ =  

 
The term yvT  is shown a posteriori to be small and is neglected. 

 
The total heating is cloudradQ Q Q= +  where 2

cloud cQ M N=   is specified (since we 
are looking for the response to thermal forcing) and taken to be symmetric with respect to 
the equator and the radiative cooling of the atmosphere is taken to be of Rayleigh cooling 
form:  
 

( )e
rad p

T y z TQ c ρ
τ
, −

= ; 

 
where eT  is the radiative equilibrium temperature. 
 

The momentum transport due to clouds is given by a simple parameterization 
introduced by Schneider and Lindzen (1977a) 
 

( ) [ ( ( ))]x
c c

dF M u u z
dz

= − ,  

 
which basically corresponds to the cloud picking up momentum from the surface and 
subsequently detraining it into the ambient atmosphere. The divergence of this transport, 
represents “cumulus friction”. The result of this process is to reduce the upper level flow 
by injecting slower moving surface air directly into the upper troposphere. 
 

The frictional forcing, 
x

x
dF
dz
τ

=  and the eddy friction is taken as ( )x du
dz

τ μ=  

where the eddy viscosityμ  is significant in the surface boundary layer only.  
 

The u  boundary conditions at the top is stress free, 0du
dz

μ = ,  and at the bottom is  

D
du c u
dz

μ = | |v . 

 

The thermal boundary condition at the top 0dT
dz

= , i.e. T const=  (constant 

temperature stratosphere consistent with a stratosphere that is extremely stable and is 
close to radiative equilibrium) and at the bottom 0 ( )T T y=  a specified surface 
temperature taken to be symmetric around the equator.  
 
The Linear Hadley Circulation  
 



The steady, linear u  momentum equation becomes  
 

( )xyv Fβ− =  
 
and we see that, in the linear case, friction is absolutely essential to get a meridional 
circulation. The v momentum equation reduces to geostrophy. 
 

Since the solution is steady, integrating the u momentum equation from the 
surface to the stratosphere gives: 
 

( )0 0 0
top top topx

bot bot bot

d duv dz F dz dz
dz dz

μ ⎞⎛= ⇒ = ⇒ =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

 
and since the stress at the top vanishes the stress at the surface must vanish. Since the 
surface stress is given by the drag formulation, 0u =  so the linear model cannot generate 
zonal surface winds.  
 

We list the result of the calculations:  
 
a) In the absence of cumulus friction and heating, there is no interior meridional 
circulation, only a low level cell (where boundary layer eddy friction is not zero), the 
temperature is almost in radiative equilibrium, and the zonal winds are in thermal wind 
balance with the radiative equilibrium temperature. (Case I-Fig. 5.12).  
 

 
Fig 5.12 Case I. Left: Zonal winds Right: Meridional circulation (From Schneider and 
Lindzen, 1977.) 
 
 
b) With broad imposed heating (symmetric about the equator) but no cumulus friction, 
there can still be no interior meridional circulation but because there is internal heating, 
we get stronger meridional temperature gradient maintained by heating (i.e. the interior is 
raised to temperatures far above radiative equilibrium) and a very strong westerly jet in 
thermal wind balance with the temperatures. (Case III-Fig. 5.13). There is no momentum 
conservation in this linear case so it is pointless to ask where the momentum in this strong 
jet came from. 
 
 



 
Fig 5.13 Case III. (From Schneider and Lindzen, 1977b) Left. Zonally averaged 
meridional temperature distribution Right. Zonal velocity. 
 
 
c) Putting in cumulus friction drives a meridional circulation that has the horizontal scale 
of the forcing. The temperature patterns become flattened within the latitude of the cell’s 
influence and sharpened just at the northern boundary of the cell. (Case IV).  
 

 
 
Fig. 5.14 Case IV Top: The meridional circulation. Bottom left: Meridional distribution 
of temperature. Bottom Right: The zonal wind. (From Schneider and Lindzen, 1977b) 



 
We can see why this is so from the u  momentum equation:  

 
1

c c
du dTyv M M
dz y dy

β
β

− = ∝  

 
by the thermal wind relation so that 
  

2

c

dT y v
dy M

∝  

 
Since the forcing is symmetric, v  is anti-symmetric so v  must go at least as y  near the 
equator. Therefore  
 

3 4

c c

dT y yT
dy M M

∝ ⇒ ∼  

 
which is a very slow y  dependence. The temperature gradient is therefore flattened under 
the influence of the meridional circulation. 
 
d) Using "observed heating" and cumulus friction gives a "reasonable looking" Hadley 
circulation with jets of the right order of magnitude (Case VII).  

 
 



Fig 5.15: Top meridional circulation Bottom left: Temperature field. Bottom right: Zonal 
Winds Case VII (From Schneider and Lindzen, 1977.) 
 

While the linear solution for the thermally driven Hadley circulation in Fig. 5.15 
looks reasonable, remember that linearity has constrained the solution to have no zonal 
surface winds.  
 
The Nonlinear Hadley Circulation 
 

The fully nonlinear u  momentum equation is  
 

( )2 xD u yv F
Dt

β− =  

 
where the two dimensional advective derivative is: 
 

2D d dv w
Dt dy dz

= + . 

 
Since  

2D yy yv v w
y z Dt
∂ ∂

= + =
∂ ∂

, 

 
2 ( )2 1( )

2
xD u y F

Dt
β− = .  

 

The quantity 21ˆ
2

u u yβ= −  is the angular momentum and is conserved on parcels 

of the Hadley circulation if friction can be ignored.  
 
Note that  

ˆ
[ ] absolute vorticityy

u u y f
y

β ζ∂
= − = − + =

∂
,  

 
so when angular momentum is constant on a horizontal branch of the "inviscid" Hadley 
circulation, the absolute vorticity vanishes.  
 

For two dimensional circulations, and 2 dimensional circulations only, there is an 
extremely useful theorem, Hyde’s theorem, that provides a vital constraint on the tropical 
zonal velocity.  
 

Hyde’s theorem: û  can not be maximum or minimum in the interior of a fluid or 
at a stress free upper boundary. This assumes diffusion is down gradient in angular 
momentum. [Any friction that depends only on z  is down gradient in angular 
momentum.]  
 
The extremum must be at the lower boundary. If its a minimum, the atmosphere will 
always deliver angular momentum to the minimum which will speed up the earth 



eventually since u  gets converted to surface stress.  
 
If it is a maximum, angular momentum gets delivered to the atmosphere by the earth. The 
maximum must be zero [EXERCISE; Why?] and only obtains at the surface where 

0u < .  
 

Therefore, the content of Hyde’s theorem is: 
 

ˆ 0 everywhereu ≤ .  
 
We see that on the equator, we cannot have steady westerlies, neither at the surface nor 
aloft. We emphasize that this only holds for two dimensional circulations: for a fully three 
dimensional circulation, stationary or transient eddies can converge westerly momentum 
onto the equator and possibly produce steady westerlies.  
 
 

Figure 5.16: (a) Zonal winds (b) Meridional Streamfunction (units 1013 g/sec)  (c) 
Temperature field  (d) Vertical velocity (units mm/sec) (From Schneider, 1977.) 
 

In the fully nonlinear case, the results are shown in Fig. 5.16. The midlatitude jet 
is much stronger than observed and this is purely due to angular momentum conservation. 
The meridional streamfunction is about the right strength and the interior and the 
boundary layer flows seem separate. There is a weak midlatitude circulation carrying heat 



equatorward, a Ferrell cell, even in the absence of eddies. The surface winds are easterly 
in the tropics and westerly in midlatitudes The meridional temperature gradient in the 
influence zone of the meridional cell is remarkably flat and there is an indication of an 
inverse gradient near the tropopause.  
 

The argument for the flatness of the temperature is different than for the linear 
case. In the linear case it was necessary for (cumulus) friction to enter the dynamics at 
leading order. If with the more complete nonlinear dynamics we assume that the 
northward branch of the circulation aloft is relatively inviscid, then  

21ˆ 0
2

u u yβ≅ , =  

so 
21

2 yu
z Z

β∂
≈

∂
 

 
where Z  is tropopause height. By the thermal wind relation,  
 

2 31
2

y
yuT y

z gZ
β∂

∂
∼ ∼  

 
and this implies 4T y∼  and we recover the flat temperature gradients, but now due to 
angular momentum conservation by the meridional circulation.  
 

The inverse temperature gradient near the tropopause can be understood as 
follows. The parameterization for cumulus friction takes the near surface zonal velocity 
and dumps it into the top of the troposphere. This creates a vertical shear that decreases 
with height so that by the thermal wind relation, the meridional gradient of temperature 
must have the temperature increasing northward.  
 

What determines size of Hadley cell? Call the meridional extent 1y . The heat 
equation is  
 

2 ( )c
e

p

QwN T T
c

ρρ
τ

= − −  

 

Integrating over the horizontal extent of the cell gives 1

0
0

y
wdyρ =∫  

since there can’t be any net vertical mass flux. We see that, since N2 is constant in the 
Hadley cell  
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Now we know, with ( 0)oT T y≡ =   
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Now integrating both sides over z and noting that 1

10 0

Z y

cQ dydz LEy=∫ ∫  since the total 

heat released comes from the latent heat of precipitation which, integrated over the 
Hadley cell, is simply the evaporation (assuming no moisture transport out of the Hadley 
cell, i.e. neglecting eddies). Therefore,  
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or  
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1 210( )

p

gy LE
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We saw that the cumulus clouds mix the troposphere and are responsible for the observed 
lapse rate. The tropopause height can be calculated, as before, to be  
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so  
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gZy Lq
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Since  

2pm cds Lq N
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where 
1/2

eq
NZL
β

⎡ ⎤
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⎣ ⎦

.  

So  
1 4

1 5 eqy L/=  
 
and we see that the meridional extent of the Hadley cell is simply the equatorial radius of 
deformation characteristic of a fluid with stratification 2N  and equivalent depth the depth 
of the troposphere.  



 

5.5.2 The Gill Model  

 
The basic simplifying assumption of the Gill (1980) model is that the heating and 

response is confined to a single vertical mode. Take   
 

ZQ sin
D
π

∝  

 
so the vertical wavelength is 2D and the vertical wavenumber is π/D. If the atmosphere is 
isothermal then  

2

2 2

1
4s sD H H H

π κ
= −  

 
where sH  is the scale height and H is the equivalent depth (we will derive the 
relationship between vertical wavelength and equivalent depth in the next section). If 
instead the atmosphere has a constant 2N , the gravity wave speed c = ND/π so 

/gH c ND π= = . In either case, ~ 1H km  (Gill takes it to be 400m so 60c m sec= / ). 
The linearized equations for the amplitudes of the modes (u,v,p), which are functions of 
(x,y,t) are then  
 

u pyv u
t x

β ε∂ ∂
− = − − ,
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v pyu v
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+ = − − ,
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T
p u v Q p
t x y

ε∂ ∂ ∂
+ + = − − ,

∂ ∂ ∂
 

 
which are the shallow water equations for a single vertical made of equivalent depth H , 

where we have scaled velocities by c , lengths by c
β

 and time by 1
cβ

. ε  is the 

Rayleigh damping in the momentum equations and Tε is Newtonian cooling (thermal 
damping) in the pressure equation. 
 

The vertical structure of the heating and, of the vertical velocity is zsin
D
π ; since 

, wu v
z

∂
∂

∼ vertical structure of the  u  and v  fields is zcos
D
π .  

 
Consider steady forcing Q independent  of t; the equations for the steady response 

are: 
 



pu yv
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ε β ∂
− = − ,

∂
                                              (5.22a) 

 
pv yu
y

ε β ∂
+ = − ,

∂
                                              (5.22b) 

 
u vp Q
x y

ε ∂ ∂
+ + = − ,
∂ ∂

                                            (5.22c) 

 

T
u vw p Q
x y

ε
⎞⎛ ∂ ∂

= − + = + .⎟⎜ ∂ ∂⎝ ⎠
                                   (5.22d) 

 
The forcing here is thermal (i.e. it forces the divergence directly).  Note that these 
equations are formally similar to the shallow water system introduced in Chapter 3, but 
with Rayleigh damping replacing the time dependence.  Since it is a model for the 
atmosphere, here the forcing is thermal, in contrast to the wind stress driving the ocean as 
in Chapter 3 and Chapter 6. 
 

In the example of Gill,  Tε ε≡  and the forcing is chosen to be  
 

21
2( ) ( ) yQ x y F x e−, =                                          (5.23a) 

 
so that it projects only onto the first Rossby and Kelvin mode (see Chapter 6) . The zonal 
dependence is taken to be: 
 

( ) forF x coskx x L= | |<  and =0 for x L| |> ,                            (5.23b) 

where
2

k
L
π

= . 



 
Fig 5.17 Solution of Eqs. 5.22 with forcing given by Eq. 5.23. (a) The contours are 
vertical velocity while the arrows show the velocity field in the lower layer (b)Contours 
show pressure field (everywhere negative) while the arrows are repeated from (a). (i) 
Meridionally integrated stream function –Walker circulation (ii) Meridionally integrated 
surface pressure. (From Gill, 1980.) 
 

For 60 1700eq
cc m sec L km
β

= / = =  and 1 3dayeqT
cβ

= = . .  

 
The solution for 2L =  (i.e. 3400 km) and ε  =.1(i.e. the damping time is 3 days) is shown 
in Fig. 5.17. 
 
We may note the following points  
 
1. The surface winds are westerly to the west of the heat source and easterly to the east. 
The low level winds converge into the location of the heat source.  
 
2. The response to the east of the forcing has the meridional form of a Kelvin mode, 

2 2 0yu p e and v− /, ∝ = , and to the west of the forcing it has the form of a Rossby mode, 
22 2(1 ) yu y e− /−∼ .  

 
3. The zonal extent is the distance the relevant wave will propagate before decaying in 
time 1ε −∼  [in the long wave approximation the phase and group velocities are identical].  

To the east of the heat source centered at x=0 the response is exp[ ]x
c
ε

−  and to the west 



3exp[ ]x
c
ε .  

 
4. At low levels, the convergence into the heating region is all provided by the u  
component of the velocity: the vorticity equation is  
 

yu yp v yQε εβ β β+ − = −  
 
so for small ε   

v yQ≈ , 
 
positive north of the equator, negative to the south, thereby indicating meridional 
divergence. 
 
5. Because of point 3, the damping must be taken large enough to constrain the effects of 
the forcing to a fraction of the earths circumference so  
 

10 000c km
ε
< ,

1 1
1 5

days
ε

⇒ ≤
.

 

 
It is very difficult to see where such strong damping comes from in the free 

atmosphere. Furthermore, the interpretation of the Gill model is that the thermal forcing 
Q  is forcing the low level winds, which seems unlikely in reality. The heating in the Gill 
model extends to the ground which by Eq. 5.22c is the direct cause for low level 
convergence. Yet, as we know, the condensation heating in the real atmosphere does not 
start until the lifting condensation level which is at or above 600m in the tropics so that 
there is no Q  forcing in the planetary boundary layer near the surface. Further, while a 
forcing of a given form (e.g. sin( / )z Dπ ) will tend to excite a response with that form, 
unless the form has the structure of a vertical mode energy will leak away into other 
structures. Now the tropical atmosphere does not have a single vertical mode because it 
doesn’t have any vertical modes: the tropopause in no way acts as a rigid lid that can 
sustain standing modes, as we will seen in Section 5.5.3. This leaves two issues with the 
Gill model: how can upper level heating force surface winds and what is the correct 
vertical structure in an atmosphere that doesn’t support free modes.  
 

The Gill model takes the damping for temperature and momentum to be the same. 
This is the simplest assumption, and a great analytic convenience in the time dependent 
case where it allows the results of the free (wave) solutions to be applied to the forced 
case. However, it is unnecessary for the steady state equations.  Keeping 5.22a,b as before 
and multiplying 5.22c by / Tε ε returns the equations to a form with apparently equal 
damping on the wind and pressure, but the equivalent depth is now ( / )T Hε ε and (as 
originally scaled by Yamagata and Philander,1985) the new equatorial length scale is 

1/2 1/4
T(c/ )  ( / )   β ε ε and the new Kelvin decay scale is 1/2

Tc /( )   εε . When Tε ε= , this 
reduces to the Gill results above. When the thermal damping (Newtonian cooling) is 
reduced both the meridional scale and the zonal damping scale increase, but when the 
momentum damping (Rayleigh) friction is reduced then the meridional scale decreases 
but the zonal damping scale increases. 



 
Realistic values for the damping times range from a few days in the boundary 

layer to perhaps a month in the free atmosphere, so in a realistic model these stretching 
effects are not large. Fig 5.18 shows the modified geopotential and winds in a realization 
of thermal forcing in a stratified atmosphere (as in next section) with Rayleigh and 
Newtonian damping having widely different values. The Newtonian damping dominant 
case is confined to the heating region while the Rayleigh damping dominant case extends 
far poleward meridionally.  

 

 
 
Fig 5.18 Upper Panel: Newtonian damping dominant with 100 times the damping of 
Rayleigh damping Lower Panel: Rayleigh damping dominant with ten times the damping 
of Newtonian damping. Note the difference in scale of meridional axes between the two 
panels. (From Wu et al., 2001.) 
 

The Gill model has been used extensively in interpreting atmospheric responses to 
heat sources. For example, the work of Wallace et al. (1998) in Fig 5.19 show responses 
to ENSO cold tongue anomalies that resemble Fig 5.17. But despite this success, there are 
problems of interpretation when the Gill model is applied to the internal forcing of the 
atmosphere by cumulus heating.  But then what is the correct theory of the forcing of 
surface winds by upper level thermal forcing? And why does the Gill model seem to 
work, at least in the lower layers, as a model for the surface winds? We turn to these 
problems in the next two sections. 
 
 



 
5.19 Regression of (a) rainfall (shaded) and vertically averaged tropospheric temperature 
(b) rainfall (shaded), sea level pressure (contours) and surface winds (arrows) and (c) sea 
surface temperature (shaded) and surface winds (arrows) all on a cold tongue index 
representing temperatures around the equator in the eastern Pacific. (From Wallace et al., 
1998.) 
 

5.5.3 Linear theory of thermal forcing by an isolated heat source on an equatorial 
beta plane 

This section treats the general linear theory of the atmospheric response to an 
isolated thermal forcing. In particular, we will see that, since the atmosphere has no top, 
vertical propagation of energy away from the thermal source is a very general feature of 
thermal forcing near the equator and this distinguishes the problem from the oceanic case. 
Second, we will consider the processes that prevent the vertical propagation of energy 
away from the heat source and which confine the response vertically to the heating 
region. We follow Lindzen (1967) in setting up the problem. 
 

Consider the general set of linear equations for thermally forced motion on a β  
plane in an unbounded atmosphere, i.e. we will not assume w=0 at the top of the 
atmosphere.  
 

For convenience take the atmosphere to be isothermal (nothing important depends 
on this assumption—we could work more generally in log p coordinates). 
 

The basic state is given by  
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The dynamical equations are  
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The heat equation  is 1v pdQ c dT pdv c dT vdp v ρ= + = − ; = /   

and the ideal gas law is 1, , 1p
p v

v p

c Rp pRT R c c
c c

γ κ
γ

= ; = − = = = −   

 
Define the heating rate Q: 
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( 1) dp dQ RT
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ρρ γ γ− = −  

 
Linearizing and using oRT gH= , the heat equation becomes 
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t dz t dz

ρ ργ γ ρ∂ ∂ ⎞⎛+ = + + −⎜ ⎟∂ ∂⎝ ⎠
             (5.24e) 

 
Now look for Fourier components that go as ( )i kx te ω+  and transform to variables  
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The equations become  
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1 2(1 ) ( 1) oi p i gH g w Qω ωγ ρ γ γ ρ /= + − + − .                         (5.25e) 

 
We can express everything in terms of p  from Eqs.5.25a and 5.25b where 
( )of f yβ= + : 
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Using (5.25c) in (5.25e) to eliminate ρ  gives  
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              (5.27) 

 
Eqs. 5.26 and 5.27 express u v,  and w  in terms of p . Now use them in the divergence 
equation 5.27d to get an equation in p u v, , .  
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             (5.28) 

 
Note that if we were looking at a forced problem in the ocean, we would separate 

the problem by solving  
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so that  

forcingvi p gh iku
y
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and Eqs. 5.25a, 5.25b and 5.30 would form a set of shallow water equations using the 
equivalent depths given by the solutions to Eq. 5.29.  
 

The boundary conditions for the problem are gotten by putting 0w =  at 0z =  and 
assuming finiteness or outgoing energy flux as an upper boundary condition.  
 
EXERCISE: From Eqs. 5.27 and 5.26b show that 0w =  implies the boundary condition 
that: 
 

11 0
2

p p
z H

κ
κ

∂ ⎛ ⎞− − =⎜ ⎟∂ ⎝ ⎠
 at 0z = , 

where 11κ
γ

= − . 

In the atmosphere in general, Eq. 5.29 with the above boundary condition has no 
solutions except one that travels with the speed of sound: the so-called Lamb wave with 

RTh H
g

γ γ= =  i.e. with 2
sc gh RTγ= =  or sc RTγ=  the sound wave speed. Except for 

this mode (sometimes called "external"): the atmosphere has no solutions to Eq. 5.29; 
(forgive us for shouting but the result is important and generally widely misunderstood) 
i.e.: 
 

THE ATMOSPHERE HAS NO DISCRETE FREE VERTICAL MODES. 
 

Now that we are calm again, we will mention one possible if arcane pseudo-lid for 
the atmosphere. Although the atmosphere surely has no lid, it does have a rich structure 
of winds in the stratosphere and it is possible that upward propagating waves regard these 
as a lid.  We have in mind the consequence of a “critical layer”, a region where the local 
wind velocity matches the speed of the wave. In such a case the layer may either absorb 
the wave energy, or reflect it. Typically, these layers are absorbing, which means that the 
wave energy does not propagate up far beyond the critical layer. It is, in this sense, a lid, 
but it doesn’t do what is needed for standing modes: reflect the energy downward with 
little loss. As more and more of the wave energy is absorbed the critical layer might get to 
be nonlinear and saturated, and begin to reflect instead of absorb.  Then it would be the 
lid we need. However, it appears that the critical layer just propagates downward as more 
waves are absorbed and never has a chance to become too reflecting. (We thank KK Tung 
for insight into this issue.) 
 



So, unlike the ocean, the atmosphere has no lid and therefore standing vertical 
modes do not occur. We must therefore proceed differently than in the ocean (an ocean 
version of this is given in Philander, 1978it is useful for vertically propagating modes).  
 

Following Lindzen, 1967, we can rewrite eq. (5.28) in terms of v  only.  
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where  
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recalling that ( ) of f y f yβ= = + .  
 

We separate Eq. 5.33 by expanding in eigenfunctions of the horizontal structure 
equation: 
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where the separation parameters , ,k nhω  are determined from the horizontal equation: with 
the boundary conditions that 0v = at the north and south poles, , ;n sy y y=  the , ,k nhω are 
the equivalent depths. Note that they depend on frequency and spatial wavenumbers. The 
problem of solving the linear response to thermal forcing in the atmosphere is then solved 
as follows. 
 

The thermal forcing appearing in Eq. 5.31 is expanded in a set of horizontal 
eigenfunctions of Eq. 5.32:  
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In terms of this forcing, the vertical structure equation  
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                           (5.33) 

 
is solved, using the equivalent depths found solving the horizontal eigenvalue equation 
5.32. The boundary conditions are  
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p p
z H

κ
κ

∂ ⎛ ⎞− − =⎜ ⎟∂ ⎝ ⎠
 at 0z = and outgoing radiation conditions at z = ∞ . 

 
Since the atmosphere has only the (trivial) Lamb mode as a free solution to Eq. 

5.33, or equivalently Eq.5.29, in general the response to Eq.5.33 will be a set of forced 
modes that will either propagate with vertical wave number m , where  
 

2
2

1
4n

m
Hh H
κ

= − ;  

 
if mh  is small and positive, or will be trapped with decay scale m| |  if nh  is negative or 
large and positive ( , , 4k nh Hω κ> ). 
 

It may be surprising that an equivalent depth could be negative but remember that 
this term was introduced because Eq. 5.33 looks like Eq. 5.29. Again we emphasize, there 
is but one free mode in the atmosphere, a sound wave, so that we must solve the forced 
equation 5.33 with eigenvalues given by the horizontal equation 5.32. This contrasts 
sharply with the oceanic case where we expand the forcing in the eigenfunctions of the 
vertical equation (with positive equivalent depths only) and then solve a forced horizontal 
equation for each equivalent depth separately.  
 

We proceed to look at the solutions to the horizontal structure equation 5.32 on (a) 
A midlattitude β  plane of f yβ= +  and (b) an equatorial β  plane f yβ= . 
 
(a) Midlattitude β  plane  
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                            (5.34) 

 
where we have made the usual mid-latitude β plane assumption that  oy fβ � and 

2 2
0 ,f f≈  a constant, then the solutions to Eq, 5.34 are clearly sines and cosines and the 

eigenvalue h  will be determined by the boundary conditions, which we take to be 0Ψ =  
at y d= ± .  
 

The solutions are then 
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For large enough ω , the equivalent depths are positive and the forced response 

propagates vertically. There are negative equivalent depths for small enough ω  (in 
particular 2 2 )ofω <  and a suitable range of k .  
 



This result was first used by Lindzen, 1966, to show that the solar wavenumber 1 
semi-diurnal tide propagated vertically while the diurnal tide was trapped. Since the 
excitation for both was mostly ozone heating in the stratosphere, only the semi-diurnal 
tide reached the ground.  
 
(b) Equatorial β  plane  
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Introduce a length scale L  such that 4
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With boundary conditions 0 at ,N sY YΨ =  the solutions are parabolic cylinder 

functions.  On an infinite equatorial beta plane the boundary conditions are 
0 as ηΨ→ →±∞ and the solutions are Hermite functions (☼ Appendix 2)  
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and the eigenvalues are given by  
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Solving this eigenvalue equation for the equivalent depth gives 
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For long waves in x at low frequency we may neglect  and k
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Although we have skimped on subscripts, it should be remembered that h is really 

a function of k, ω, and n, so that both the y and the η in Eq.5.37 depends on n and 
therefore the horizontal scale changes with n.  
 



The + sign generally doesn’t correspond to solutions of the equations on a sphere 
so  
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independent of k . The vertical wave number is  
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and the vertical group velocity is negative with amplitude   
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Suppose we introduce a damping time τ  into the problem. The distance the forced 

response reaches in time τ  is  
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To fix ideas, let 1
30ω = Ω  (∼  30 day period) then 1
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52 10 2 dayvC m s m−= × / = / ;  

 
thus damping time of something less than a month, a reasonable value for radiative 
damping in the atmosphere, would mask the short wavelengths of the response and 
confine the response to the region of the forcing. This argument would seem to imply that 
the response to thermal forcing could not travel from the bottom of the cloud layer to the 
surface so that thermal forcing due to deep cumulonimbus clouds whose cloud base is 600 
m from the surface could not drive surface winds at the surface. This turns out not to be 
true.  
 

The solution to this conundrum, and others posed by the Lindzen (1967) paper, is 
that the solutions on an equatorial β plane as presented do not form a complete set. There 
are additional solutions to Eq. 5.36 with negative equivalent depth that are part of the 
continuous spectrum of the solution, as pointed out by Wu et al., 1999. 
 

At low frequencies, the negative equivalent depth solutions of Eq.5.36 satisfy 
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where ĥ h=−  is positive. The solutions to Eq. 5.39 are Weber parabolic cylinder 
functions and are needed to form a complete set of horizontal solutions. It is these extra 
negative equivalent depth modes that, when included, allow a wind response at the 
surface and everywhere below the forcing level when Newtonian cooling is the damping 
term and included in the thermal equation 5.25e. For a Newtonian cooling with damping 
time τ the derivation of Eq. 5.33 goes through as before and becomes: 
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For low frequencies, (i.e. periods that are long compared to the damping time), the first 
term in brackets is small and the equation becomes 
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which states that the response decays exponentially in the vertical with an exponential 
decay scale of H/2. When the mass scaling of v by 1/ 2

0ρ introduced at the beginning is 
included, it is seen that the winds are uniform below the forcing. Thermal sources in the 
free atmosphere can force surface winds but only in the presence of Newtonian cooling.  
 

Wu et al (2000b) approached the problem in a manner formally similar to the 
method used for the ocean.  That is, they first solved the free vertical structure equation 
for equivalent depths and vertical eigenmodes: 
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This equation, has, in addition to the discrete Lamb mode, a continuous spectrum of 
eigenmodes (Wu et al., 2000b): 
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where m is any positive real number. This is a profound difference from the ocean case: 
because there is no lid to quantize nm  the spectrum of eigenvalues is continuous, not 
discrete (the discrete Lamb mode excepted). 
 

The major modification arises because, unlike in the idealized Gill model, the 
equivalent depths (and therefore the vertical wavelengths) forced by a heating form a 
spectral continuum, which in the absence of damping would propagate vertically, unlike 
than the single standing mode in the Gill model. For example, for thermal forcings with 



vertical structures shown in Fig. 5.20 (arbitrarily labeled CP and MC), located at 93˚E 
and having a Gaussian structure of about 20° meridionally, the decomposition in the 
vertical can be done in terms of the complete spectrum of vertical modes. 

 
 

 
 
Fig 5.20 Heating profiles referred to in the text (Redrawn after Wu et al., 2000b) 
 
 

 
Fig. 5.21  Spectral density of the projections of the heating profiles shown in Fig. 5.20. 
(From Wu et al., 2000b) 
 

The spectral density of the projections of the forcings in Fig 5.20 are shown in 
Fig. 5.21 and it is seen that although the spectrum is continuous, there are vertical 
wavelengths that are favored. We would therefore expect the forcing to be dominated by 
wavelengths of 13km and 25km in the CP case and 14km in the MC case. (Note that these 
scales are imposed by the forcing and not by the structure of the atmosphere as would 
have been true if there were free modes.) For damping parameters taken equal in 
momentum and heat, so that the horizontal structure should look like the classical Gill 
model of Fig. 5.17 if a single vertical mode of about 15km were involved, we can plot the 
actual three dimensional structure: The MC and CP responses are shown in Figs. 5.22 and 
5.23. 
 



 
 
Fig 5.22 Zonal velocities at different locations for the MC case. (a) At 53.4°E (to the west 
of the heating), (b) at 132°E (to the east of the heating), and (c) at the equator. The 
contour interval is 0.5 m s-1. Westerlies are represented by the solid lines and easterlies 
are represented by dashed lines. (From Wu et al., 2000b.) 
 
 

 
Fig. 5.23 Zonal velocities at different locations for the CP case. (a) At 53.4°E (to the west 
of the heating), (b) at 132°E (to the east of the heating), and (c) at the equator. The 
contour interval is 0.3 m s-1. Westerlies are represented by the solid lines and easterlies 
are represented by dashed lines. (From Wu et al., 2000b).  



 
The horizontal plan view of the velocity field looks very much like the Gill 

results:  

 

 

 
Fig 5.24 Upper: The horizontal velocities at (b) 810 hPa for the CP case. Lower: The 
horizontal velocities at (b) 560 hPa for the MC case. (From Wu et al., 2000b) 
 

While the velocity field looks Gill-like for an individual level, the pattern is not 
identical for all levels unlike the single mode Gill model. Further, the zero line of the 
zonal velocities does not coincide in the vertical with the level of maximum heating as it 
does for the Gill model. The Newtonian damping and the Rayleigh damping are of equal 
magnitude in this case. The CP case generates surface winds because it starts nearer to the 
ground. The MC case does not (Compare Figures 5.22 and 5.23). 
 

 



 
Fig. 5.25 Vertical profiles of zonal velocity. (a) at the equator, Newtonian cooling alone. 
(b) at 5.4°N, Newtonian cooling alone. (c) at the equator, Rayleigh friction alone. (d) at 
5.4°N, Rayleigh friction alone. Solid lines are at 53.4°E, dashed lines are at 92.4°E, 
dotted lines are at 132.2°E. The thermal forcing is a Gaussian pattern centered at (93°E, 
0°) with a longitudinal scale of 20° and a meridional scale of 11°.  In the vertical it is a 
half sine wave extending from 840hPa to 160hPa.  For more details see Wu et al (2000b). 

 
A conclusion that emerges forcefully from the work of Wu et al (2000b) is that 

some thermal damping mechanism appears to be essential if thermal forcing in the free 
troposphere is to generate low level winds. In contrast, Rayleigh friction alone confines 
the wind response to the vertical extent of the forcing. This difference is evident in the 
wind profiles in Figure 5.25. Strong radiative damping tends to eliminate temperature 
perturbations below the forced region, so the pressure changes at the bottom of the 
forcing region extend to the surface, creating a vertically uniform momentum forcing and 
hence a vertically uniform wind change. 

  
Wu et al (2000b) also found that the thermally forced convergence of moisture is 

not sufficient to account for the assumed strength of the thermal sources. It must be some 
other mechanisms that produces the convergence to maintain the precipitation. We turn to 
the Lindzen-Nigam boundary layer model.  

 

5.6 The Processes that Anchor Regions of Persistent Precipitation to 
SST 

We saw in Chapter 2 that the regions of persistent precipitation occur over the 
warmest water and in Eq. 5.25 we saw that the Gill equations could be transformed into a 
form that resembled boundary layer equations forced by SST anomalies In order to see 
why this should be true, we present a simplified version of arguments originally given by 
Lindzen and Nigam, 1987; Neelin, 1989; and Battisti, Sarachik and Hirst, 1999. The basic 
idea is that warm (cold) SST hydrostatically induces low (high) pressure over the SST 
perturbations and the pressure variations subsequently induces low level convergence 
(divergence). Low level convergence of moisture then produces precipitation and the 
regions of persistent precipitation above the warm SST then drives circulations in a 
manner described in Sec. 5.5.3. 
 

We consider the low level flow below a well mixed atmospheric boundary layer 
extending to an undisturbed height bH of about 2 or 3 kilometers—we can think of this 
boundary layer as extending to the trade inversion. We define the vertically density 



averaged horizontal velocity U : 
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H

ρ
ρ

= ∫U u ,  

 
where 0ρ is the mean density in the layer.  
 

This vertically averaged horizontal velocity (U,V) satisfies a linearized equation 
similar to Eqs. 522a, b: 
 

xU yV Pε β− =− ,                                             (5.41a) 
and  

yV yU Pε β+ = −                                               (5.41b) 
where 
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is the vertically mass averaged pressure gradient and ε is a drag coefficient on the 
horizontal wind. Pressure perturbations are hydrostatic and due to two distinct sources: 
 
(i) a mean perturbation to the boundary layer density, 'ρ , which means that 

' 1' '( ) ' ( ) ' '
2b b

dp g p z g H z p gH
dz

ρ ρ ρ= − ⇒ = − − ⇒ =   

where 'p  is the average perturbation pressure in the layer; 
 
(ii) a change h’ in the boundary layer height, which means a pressure change throughout 
the layer of 0',  where  and a aghρ ρ ρ ρ ρΔ Δ = − is the density just above the boundary 
layer. 
 

Hence, the total layer averaged pressure perturbation is 
 

0 0

1 ' '.
2 bP gH g hρ ρ

ρ ρ
Δ

= +                                              (5.42) 

 
where the first term is due to changes of density within the boundary layer and the second 
is due to changes of the height of the boundary layer.  
 

The changes of density are approximately given by  
 

0 0 0 0

' ' ;   ρ θ ρ θ
ρ θ ρ θ

Δ Δ
= − = − , 

 
where θΔ is the potential temperature jump between the boundary layer and the free 
atmosphere immediately above. It is here assumed that the boundary layer sees variations 
of SST which then extend throughout the layer.  
 



If we now assume that perturbations in the boundary layer height are due to 
changes in total convergence within the boundary layer, layer (i.e. we assume changes in 
entrainment rate may be neglected), then  
 

'T bh Hε =− ∇ Ui                                             (5.43) 
 
where Tε is the boundary layer relaxation time.  
 

Combining Eqs. 5.43 and 5.44 gives  
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Note that Eqs. 5.41 and 5.43 have the form of the one and a half layer model of Sec. 
3.5.3, but with the time dependence replaced by a drag term to yield steady solutions. The 
“equivalent depth’ here is 
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and the system is driven by a thermal forcing term proportional to the potential 
temperature perturbation, 'θ . Since 'θ is assumed constant throughout the well mixed 
boundary layer, this directly connects the sea surface temperature perturbations to the 
mean convergence in the lower layer. Since the potential temperature perturbation is 
assumed constant throughout the well mixed boundary layer, this directly connects the 
surface temperature perturbations to the mean convergence in the lower layer. We note 
that Eqs. 5.42 and 5.45 have the precise form of the Gill model (See section 5.5.2) with 
forcing proportional to the temperature perturbation.  
 

The original work by Lindzen and Nigam showed that the theory correctly gave 
the low level pressure perturbations as a function of SST perturbations but only gave a 
realistic induced low level convergence given by Eq. 5.44 when the relaxation coefficient 

Tε  was very large, implying a very rapid relaxation of the boundary layer(of the order 
ofminutes). However, Lindzen and Nigam mistakenly omitted the term / oθ θΔ  in Eq. 
5.44; since it is 20(10 ),−  including it allows to be Tε  two  orders of magnitude larger - 
something of order of a day, not a few minutes, which is a more plausible boundary layer 
relaxation time. 
 

5.7 Surface Winds for Simple Atmospheric Models 
We have noted that Wu et al. found that upper level forcing can force surface 

winds but cannot force enough convergence to maintain upper level heat sources. The 
convergence must be maintained by boundary layer processes. If we are to get the surface 
winds right, both processes must be present. We have seen that both can be treated by the 
Gill equations, although this admits only the simplest vertical structure for momentum 
and thermal damping. One cannot even take values in the boundary layer that differ from 



those in the free atmosphere. 

 
Fig 5.26 Upper:The surface wind field forced by both boundary layer SST variations and 
upper level heating Middle: the surface wind field forced by upper level heating only 
Lower: The surface wind field forced by boundary layer SST variations only. (From 
Chiang et al., 2001.) 
 

Chiang et al., 2001 investigated whether the combination of upper level heating 
and SST induced boundary layer convergence in a linear model could indeed simulate 
observed surface wind fields. (The heating was inferred from precipitation data.) The full 
forcing (both boundary layer and elevated heat source) gave the results in Fig 5.26 
(upper) where the contours are the SST anomalies. This compares favorably with the 
observational analysis in Fig. 5.19. The easterly anomalies to the east of the heating 
(which bears the same relationship to the SST as Fig. 5.19) are much reduced primarily 
by including the Andean topography which tends to reflect and cancel the Kelvin mode.  
 

They also separated the upper level heating (loosely, the “Gill mechanism”) from 
the boundary layer SST forcing (the “Lindzen-Nigam” mechanism). The elevated thermal 
forcing by itself gave the results in Fig. 5.25 middle while the boundary layer SST forcing 
alone gave Fig 5.25 lower. They conclude that it is upper level heating that drives the 
surface zonal winds, which are the stronger component of the wind field, but that the 
meridional component is largely attributable to the SST boundary forcing. The latter is 
the primary contributor to surface layer convergence, so this work again leads to the 
conclusion that it is the SST influence that creates local moisture convergence to drive 



convective heating.  The upper level heating does produce convergence in some places 
such as the region of the South Pacific Convergence Zone (SPCZ), but in the eastern 
tropical Pacific the boundary layer effect is dominant.  As with Wu et al, Chiang et al 
found that the surface influence of upper level thermal forcing is very sensitive to the 
vertical distribution of the heating.  Observations show that one vertical heating profile 
does not account for all tropical heating (or even all tropical Pacific heating), and since 
the model does not allow for this it may be underestimating the impact of upper level 
thermal forcing on wind convergence in some regions. 
 

Chiang et al confirm the need to have strong non-adiabatic effects in order for 
upper level heating to influence the surface, but depart from the simple uniform 
Newtonian cooling used by Wu et al  and use a very strong damping in the boundary 
layer of up to 1/(.5 days).  What justifies such a large value when the radiative relaxation 
time is known to be order of a week or more? They argue that it is a consequence not of 
radiative relaxation but of turbulent mixing in the boundary layer. 
 

Why should the Newtonian cooling term be so large (damping time of order of a 
day) when we might expect the radiative relaxation rate to be small (order of two weeks)? 
The temperature changes in the boundary layer by sensible heating is given by: 
 

( )sa
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where the sensible heating S is given by its drag coefficient parameterization, with aT  
some boundary layer temperature, and H the boundary layer height. Clearly the effective 

damping rate is sc

H

u . Taking H of order 500m, sc of order 10-3 and velocity of order 

5m/sec gives an effective damping of 1/day or a damping time of 1 day. It might be said 
that the investigations we have recounted here of how tropospheric thermal forcing 
influences the surface layer flow have led us to believe that the remaining uncertainties 
are largely tied up in issues of boundary layer physics.  For example, we have yet to 
examine the possible impact of entrainment through the inversion layer of free 
atmosphere momentum.  
 

At a minimum we can conclude that the location of the thermal sources is 
determined by convergences given by SST gradients within the boundary layer by the by 
the Lindzen-Nigam mechanism --the upper level thermal sources cannot force enough 
convergence to do this themselves. (It should be noted that this comment is scale 
dependent--if the horizontal scale of the thermal source is small enough then it can---
individual clouds or cloud clusters can force their own convergence.) This eliminates an 
entire class of mechanisms, the CISK mechanisms, that have been on the table for years. 
Since both the boundary layer convergence and the upper level forcing are given by Gill-
like patterns, it makes much sense that a simplified atmospheric model might assume a 
Gill form for the surface winds (this will be done in Sec. 5.7). A more complex model, of 
course, must obtain the Gill form as a consequence of its internal dynamics. We might 
note in conclusion that these considerations hold for deep convection and do not 
necessarily hold for shallow precipitating convection (Wu, 2003) which we have assumed 
never occurs. The remainder of this section will, on the basis of what has been learned in 
the previous two sections, deal with a reasonable parameterization of surface winds for 



use in simple models. 
 

In applying the previous considerations to the type of intermediate model we will 
introduce in Chapter 7, in particular the Zebiak-Cane model, we have to adapt the Gill 
model, which is used for both surface winds forced by upper level thermal forcing and by 
surface temperature gradients in the boundary layer. The atmospheric model in this 
coupled model assumes the climatology is specified and only the anomalies are 
calculated. Two modifications, both introduced by Zebiak, are needed before the 
atmospheric model can be used to determine the surface winds.  
 

The first (Zebiak, 1982), is to allow for arbitrary distributions of surface 
temperature anomalies. First Fourier transform in x so that each Fourier component is 
forced by the Fourier component of the heating, solve for each Fourier component 
separately, and then re-synthesize the field so that the low level winds for arbitrary 
distributions of heating could be obtained.  In this first model Zebiak took Q T∝  so the 
model he was solving was more like the Lindzen-Nigam equations for the boundary layer 
than a model for upper level heating.  

 
The second modification (Zebiak, 1986) was to consistently calculate the anomaly 

of convergence in response to SST anomalies.  
 

For an SST anomaly, first calculate the anomaly of evaporation in terms of the 
SST anomaly 'T  which then acts as a "seed" heating to the atmosphere:  
 

( ')exp[( 30 ) /16.7 ]sQ T T C Cα= − ° °  
 
where α is a constant. The total heating, n

sQ Q+  is used to drive the Gill equations and 
calculate a new anomalous heating which at the n’th step has the form  
 

[ ( ) ( )]n nQ M c c M cβ= + −                                       (5.45) 
where  

( ) if 0M a a a= >  and 0 if 0a= ≤ . 
 

0 0,  Q β= is a constant, and nc  is the anomalous convergence heating while c  is the 
climatological convergence. Normally, this iteration process continues until the heating 
converges.  Recall that the atmosphere equations are steady-state.  Advancing to a new 
time means changing the forcing boundary conditions '( , ).T x y  
 

( )nM c c+  is proportional to the total precipitation (hence must be positive) and 
( )M c  is the climatological precipitation (which is also positive). The anomaly can be 

positive or negative of course.  
 

The form of Eq. 5.46 introduces an interesting non-linearity. If the anomalous 
divergence nc  is so large that the first term becomes zero, then the anomalous heating is 
simply the negative of the climatological heating. If is even larger, the anomaly is still the 
negative of the climatological heating and no more: there can be a negative rainfall 
anomaly, but there cannot be negative rainfall. 
 



Fig. 5.27 (a) Observed SST anomaly in composite warm phase of ENSO for December of 
year (0) (see Chapter 2). (b) Observed surface wind field in composite (c) Model surface 
winds with no feedbacks (d) Model surface winds with feedbacks (e) Observed 
divergence in composite  (f) Model divergence without feedback (g) Model divergence 
with feedbacks (From Zebiak, 1986.). 
 

Fig. 5.27 shows a comparison of the modeled low level (i.e. surface) wind fields 
and surface convergence for two characteristic months in the “composite” El Niño. The 
no feedback case is where the iteration given by Eq. 5.45 is not performed. The model of 
the atmospheric surface winds shown in Fig.5.27 is the one used in the Zebiak-Cane 
coupled atmosphere-ocean model to be treated in the next Chapter. 
 

We have come, by a very circuitous route, to a model for surface winds, which is 
much like a modified Gill model.  



6. Ocean Processes 
This chapter deals with the ocean processes needed to understand the interaction 

of the ocean with the atmosphere in the tropics. Since the interaction between the 
atmosphere and the ocean occurs entirely at the surface, through the interchange of heat 
and momentum fluxes, the key quantity the ocean provides is the Sea Surface 
Temperature (SST). The chapter opens with a discussion of the upper ocean processes 
that change SST and rapidly focuses in on the effects of upwelling on the upper ocean 
stratification, as indexed by the depth of the tropical thermocline. Upwelling is easily 
calculated from frictional processes near the surface but the change of the depth of the 
thermocline is a subtle process that responds mostly to wind stresses at the surface.  
 

The time dependent response of the thermocline to wind stresses is treated in a 
number of simplified contexts. As an introductory example, the non-divergent 
(barotropic) case is worked out in some detail. The steady interior solution in this case is 
the Sverdrup solution where the curl of the wind stress balances the meridional mass 
transport. How the Sverdrup relation is set up in a time-dependent manner is 
demonstrated and the role of both viscous and inviscid western boundary layers in 
balancing the vorticity constantly put in by the curl of the wind stress is considered. The 
signaling properties (carried by signal fronts having properties of waves) that tell parts of 
the basin whether forcing is either present or absent is emphasized, and the common 
misunderstanding of the sense in which waves are present is discussed in some detail. 
This barotropic example has all the major features, albeit in a simplified context, that 
characterizes equatorial adjustment of the thermocline to surface forcing. 
 

Using this barotropic example as a conceptual model of adjustment, we 
successively proceed to introduce the complications of the mid-latitude beta plane and the 
equatorial beta plane. We introduce the basic simplifications of wind stresses that are 
spatially constant but limited in zonal extent in a basin laterally bounded by meridians. 
The signal fronts that carry the information that the forcing is limited in spatial extent 
have many of the properties of waves on an equatorial beta plane. If the forcing were 
infinite in extent and impulsively applied, the low frequency response would be resonant 
at zero frequency thereby growing linearly with time. Signal fronts, traveling with the 
dispersion properties and meridional structure of equatorial waves, deliver the message 
that the forcing is limited in extent and the linear time dependence is modified behind 
these signal fronts.  
 

The presence of meridional boundaries causes reflections of these signal fronts: on 
an equatorial beta plane western boundaries concentrate the signals into an equatorially 
confined Kelvin signal and eastern boundaries spread the signal meridionally as a series 
of Rossby signals. Adjustment to an suddenly applied forcing therefore proceeds from the 
equator outward to higher latitudes: the equatorial region is adjusted basically upon the 
passage of a single Kelvin and low order Rossby signal while progressively higher 
latitudes adjust more slowly by similar processes.  
 

The details of how to calculate adjustment are given in some detail: first the 
expansion of the forcing in parabolic cylinder functions, next the steady solution to which 
the solution adjusts, next the unbounded response, next the signals that indicate the 
forcing region is limited, and finally the reflections of signals at the boundaries. The 



adjustment to constant winds applied suddenly in a basin is limned out in some detail.  
 

Finally, since ENSO has aspects that are event-like and aspects that are quasi-
periodic in time (with periods of 3 to 7 years), the critical properties of periodically forced 
thermocline motions are outlined and the essential differences between thermocline 
adjustment and periodically forced thermocline motions are explained.  
 

6.1 The Processes that Change SST 
We will take the upper ocean to be well mixed at all times, i.e. it will be assumed 

that there will always be a mixed layer of depth h at the top of the ocean so that the 
temperature mT  of the well mixed layer is the sea surface temperature (SST). The heat 
budget integrated over the mixed layer is: 
 

[ ]( )p m s e pc u v hT Q w c T
t x y
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+ + = − Δ
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                                   (6.1) 

 
where u and v are horizontal velocities averaged over the mixed layer depth h, sQ  is the 
heat flux into the surface of the ocean at the top of the mixed layer, TΔ is the 
discontinuity at the bottom of the mixed layer (as described in Chapter 4) and ew is the 
entrainment velocity at the bottom of the mixed layer: 
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.                                                          (6.2) 

 
As described in Chapter 4, the entrainment velocity is the volume flux crossing the 
(possibly moving) interface at the bottom of the mixed layer per unit time and is defined 
only when it is positive. The heat flux at the ocean surface is given by : 
 

s netQ R LE S= + +                                                    (6.3) 
 
where netR  is the net radiative flux at the ocean surface, LE is the latent heat flux due to 
evaporation E into the atmosphere at the ocean surface, and S is the sensible heat flux 
from the ocean surface into the atmosphere (we, as before, define all heat fluxes positive 
upward). An interpretation of Eq. 6.3 is that the heat flux into the ocean is the amount of 
net (downward) radiation that is left unbalanced by the sum of the latent heat of 
evaporation of water and the sensible heating. 
 

The heat flux at the bottom of the mixed layer arises only because cooler water 
enters the mixed layer from below. The effect of the rest of the ocean below the mixed 
layer is seen in the heat budget mainly in the term m subT T TΔ = −  where subT  is the 
temperature of the ocean just below the mixed layer. As we will see, subT depends 
primarily on where the thermocline is: subT  is larger when the thermocline is closer to the 
bottom of the mixed layer (i.e. shallower) and smaller when the thermocline is farther 
away (i.e. deeper). The location of the thermocline relative to the bottom of the mixed 
layer is therefore a crucial part of the ocean’s role in changing SST. The thermocline 



changes on the time scales of interest mostly in response to tropical winds (there are 
longer term effects ocean effects involving the slower, deeper parts of the ocean involving 
the thermohaline circulation that are outside the scope of this book). The process of 
thermocline response to the winds is called adjustment and is the major topic of the rest of 
this chapter. 
 

6.2 The Barotropic Adjustment Problem 
We first will use a simple barotropic analog to introduce the problem of equatorial 

adjustment. The problem has many of the elements of the equatorial problem as well as 
being important in its own right.  
 

We consider the adjustment of non-divergent motions to the imposition of winds 
stresses on a mid-latitude β  plane: i.e. 0f f yβ= + . In the spirit of the mid-latitude β  

plane, f is taken as a constant 0f f= unless differentiated, df
dy

β= .  

We will start with the forced non-divergent shallow water equations: 
 

t xu fv p F ru− =− + −                                             (6.4a) 
 

t yv fu p G ru+ =− + −                                            (6.4b) 
 

0x yu v+ =                                                          (6.4c) 
 
where F and G are the horizontal components of the wind stress and r is a Rayleigh drag 
coefficient. Because the divergence is taken to be zero, we can define a stream function 
ψ  such that: 
 

,y xu vψ ψ=− = . 
 
In terms of the streamfunction the vorticity is: 
 

2
x y xx yyv uζ ψ ψ ψ= − = + = ∇ , 

 
so that the vorticity equation becomes: 
 

2 2
t x C rψ βψ ψ∇ + = − ∇ ,                                           (6.5) 

 
where x yC G F= −  is the curl of the wind stress. Eq. 6.5 says that an imposed wind stress 
curl C can increase the local vorticity, can move the parcel meridionally in the gradient of 
planetary vorticity β , or can dissipate the local vorticity.  
 

6.2.1 Free Planetary Waves 

 



We can construct any forced solutions in terms of the solutions to the free 
frictionless equation:  
 

2 0t xψ βψ∇ + =                                                    (6.6) 
 

which has plane wave solutions of the form 
 

0 exp[ ( )]i kx my tψ ψ ω= + − , 
 
with 
 

2 2

k
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βω =−
+

.                                                (6.7) 

 
Eq. 6.7 is the dispersion formula for inviscid divergenceless planetary waves on a 

midlatitude β -plane (Rossby waves) and is plotted in Fig. 6.1. Note that we choose m to 
have some specified north-south dimension: for example, in the Atlantic, we can choose a 
scale characteristic of the transition from easterlies in the subtropics to westerlies in the 

mid-latitudes so that  2

NS

m
L
π

=  where NSL is of order 1500 km.  

 
Fig 6.1. The dispersion relation Eq. 6.13. Omega (ω ) in units of β , and m=1 
 

The zonal phase velocity of these waves is: 
 

2 2c
k k m
ω β−

= =
+

                                                  (6.8) 

 
which, since it is the slope of the line from the origin to points on the curve in Fig. 6.1, is 
westward with a value of 2/ mβ− for 0k =  and decreases monotonically to zero as 
k →−∞ . The zonal group velocity is: 
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                                              (6.9) 

 
and is the slope of the curve at each point on the curve of Fig. 6.1.  For long waves (i.e. 
near k=0), the waves are nearly nondispersive and  



 

2gc c
m
β

= = − . 

 
For short waves (i.e. k →−∞ ), the phase velocity is small and westward while the group 
velocity is small and eastward: 
 

2c
k
β

=−  and 2gc
k
β

=+ . 

 
We turn now to the problem of the forced solutions to Eq. 6.5 in the presence of 

boundaries at the east and west, roughly representing the problem of the barotropic 
solution to the wind forced ocean response in an bounded basin. (A totally bounded basin 
would require consideration of possible boundary layers at the northern and southern 
boundaries, as in, for example, Cane (1976).  We ignore this complication here.) 
 
 

6.2.2 The Steady Response 

We take boundaries at 0x= and Ex X=  with boundary conditions 0u =  at 
0, Ex X= . Since yu ψ=− , the boundary condition becomes 0ψ = at 0, Ex X= . 

 
The steady inviscid solution to Eq. 6.5 is simply 

 
x v Cβψ β= =                                                    (6.10) 

 
which simply says that, in order to satisfy the vorticity equation, the vorticity put in by the 
wind stress curl C induces a meridional velocity that changes vorticity by moving in the 
gradient of planetary vorticity β . Eq. 6.10 representing the interior flow away from 
boundaries is called the Sverdrup relation. 
 

The solution valid in the interior, Eq. 6.10, does not satisfy the boundary 
conditions. But since Eq. 6.10 is first order in x, it can by itself satisfy only a single 
boundary condition. To see this, choose the wind stress curl C to be independent of x. 
Then the interior solution is 
 

int
1 Cx constψ
β

= +  

 
and the constant can be chosen to satisfy int 0ψ =  either at 0x=  or Ex X= . To see which 
of the boundary conditions is to be chosen, we have to understand how the other 
boundary condition can be satisfied.  
 

The total interior meridional mass flux is: 
 

0

EX

E
Cv dx X
β

=∫ , 



 
and the only way this interior mass flux can be returned is by a frictional boundary layer 
at the east or at the west. The boundary layer equation, i.e the equation for the term that 
must be added to intψ in order to satisfy the boundary condition 0ψ =  is a reduced version 
of  Eq. 6.5: 
 

x xxrβψ ψ=− .                                                   (6.11) 
 
We drop the term yyψ because, in the sprit of boundary layers, we anticipate that the zonal 
scale in the boundary layer at the east or the west will be much smaller than the 
meridional scale—this should be checked a postiori. Eq. 6.11 has solutions proportional 

to 
0

exp[ ]x
l

− where 0
rl
β

=  is the boundary layer width which must be small compared to 

XE. Since the boundary layer decays eastward, we must choose the boundary layer at the 
western boundary. We therefore impose int 0ψ =  at the eastern boundary XE so that the 
interior solution becomes: 
 

int ( )E
C x Xψ
β

= −   

 
and adding the boundary layer solution to the interior solution to satisfy 0ψ =  at 0x=  
yields the final solution: 
 

0

( ) exp[ ]E
E

CXC xx X
l

ψ
β β

= − + − .                                    (6.12) 

 
The meridional velocity becomes: 

 

0 0

exp[ ]E
x

CXC xv
l l

ψ
β β

= = − − .                                       (6.13) 

 
The first term is the interior flow and the second, in the opposite direction and of order 

0EX l larger, is the boundary layer flow along the western boundary of the ocean.  
 
EXERCISE: Show that the total meridional mass flux integrated across the basin is zero, 
i.e. that the western boundary layer returns all the interior mass flux. 
 

Could we have told in advance (i.e. without solving the equations) on which side 
of the ocean basin the boundary layer flow would be?  There are two distinct ways we 
could have known, both of them illuminating. 
 

The first is to note that vorticity of the correct sign can only be dissipated on the 
western boundary.  If we add vorticity C per unit time by the wind stress curl, this 
vorticity input must be dissipated at this same rate if the circulation is to be steady. Since 
the dissipation in the ocean interior is negligibly small in our solution, all the dissipation 
must take place in the boundary layer. For definiteness, take C negative, or anticyclonic 
(as in the midlatitude Atlantic with easterlies in the subtropics and westerlies in the 



midlatitudes). Then the interior meridional flow will be negative (Eq. 6.10) so the 
boundary flow must be positive. The possible configurations for the meridional velocity 
are given in Fig. 6.2. 

 
Fig. 6.2 Schematic of possible boundary layer meridional velocities at the eastern and 
western boundaries of the basin.  
 

The rate of vorticity dissipation is rζ  and must also be negative (anticyclonic) 
since the input rate C is negative; thus the boundary layer vorticity must be negative. 
Clearly from Fig. 6.2 this can only occur if the boundary layer occurs at the western 
boundary.  
 

The second way to tell which side of the ocean the boundary layer has to be on is 
due to a nifty argument given by Pedlosky (1965) that makes essential use of the 
dispersion relation Eq. 6.7 (diagrammed in Fig. 6.1).  In the ocean interior the large scale, 
low frequency (note that steady is zero frequency and therefore certainly low frequency) 
wind forcing excites long waves. Since these have westward group velocity, they travel 
westward to the western boundary where they are reflected as short waves with eastward 
group velocity. The distance the short waves travel in one dissipation time 1r−  is 

2
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β
= which by definition is the boundary layer width 0l . The short waves are 

therefore of size 
0

1k
l

∼  and 
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Pedlosky also noted that the same argument can be used to estimate the width of 

an inertial boundary layer. If the eastward propagating short waves are, instead of being 

dissipated, are trapped by a westward zonal velocity of magnitude U , then 2gc U
k
β

= = , 

so that 
U

l
β

=  which is the inertial boundary layer width.  

 
Finally let us close this subsection on steady responses by asking whether or not a 

steady (linear) solution could exist in the absence of friction. A steady interior solution to 
Eq. 6.5 could exist if in the boundary layer,  
 

2 B B
t xψ βψ∇ =− .                                                (6.14) 

x=0 x=XE 



 
Again neglecting the yyψ  term, the approximate solution to Eq. 6.14 is  
 

int
0

( ) (2 )B y J xtψψ β
β

=− ,                                         (6.15) 

 
which satisfies the condition that  int 0 at 0.B xψ ψ ψ= + = =  0J  is a Bessel function of 
zero order. The Bessel function 0( )J x has a maximum at zero argument and decreases 
uniformly to its zero at 2.2x =  wiggles with decreasing amplitude after that. Therefore 

the solution Eq. 6.15 has a constantly thinning boundary layer of width 
2(1.1)x

tβ
∼ . The 

thinning boundary layer corresponds to increasing meridional velocity and to increasing 
vorticity in the boundary layer. If the thinning were to be stopped by friction with time 

scale 1t
r

∼ , so that, from Eq. 6.15, 1x
r
β ∼  and rx

β
≈ , as obtained before for the 

frictional boundary layer width. The thinning boundary layer has constantly increasing 
vorticity (rather than dissipating the vorticity) at a rate that just balances the vorticity put 
in by the wind stress curl. 
 
 

6.2.3 Adjustment to the Steady Response 

Let us consider how the steady Sverdrup solution in the interior, int ( )E
C x Xψ
β

= − , 

is approached if the wind stress curl were suddenly turned on. We consider this inviscid 
adjustment by looking at the solutions to: 
 

2 ( )t x CH tψ βψ∇ + =                                             (6.16) 
 
where the Heaviside function ( ) 0H t = unless 0t ≥  whereupon it has a value of unity. If 
we take the wind stress curl sin( )C my=  to be independent of x across the basin, then 
there can be two long term solutions to Eq. 6.16 corresponding to each of the first two 
terms in Eq. 6.16 balancing the last: 
 

2

C t
m

ψ =− ,                                               (6.17a) 

or 
 

x Cβψ = .                                                  (6.17b) 
 

The first solution, Eq. 6.17a, corresponds to forcing on resonance (i.e. at the origin 
of Fig. 6.1) resulting in secular growth. The second is the steady Sverdrup relation. To see 
how they are related, we note that for C independent of x, Eq. 6.16 has the form of a 
simple wave equation: 
 



2 ( )t xm CH tψ βψ− + = , 
 

which admits solutions with wave fronts moving westward with velocity 2

x
t m

β
=− . (This 

is only an approximation since there is a contribution to the wave front from the xxtψ term 
in Eq. 6.20. The actual solution is the integral of an Airy function which as the wavefront 
evolves becomes more and more like a square wavefront—the full solution is given in 
Cane and Sarachik (1976)). 
 

Four examples will given to fix ideas. The first example is wind stress curl forcing 
(of wave number one and arbitrarily of unit amplitude) independent of x except that the 
forcing is everywhere to the east of 0x=  on an unbounded plane: 
 

2 ( ) ( )t xm H x H tψ βψ− + =                                        (6.18) 
 
with solution: 
 

2 2

1 1( ) ( ) ( )xH x x t H x t
m m
β βψ

β β
= − + + ,                          (6.19) 

 
which is illustrated by Fig. 6.3. 
 
 

 
 
Fig .6.3 Sketch of the response Eq. 6.19 of the barotropic stream function to a uniform 
wind stress curl forcing imposed at t=0, confined to the right half plane, eq. 6.18. 
 

The nature of the solution can be described as follows: To the east of 0x= , there is 
always secular growth; since all signals propagate westward they all originate in the 
region of forcing and no signal can ever arrive to indicate the absence of forcing. At a 
point to the west of 0x= , no response exists until a signal reaches that point. When the 

x

ψ

2x t
m
β

=−

2

t
m

ψ =−  

2

1 ( )x
m
βψ

β
=− +  



signal arrives, the streamfunction begins to grow. The signal constantly propagates 
westward so that at a point to the west of 0x= , either the streamfunction  is zero (before 
the signal reaches that point) or the streamfunction is growing linearly with t (after the 
signal has reached that point). Note that while the signal front propagates with the Rossby 

wave velocity 2m
β

− , the signaling is not done by Rossby waves but rather by packets of 

waves that do not look at all wave-like: no amount of observation of the stream function 
would ever see waves, only the onset of growth when the signal arrives. 
 

The second example is similar to the first except that the forcing is everywhere to 
the west of 0x=  on an unbounded plane: 
 

2 ( ) ( )t xm H x H tψ βψ− + = −                                        (6.20) 
 
with solution  
 
 

 2 2

1 1( ) ( ) ( ( ))xH x x t H x t
m m
β βψ

β β
= − − + − +                    (6.21) 

 
which is illustrated in Fig. 6.4: 
 

 
 
Fig. 6.4 Sketch of the response Eq. 6.21 of the barotropic stream function to a uniform 
wind stress curl imposed at t=0 and confined to the left half plane Eq. 6.20. 
 

Here again, far to the west, where the westward propagating signal (indicating that 
there is no forcing to the east of 0x= ) has not yet reached, the streamfunction grows 
linearly with t. At a point to the west of 0x= , when the signal does reach that point, the 
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2x t
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β

= −  

xψ
β

= −  
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t
m

ψ = −  

x 



secular growth stops, leaving xψ
β

= −  (the Sverdrup relation) in its wake. Again, all 

signals propagate with the Rossby wave speed but the stream function either grows with t 
or is constant with t—no waves are ever evident.  
 

The first example has the message that the streamfunction should start growing 
when the signal arriving from the east says that there is forcing everywhere to the east—
the streamfunction begins to grow when the signal arrives and never stops. The second 
example has growth until the signal arrives that there is no forcing to the east: then the 
growth stops.  
 

The third example is a combination of the first two and is simply an impulsively 
applied wind stress curl between 0x= and Ex X=  (Fig. 6.5a). The streamfunction 
between 0 and EX  grows until the message that there is no forcing to the east of Ex X=  

reaches and leaves the Sverdrup relation behind. At 
2

Em Xt
β

= , the Sverdrup relation 

1 ( )Ex Xψ
β

= −  is complete for 0 Ex X< < but the signal keeps propagating westward and 

an opposite gradient propagates away. The meridional velocity in the forcing region is 
balanced by an equal and opposite meridional velocity that continues to propagate 
westward. 

 
 
Fig. 6.5. (a) Evolution of stream function with unit wind stress forcing impulsively 
applied at t=0 between 0x=  and Ex X=  on an unbounded plane. (b) Same as (a) but in a 
bounded basin. From Cane and Sarachik (1977).  
 

The fourth example (Fig. 6.5b) is the same as the third except between boundaries 
at 0x=  and Ex X= . Again the streamfunction grows within the basin until the signal 
arrives from the eastern boundary that there is no forcing to the east of the eastern 
boundary. The Sverdrup relation is set up within the entire basin at the time the signal 



crosses the basin, 
2

Em Xt
β

= , but now, in the absence of friction, the boundary layer on 

the western boundary of the basin continually thins according to Eq. 6.19 and returns the 
meridional mass flux set up in the interior. In the presence of friction, the boundary stops 
thinning at the frictional boundary layer scale /r β and the layer reaches a steady state.  
 
 

6.3 Equatorial Ocean Dynamics: Free Waves  
We return to the divergent shallow water equations Eq. 3.66 with equivalent depth 

Hn. A single equation for v  may be derived from this equation :  
 

2 1( ) 0xx yy t t ttt x
n n

fv v v v v
gH gH

β+ − − + = .                                (6.22) 

 
EXERCISE: Derive Eq. 6.22 from Eq. 3.66. [Hint: first replace Eqs. 3.66a and 3.66b 
with equations for 1 2( )nr u gH p− /= +  and 1 2( )ns u gH p− /= − .] 
 

If we write ( ) ( ) exp[ ( )]v x y t V y i kx tω, , = − , Eq. 6.22 becomes  
 

2 2
2 0yy

n n

k fV k V
gH gH
ω β

ω
⎞⎛

+ − − − =⎟⎜
⎝ ⎠

.                                 (6.23) 

 

6.3.1 f Plane 

 
On the f-plane f  is a constant; i.e. 0β = . Taking V exp ily= , Eq. 6.23 becomes 

 
2 2 2 2( )nf gH k lω = + + .                                          (6.24)  

 
This is the dispersion relation for inertia-gravity waves—clearly from Eq. 6.24, 

the frequency is larger than the local Coriolis frequency so that these represent relatively 
high frequency motions. There is another solution to Eq. 6.22 when 0β = : 
 

0ω = .  
 
This means the motion is completely independent of time so that setting the time 
derivative terms to zero in the shallow water equations Eq. 3.66 gives: 
 

0xfv p+ =  and 0yfu p+ = , 
 
i.e. the balance is geostrophic and from Eq. 3.66c, 0x yu v+ = , i.e. the motion is non-
divergent. These f-plane results should be compared with the beta plane results obtained 
below.  
 



6.3.2 Midlatitude beta-plane.  

 
At midlatitudes of f yβ= + . It is customary to replace f  in Eq. 6.23 by 

of = constant, making the equations considerably easier to solve. This is justified if the 
horizontal scale of the motions L  is such that oL fβ � .  
 

Then we may take ( )V y ∼  exp ( )ily  to obtain  
 

2 2
2 2 0o

n

fk k l
gh gH
ω β ω

⎡ ⎤
− − + + = ,⎢ ⎥

⎣ ⎦
                                      (6.25) 

 
which is the dispersion relation for the shallow water equations on a midlatitude beta-
plane.  
 

It is not strictly consistent to replace f  by of  and yet retain all other terms in Eq. 
6.25. Assuming that oL fβ �  and 1 2( ) o RL gh f L/ / ≡∼  ( RL  is the Rossby radius of 
deformation) consider separately the two cases:  
 
(i) fω ∼ , i.e. frequencies are high so that the time scales are short comparable to the 
inertial period 1f − . Then in Eq. 6.25 the ratio of the second to the first term is of order 

0

L
f
β so that the second term can be neglected and the dispersion relation becomes: 

2 2 2 2( )o nf gH k lω = + +                                            (6.26) 
 
which is the same as Eq. 6.24, the dispersion relation for inertia-gravity waves on an f-
plane. In other words the effect of β  on inertia-gravity waves is small.  
 
(ii) fω �  (slow, long time scale motions). Then in Eq. 6.25 the first term can be 
neglected and the dispersion relation becomes:  
 

2
2 2 o

n

fk k l
gH

ω β
⎡ ⎤

− / + +⎢ ⎥
⎣ ⎦

� .                                             (6.27) 

 
The corresponding simplification of (6.22) is  
 

2

( ) 0o
xx yy t t x

n

fv v v v
gH

β+ − + = .                                         (6.28) 

 
Eq. 6.27 is the Rossby wave dispersion relation and Eq. 6.28 is the linearized 

quasi-geostrophic potential vorticity equation. The quasi-geostrophic approximation 
filters gravity waves and, to leading order, the flow is nondivergent and geostrophic:  
 

( ) ( ) [ ]ou v p l k if expi kx ly tω, , ,− , + −∼  

 



with ω  given by Eq. 6.27. We will consider these motions at some length.  
 

The dispersion relations for inertia-gravity waves, Eq. 6.26, and Rossby waves Eq. 
6.27 are plotted in the k ω,  plane for meridional wavenumbers 1 20 ol l l= < < ...  in Fig. 6.6 

 
Fig. 6.6. High frequency (Eq. 6.26) and low frequency (Eq. 6.27) dispersion relationships 
on a mid-latitude f plane. For the purposes of this diagram, omega (ω ) in units of 0f , and 

length in units of 
1
2

0( ) /R nL gH f=  .The thick line corresponds to  l=.1 and the thin line to  
l=1 (the l=1 gravity wave lies underneath the thick line and is therefore invisible).  
 
 
EXERCISE: What is the maximum value of ω  for all k  and fixed values of ol f,  and h ? 
What is the maximum value of ω  for all k l, ?  
 

Note that the f-plane geostrophic modes with 0ω =  have been replaced, on the 
mid-latitude β  by the quasi-geostrophic Rossby waves with 0ω > . There is still a gap in 
frequency between these low frequency modes and the inertia-gravity waves with fω ≥ .  
 

6.3.3 Equatorial β-Plane.  

 
At the equator 0 2of aβ= , = Ω  and Eq. 6.22 becomes:  

 
2 2 1( ) 0xx yy t t ttt x

n n

yv v v v v
gH gH
β β+ − − + =                              (6.29) 

 
This equation was first analyzed by Matsuno (1966) in an atmospheric context and by 
Moore (1968) and Blandford (1966) in an oceanographic one.  
 

There is a canonical scaling for the equatorial beta-plane: length is scaled by 
1 4 1 2( )eq nL gH β/ − /=  and time by 1 4 1 2( )eq nT gH β− / − /= .  Some insight into this scaling can 

be obtained by considering how the mid-latitude radius of deformation 
1 2( )R nL gH f/= / would change if we use the equatorial value f yβ= . As we approach the 



equator, RL  grows. At some value of y L= , the value of RL  becomes as large as L so that 
for further approach to the equator, an inconsistency would arise. This value obtains when 

ngH
L

L
= or 1 4 1 2( )nL gH β/ − /= . The value of the Coriolis parameter that corresponds to 

this value of y=L is 
1 1

4 2( )nL gHβ β= so that the time scale is 
1 1

4 21 ( )nT L gHβ β
− −= = . 

Velocities are then scaled by n
L gHT = . 

 
With this scaling, the shallow water equations Eqs. 3.66 become:  

 
0t xu yv h− + =                                              (6.30a) 

 
0t yv yu h+ + =                                            (6.30b) 

 
0t x yh u v+ + = ,                                           (6.30c) 

 
and  
 

2( ) 0xx yy t x tttv v y v v v+ − + − =                                    (6.31) 
 
is the non-dimensional version of Eq. 6.29. We have changed notation a bit, replacing the 
dimensional variable p by the non-dimensional depth h (dimensionally, p = g’h for a 
reduced gravity model). The boundary conditions on an infinite β plane are u v h, ,  
bounded as y →±∞ . With these boundary conditions, Eqs. 6.30 are the basic equations 
for free waves for a given equivalent depth nH . The solutions to Eq. 6.30 for a given nH  
do correspond to modes on a sphere for the same equivalent depth but there is some 
geometric distortion.  
 

There is a solution to Eq. 6.30 that has 0v ≡ : the equatorial Kelvin wave:  
 

2exp[ / 2]exp[ ( )]u h y ik x t= = − −                           (6.32) 
 
i.e. kω =  with 1c= ,or, dimensionally, nc gH= .  
 

From Eq. 6.30b with 0v= , we see that the Kelvin wave’s meridional momentum 
balance is geostrophic while its zonal momentum balance is that of a gravity wave (Eq. 
6.30a). The Kelvin wave travels eastward along the equator with the gravity wave speed 
c.  
 

All other solutions are given by solutions of Eq. 6.31. Let ( ) exp[ ( ]v V y i kx tω= −  
so that  
 

2 2 2 0yy
kV y V k Vω
ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− + + − = .                                   (6.33) 

 



The boundary conditions imply that the eigensolutions to Eq. 6.33 are (see Appendix 2): 
 

1 4 1 2 21( ) (2 ) ( )exp[ ]
2

n
n ny n H y yψ π − / − /= ! −                                  (6.34a) 

 
with  

2 2 2 1 0 1 2k k n nω
ω
+ − = + = , , ,...                            (6.34b)  

 
where the nH  are the Hermite polynomials of order n.  
 

We can write Eq. 6.33a as 2[2 1 ] 0yyV n y V+ + − =  and define the turning 

latitude 1/2
Ty (2n 1)= + .  In this form it is easy to see that V  is oscillatory equatorwards of 

the turning latitudes 1 2(2 1)Ty y n /| |< = +  and exponentially decaying polewards of the 
turning latitudes, Ty y| |> . 
 

This β -plane approximation only represents modes on a sphere if the turning 
latitudes lie equatorwards of the pole, i.e. if T POLEy y<  so that the boundary conditions 
can be satisfied. Dimensionally, 1 2(2 1) 90eqn L/+ � ° of latitude. For deep modes of the 
atmosphere h ≈ 10km, 30eqL � ° so only 1 2n = ,  are good. For baroclinic modes of the 
ocean, 6 300 3eqh m L km≈ . , ≈ ≈ ° and the modes should be good for n of order five 
hundred. 
 

The dispersion diagram corresponding to the dispersion formula of Eq. 6.34b is 
shown in Fig. 6.7. 

 
 
Fig. 6.7 The dispersion relation Eq. 6.34b on an equatorial beta plane (to be compared to 
the f-plane version in Fig. 6.6). (From Cane and Sarachik, 1976.) 



 
Dimensionally we have 
 

2
2 2

1 2(2 1) (2 1)
( )eq

n n

k k n L n
gH gH
ω ββ

ω
−

/− − + = + = +                          (6.35) 

 
and the Kelvin wave  

1 2( )nk gHω /= . 
 

For 1 1 4 1 2( )eq nT gHω β− / / ⎞⎛
⎜ ⎟
⎝ ⎠

=� , Eq. 6.35 becomes  
 

2 (2 1)
n

k

k n
gH

βω β
−

≈
+ +

.                                                (6.36) 

 
These are Rossby waves. Comparing with the mid-latitude expression Eq. 6.27 we see 

that the dispersion relation is similar but with 2
1/2(2 1) ( ) /

( ) T n
n

n f y gH
gH
β

+ =   replacing 

2 2
o nl f gH+ /  – the meridional wave number and radius of deformation term have been 

combined. (see Cane and Sarachik, 1976, pp. 631-632, for a discussion of the mid-latitude 
extension of the equatorial beta-plane.)  
 

For higher frequency motions, 1
eqTω −≥  Eq. 6.35 is approximately  

 
2 2 2 2 2[ (2 1) ] ( ) ,n eq T ngH k n L f y gH kω −≈ + + = +                              (6.37) 

 
which is the approximate dispersion relation for inertia-gravity waves (compare to Eq. 
6.26). Note that in Eq. 6.37 1n ≥  so 1 2 13( ) 3( ) 3 ( )eq eq eqgh L L f Lω β/ − = = . Again there 
is a frequency gap between the Rossby and inertia-gravity waves–though not as great a 
one as in the mid-latitude case. Also, two modes cross the gap–the Kelvin wave and the 

0n =  mode–the mixed Rossby- gravity wave. For small ω  this behaves like a Rossby 
wave and for large ω  like a gravity wave. Comparison with Moura (1976) (or Longuet-
Higgins, 1968) shows that the equatorial beta-plane preserves many of the properties of 

the modes on a sphere. The group velocity gc
k
ω∂

=
∂

 is positive (eastward) to the right of 

2 1kω = −  (where 0)gc = .  For the Kelvin wave 1gc =  (non-dispersive).  
 

For 1ω << , 1(2 1)gc n −− +∼  for k  small and 2
gc k −+∼  for 1k| |>> . 

 
We can look at the structure of the free Kelvin and Rossby waves in terms of the 

previously defined solutions: 
 

21 4 1 2 2( ) (2 ) ( ) 0 1n y
n ny n e H y nψ π − / − / − /≡ ! ; = , ,"  

 



and in particular  
21 2 2( ) y

o y eψ π − / − /= . 
 
 

The free wave solutions to Eq. 6.30 with bounded solutions at infinity can be 
given for the Rossby, Kelvin, and inertia-gravity waves directly. If we take  
 

( ) exp [ ( )] ( ) 0T
n j n ju v h i kx k k y nω , ,, , = − , ≥Φ ,                  (6.38) 

 
where the superscript T represents the transpose, then the free solutions are the 
eigenfunctions of the equation 
 

, , ,( , ) ( , ) ( ) ( , )n j n k n jk y k y i k k yω=Ω Φ Φ                               (6.39) 
 
where  
 

0

0

0

iy k

iy i
y

k i
y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂

= − − .⎜ ⎟∂⎜ ⎟
∂⎜ ⎟−⎜ ⎟∂⎝ ⎠

Ω                                      (6.40) 

 
with j=1,2 for the inertia-gravity waves and j=3 for the Rossby waves. We will take n=-1 
as a formal device for labeling the Kelvin wave—the utility of this device will become 
clearer below.  
 

2 2( ) ( ) ( ) ( ) [ ( ) ] ( )n j n j n n n j nk y k y k y i k k yω ω, , ,, = + − −Φ W M V           (6.41) 
 
and the auxiliary vector functions V , M  and W are defined by: 
 

(0 ( ) 0)T
n n yψ= , ,V                                               (6.42a) 

 
( ( ) 0 ( ) )T

n n ny y d y dyψ ψ= , ,− /W                                   (6.42b) 
 

( 0 ( ))T
n n nd dy y yψ ψ= − / , ,M .                                    (6.42c) 

 
The relations given in Eq. A2.3 of Appendix 2 are useful in calculating the terms in Eqs. 
6.42b and 6.42c. 
 

For the Kelvin wave,  
 

1n = − ; 1 exp[ ( )] ( )
2 ou h i kx t yω ψ= = −  and 0v ≡ ,  

 



and we extend the definitions in Eq. 6.42 to n 1= −  as follows: 
 

1 0v− = and 1 1 1
1( ) ( ) ( ( ) 0 ( ))
2

T
o oy y y yψ ψ− − −≡ = = = , ,K Φ M W                (6.43) 

 
Note the symmetries as a function of n: for n even u and p are  antisymmetric about the 
equator and v is symmetric. For n odd, u and p are symmetric about the equator with v 
antisymmetric.  
 

Some valuable approximations can be obtained for low frequencies and long 
wavelengths (which is the regime where we will usually find ourselves): ω  and k are 
both taken to be small and  
 

2
3

1[ ] 0( )
2 1n n nk k

n, − +
+

Φ M W∼ .                                  (6.44) 

 
For ω  small, but k  large (short Rossby waves)  

 
2 3

3 0( )n n nk ik k, + +Φ M V∼                                             (6.45) 

 
EXERCISE: Check the expressions Eqs. 6.44 and 6.45 for geostrophy.  
 
 

6.4 Equatorial Ocean Dynamics: Forced Waves  
We now begin to develop a method of calculating the response of an equatorial 

ocean to forcing. Let F  and G  be zonal and meridional sources of momentum such as 
wind stress, and Q  be a mass (or heat) source. The forced shallow water equations on an 
equatorial β  plane (i.e. the forced version of Eqs. 6.30) are  
 

t xu yv h F− + =                                              (6.46a) 
 

t yv yu h G+ + =                                             (6.46b) 
 

t x yh u v Q+ + =                                              (6.46c) 
 
where we have again scaled the equations with the equatorial length and time scales  
 

1 2
1 2( )eq eq

cL T cβ
β

/
− /⎛ ⎞

= ; = .⎜ ⎟
⎝ ⎠

 

 
Note that eq eqc L T= /  and 1( )eq eqL Tβ −= . 
 
EXERCISE: What are the dimensional versions of [F, G, Q]?  
 



6.4.1 Scaling the Equations 

In Eqs. 6.44 and 6.45 we obtained low frequency approximations for the waves: 

Now we consider low frequency approximations 1
t
∂
<<

∂
 (or equivalently 1ω << ) for the 

equations. Again we consider both large and small spatial scales, keeping the frequencies 
small.  
 

For large scales: 1
x
∂
<<

∂
  or equivalently 1k <<  we can scale  

 

0( ) 0( ) 0(1)
t x y

ε ε∂ ∂ ∂
, , ;

∂ ∂ ∂
∼ ∼ ∼  

and 
0(1) 0( )u h v ε, , .∼ ∼  

 
This yields  

 
1

t xu yv h Fε −− + =                                            (6.46a’) 
 

2
t yv yu h Gε + + =                                            (6.46b’) 

 
1

t x yh u v Qε −+ + =                                           (6.46c’) 
 
which indicates that the meridional wind stress will force less effectively than either zonal 
wind stress forcing or mass (buoyancy) forcing. Note that for free solutions, Eq. 6.46b 
implies that we should see geostrophy in the meridional direction but not in the zonal 
direction as we have already seen in the exercise for Eq. 6.44. We note that eliminating 
the tv term in Eqs. 6.46 is called the long wave approximation. 
 
EXERCISE: Put a factor α in front of the tv term in Eq. 6.46 and derive the analog of 
Eq. 6.22. Then show that setting 0α =  (the long wave approximation) eliminates the 
inertial gravity waves from the dispersion relation. 
 

The dispersion relation for small k and ω is (2 1)k nω = − / +  for the Rossby wave 
and kω =  for the Kelvin wave. In this low frequency approximation, the Rossby waves 
and the Kelvin wave are non-dispersive and the group velocities are 1(2 1)gc n −= − +  for 
the Rossby waves and 1gc =  for the Kelvin wave. 
 

For low frequencies and small scales: 1
x
∂
>>

∂
 or equivalently  1k >>   we can 

scale  

 1 1
t x y

ε ε −∂ ∂ ∂
∂ ∂ ∂
∼ ∼ ∼  

so that 
 1u h vε, ∼ ∼  



 
This yields  
 

2
t xu yv h Fε − + = ,                                      (6.47a) 

 
1

t yv yu h Gε −+ + = ,                                     (6.47b) 
and 

2
t x yh u v Qε + + = .                                       (6.47c) 

 
We see that in this 1, 1kω << >> case, if there is no mass forcing, the system is 

non-divergent and a stream function exists. The free solution would be geostrophic in the 
x direction (as we have seen in the exercise attached to Eq. 6.45). The dispersion relation 
is 1kω −= − , which is highly dispersive, the phase velocity is 2c k −=−  and the group 
velocity is 2

gc k −=+ . 
 

6.4.2 A Simple Example Of Our Method  

 
The method we use to solve Eqs. 6.46 follows Matsuno (1966) in using an 

expansion in eigenfunctions where the eigenfunctions used are the free waves of the 
unforced problem. Though some sophisticated mathematics lies behind it, the method is 
not difficult to understand. The context of the equatorial β  plane adds complications 
which may obscure the fundamental idea. So we illustrate with a simple example, a non-
rotating forced shallow water system. The equations are  
 

t xu h F+ =                                                  (6.48a) 
and  

t xh u Q+ = .                                                (6.48b) 
 

The free solutions to this problem are gravity waves which propagate in the x+  
and x−  directions (east and west, if one prefers), respectively. We can then define two 
modes: The + mode propagates eastward and has  
 

[ ( )]u h exp i k x t+ += = −  
 
while the – mode propagates westward and has 
 

[ ( )]u h exp i k x t− −= − = + . 
 
Define two auxiliary quantities: 1

2 ( )q u h= +  and 1
2 ( )r u h= − ;  

 
Adding Eqs. 6.48a and 6.48b yields  
 

1 ( )
2t xq q F Q R++ = + ≡                                        (6.49a) 



 
while subtracting Eq. 6.48b from Eq. 6.48a yields  
 

1 ( )
2t xr r F Q R−− = − ≡                                         (6.49b) 

 
Consideration of the unforced case ( 0)F Q= =  shows that q  is the +  mode and 

r  the −  mode. Note that the equations 6.49 uncouple q  from r . In contrast, u  and h  are 
coupled in the original set Eqs. 6.48, which makes it more difficult to solve.  
 

The simple wave equations 6.49 may be solved easily; the well known solutions 
are  

0
( ) ( 0) ( )

t
q x t q x t R x s t s ds+, = − , + − , − ,∫  

and 

0
( ) ( 0) ( )

t
r x t r x t R x s t s ds−, = + , + + , − .∫  

 
Then, in terms of these solutions, the original variables are simply given by u q r= +  and 
p q r= − .  

 
We can restate this solution method in more general form. We wish to solve the 

system of equations 6.48 which can be alternately written: 
 

t + =u Ωu F                                                          (6.50) 
 
where, with superscript T  denoting transpose, ( ) ( )T Tu h F Q= , ; = ,u F  and the operator  
 

0

0

x

x

∂⎡ ⎤
⎢ ⎥∂= .⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂⎣ ⎦

Ω  

 
We know from our analysis of the free waves of the system that the 

eigenfunctions of Ω  are ,+ −u u  given by  
1( ) (1 1)
2

T ikx Tu h e+ + += , = ,u  

and  
1( ) (1 1)
2

T ikx Tu h e− − −= , = ,−u  

 
with eigenvalues  ( )i k ikω+ =  and ( )i k ikω− = − . 
 

We then write  
 

( )Tu h q r+ −, = +u u                                              (6.51) 
 



and noting that the inner product  
 

( ) 0+ −, =u u , 
 
we take the inner product of +u  and −u with (6.50) to derive a simple wave equation for q 
and r respectively. After solving them to find q  and r  we sum as in Eq. 6.51 to obtain u  
and h .  
 
EXERCISE: Take 0Q = , and let a forcing  
 

1 for 1 1F x= − < < +  
 
and 0F =  otherwise be imposed beginning at 0t = . Suppose 0u h= =  at 0t = . Note 
that a steady state response is 0u =  and xp F=  or  

0 1 1h h x= − ≤ −  

 
0 1 1h h x x= + − < < ;  

 
0 1 1h h x= + ≤ .  

 
Symmetry leads us to expect 0 0p = . Calculate the time dependent solution; does it go to 
this steady state? Examine its approach to a final state by sketching the solution at 

0 5 1 5t t t= . , = , = . Note the role of the 2 wave modes.  
 
EXERCISE: With the same forcing and initial conditions as above, imagine that the 
model is modified by a mean current U ; (take 0 1U< < ) so that :  
 

t x xu Uu h F+ + =  

 
0t x xh Up u+ + = .  

 
Find the steady state solution. Can you determine the unknown constants? Calculate the 
eigenvalues and eigenfunctions. i.e. the free waves and their wave speeds. How do they 
compare to the 0U =  case. Calculate the evolution to a final state. Again sketch the 
solution at 0 5 1 5t t t= . , = , = . Note the role of the wave modes - now do they determine 
the constants in the steady solution? What happens if 1U = ?  
 

6.4.3 Calculating Forced Motions on an Equatorial Beta Plane  

 
Assume that the x-dependence is of the form ikxe ; alternately, imagine that we 

have taken the Fourier transform. from x k→ . Then Eq. 6.46 may be written as  
 

i
t
∂

+ =
∂

u Ωu F                                                    (6.52) 

where  



u
v
h

⎛ ⎞
⎜ ⎟=⎜ ⎟
⎜ ⎟
⎝ ⎠

u  and 

F
G
Q

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

F  

and Ω is given by expression 6.40. 
 
Since the free wave solutions  
 

exp[ [ ( ) ]]T
n j n j n ji kx k tω, , ,= −u Φ  

 
(again, superscript T  denotes transpose) satisfy  
 

0n j n ji
t , ,
∂

+ =
∂

u Ωu  

 
it follows that 
 

( )T T
n j n j n jkω, , ,=ΩΦ Φ .                                          (6.53) 

 
We can expand the forced solutions of Eq. 6.52 and the forcing both in terms of 

the free solutions of Eq.6.53: 
 

( ) ( )n j n j
n j

a k t k y, ,
,

= , ,∑u Φ                                    (6.54) 

 
( ) ( )n j n j

n j

b k t k y, ,
,

= , ,∑F Φ                                    (6.55) 

 
where n jb ,  is determined by projecting the forcing ( )k t y, ,F  on the structures ( )n j k y, ,Φ , 
as calculated below.  
 
Then  

( ) ( ) ( ) ( )n j n j n j n ja k t i k a k t b k t
t

ω, , , ,

∂
, + , = ,

∂
                        (6.56) 

 
In the long wave, low frequency limit ( , 1kω � ) 
 

3 (2 1)n
k

n
ω ,

−
=

+
                                           (6.57) 

 
for the Rossby waves, while for the Kelvin wave  
 

1 kω− =                                                  (6.58) 
 
Hence for these modes  
 



( ) ( ) ( )
2 1n n n

ika k t a k t b k t
t n
∂

, − , = , ;
∂ +

                     (6.59) 

 
(we have dropped the j  because we are now concerned only with the low-frequency 
mode; so we know which j  it is: 3j = ).  
 

Viewing this as an equation in Fourier transform space, and recognizing ( )nika k t,  

as the transform of ( )na x t
x
∂

,
∂

 allows us to write the last equations as:  

 
1( ) ( ) ( )

2 1n n na x t a x t b x t
t n x
∂ ∂

, − , = ,
∂ + ∂

                           (6.60a) 

 
Note that the left hand side of is just a wave equation for a wave propagating at 

speed 1
2 1n

−
+

; that is, westward for the Rossby waves ( 1 2 3 )n = , , ,...  with speed 
1(2 1)n −+  and eastward for the Kelvin wave with speed +1: 

 

( , ) ( , ) ( , )K K Ka x t a x t b x t
t x
∂ ∂

+ =
∂ ∂

.                              (6.60b) 

 
The right hand sides of (6.60), ( )nb x t, and ( , )Kb x t , give the forcing.  
 

In this low frequency long wave limit, we have, for the Rossby wave: 
 

1 2 1 2
1 1

3
1 2 1 2

1 1

( 1)
1( ) 0

2 2
( 1)

n n
T
n n

n n

n n
y

n n

ψ ψ

ψ ψ

− / − /
+ −

,
− / − /

+ −

⎞⎛ + −
⎟⎜≈ ≈ ⎟⎜

⎜ ⎟+ +⎝ ⎠

Φ R                      (6.61) 

 

and, as ever, the Kelvin wave has 1( ) [ 0 ]
2 o ou v h ψ ψ, , = , ,   

 
Since the  nb (and Kb ) are the projections of ( )F G Q, ,  on ( )u v p, , of the free 

solutions given by  
 

2 2 2

[ ]

( )

Fu Gv Qh dy

u v h dy

+∞

−∞
+∞

−∞

+ +

+ +

∫
∫

                                       (6.62) 

 
it follows that the Kelvin projection is 
 

1 ( ) ( )
2K ob F Q y dyψ

+∞

−∞
= +∫                          (6.63a) 

 
while for the Rossby waves  



 

1 1
2 ( 1) 1 1[ ( ) ( )]
2 1 1n n n
n nb F Q Q F dy
n n n

ψ ψ
+∞

+ −−∞

+
= + + −

+ +∫ .        (6.63b) 

 
 

Consider some examples of these projections: 
 
(a) For mass forcing with simple Gaussian meridional shape: 0F =  and 

2 ( ) ( )oQ y S x tψ= , , then  
 

1
4( ) ( )
3Kb S x t b S x t= , , = ,  and 0nb =  for 2n ≥ ; 

 
the higher Rossby modes are not present because the forcing was chosen to have a shape 
that made their projections vanish. 
 
(b) For zonal wind stress forcing with simple Gaussian meridional shape: 0Q =  and 

2 ( ) ( )oF y S x tψ= , , then  
 

4
1 3( ) ( )Kb S x t b S x t= , , = − ,  and 0nb =  for 2n ≥ . 

 
(c) For mass forcing chosen to be antisymmetric with respect to the equator: 0F =  and 

1 2 oQ S yψ ψ= =  then  
 

1 20 0Kb b b S= , = , =  and 0 2nb n= > . 

 
[There is also a ob  term which matters only in the forced region since the 0n =  wave, the 
mixed Rossby-Gravity wave, propagates so slowly.]  
 
In case (a), for example, it remains to solve  
 

( )K K
K

a a b S x t
t x

∂ ∂
+ = = ,

∂ ∂
 

and 
1 1

1
1 4 ( )
3 3

a a b S x t
t x

∂ ∂
− = = ,

∂ ∂
. 

 
These equations can be considered in a more general context. For general 

forcings, having first found the b’s , it remains to solve Eq. 6.60 for the a’s; i.e. to solve 
the wave equation of the form: 
 

a ac b
t x

∂ ∂
+ =

∂ ∂
                                                     (6.64) 

 
The solution to Eq. 6.64 may be found by the method of characteristics; e.g.  
 



0

0 0 0
( ) ( ( ) ) ( )

t t
a x t a x c t t t b x cs t s ds

−
, = − − , + − , −∫                   (6.65a) 

 
This form is appropriate for a forcing initiated at time 0t and zero for 0t t< . If the forcing 
is zero beyond the point ox x= , then the equivalent form below is more useful:  
 

1 1( ) ( ( )) ( )ox x

o o o

dxa x t a x t c x x b x x t c x
c

−− − ′
′ ′, = , − − + − , −∫ .         (6.65b) 

 
[Other useful forms may be obtained by a change of variable in the integrals: e.g. 
s t s′ = −  in Eq. 6.65a; s x x′ ′= −  in Eq. 6.65b; etc. In Eq. 6.67 below we use s x x′ ′= − .]  
 

Suppose for example, the forcing is confined between longitudes 0x =  and 
0Ex x= > .  Then 

 

( ) ( 0 ) ( ) for 0
x

K K Ko
a x t a x t x b x x t x dx x′ ′ ′, = = , − + − , − >∫            (6.66) 

 
with 
 

( ) 0 for 0Ka x t x, = < ;  

and 

( ) ( (2 1)( )) (2 1) [ ( )(2 1)]Ex

n n E E nx
a x t a x t n x x n b s t s x n ds′ ′ ′, = , − + − + + , − − +∫   (6.67) 

for Ex x<   
 
with  

( ) 0 forn Ea x t x x, = > . 

 
Once the a s′  are determined, u  and p  are found by summing:  
 

1

0 0
2

o
K

n n
n

o

u
a a

h

ψ

ψ

⎡ ⎤
⎢ ⎥ ∞⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥ = +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ R . 

 
We can summarize the algorithm for calculating the forced response as follows: 

 
First: calculate the free waves: 

 
1. Calculate 1 4 2( ) ( 2)o y exp yψ π − /= − /   
 
2.  Calculate 1( ) 0 1 2 fromn y nψ + = , , ,  Eq. A2.3: 
 

1 1
2 0 1 2

1 1n n n
ny n

n n
ψ ψ ψ+ −= − = , , ,

+ +
"  

 



3a. Calculate the u  and h meridional structure for the Kelvin wave,  
 

( ) K

K

u
y

h
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K  with 
1 ( )
2K K ou h yψ= = . 

 
3b. Calculate u  and h  meridional structure for the nth Rossby wave from (6.61) noting 
that 0nv =  and  
 

1 1

1 1

1 1
11( ) 1 2

12 2 1
1

n n
n

n
n

n n

u n ny n
h

nn

ψ ψ

ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥+ −⎢ ⎥
⎣ ⎦

−
+

= = = , ,
+

+

R "  

 
Second: for a specified forcing F and Q find nb  from Eq. 6.63 

 

4a. Calculate 1 ( ) ( )
2K ob F Q y dyψ

+∞

−∞
= +∫   

 
4b. Calculate 
 

1 1
( 1) 1 12 [ ( ) ( )] 1 2 3
2 1 1n n n

n nb F Q Q F dy n
n n n

ψ ψ
+∞

+ −−∞

+
= + + − = , , ,

+ +∫ "  

 
5. Solve Eq. 6.60 for Ka  and na  using the forms 6.65 or other equivalent forms.  
 
6. Then  
 

1

( ) ( ) ( ) ( )K n n
n

u
a x t y a x t y

h

∞

=

⎡ ⎤
= , + , .⎢ ⎥

⎣ ⎦
∑K R  

 
 
EXERCISEs:  
 
(a) Use either Eq. 6.59 or one of the later forms to find the a s′  in the case of a spatially 
periodic forcing; i.e. ( )b exp ikx∝   
 
(b) Using Eq. 6.60 or Eq. 6.75 or some other relations, derive the form for the a s′  when 
the forcing and response are periodic in time; i.e. ( )b exp i tω∝   
 

(c) using unit mass forcing, show 
1

4(0,0,1) [ ( ) ( ) ]T
n n

n

y yπ= +∑K R  where 

( ) ( )n ny y y dyψ
+∞

−∞

≡ ∫ . 

 



We now consider a forcing F, independent of x , switched on at 0t =  (initially 
over a resting ocean) and steady thereafter. Using Eq. 6.65 with 0 0t =  and 0( ) 0a t =  
 

( )n na x t tb, =  

 
with nb  a constant. In other words, u  and h  grow linearly in time:  
 

u Ut h Ht= ; =                                                           (6.68) 
 
with ( )U y  and ( )H y  independent of x  and t . Substituting these forms into the zonal 
momentum equation shows ( )v V y= : while u  and h  grow linearly in time, the lower 
order term v  does not. We can interpret this linear growth of u and p in terms of the 
dispersion diagram in Fig. 6.7: forcing at the origin ( 0, 0k ω= = ) implies forcing on 
resonance and secular growth results. (We have already seen an example of this in the 
barotropic example in Eq. 6.21a.) 
 

Some examples of U , V , and H  in response to a forcing F are given in Fig. 6.8.  
 

 
Fig. 6.8. Unbounded baroclinic response to a westerly wind stress forcing. Left: 1F =  for 
all  y.  Middle: 2( ) exp[ / 4]F y y= −  Right: 2( ) exp[ / 4]F y y y= − . (From Cane and 
Sarachik, 1976.) 
 

Note that, in Fig. 6.8, even when the forcing is independent of latitude the 
response is confined to the region of the equator: at higher latitudes 0U H, →  and 
V F y→− / . To calculate these pictures, use is made of the following formulas (Cane and 
Sarachik, 1981, p 688). For   
 

21
2( ) exp[ ]F y yμ= −                                                (6.69) 

 
2 0nb = ,                                                      (6.70a) 

 
1 4

2 1
2 1 3 2

2 1 1
(1 ) 1 4 3

n
n

nb
n

π α μ μ
μ μ

/
+

+ /

⎡ ⎤− ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦⎣ ⎦
,                        (6.70b) 

and 
1 4 1 2(1 )bκ π μ/ − /= +                                      (6.70c) 

 
with 0nα = for n even and for n odd 



 
1 2 1 2

1 2
2 4 31 and   

1 1 3 5 2n n
n n n n

n n n n
α α α

/ /

−

− −⎡ ⎤ ⎡ ⎤= = = ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦
"                    (6.71) 

or 
11 2

2 1 [2 !] [(2 1)!]n
n n nα −
+ = + .  

 
In the above, the α  derives from 
 

1 4
2 1( ) ( ) 2n n ny y y dyψ π α

+∞ /
+−∞

≡ = .∫  

 
(Note that the b’s for F=1 are given by the above relations with 0μ = .) 
 

As a second example, assume 0Q = , and 0t ≤ 0F u h v= = = = . For 0t > , 
suppose F is zero except in a narrow region near 0x = ; e.g.  
 

1 for 0F x x
x

= < < Δ
Δ

 with 1xΔ <<                          (6.72) 

 
and 0F =  outside this region: 0x < and x x> Δ . Note that in the limit  0xΔ → , 

( )F xδ→ , a delta function forcing.  
 

In this limit, the response 6.66 and 6.67 is zero except that   
 

( ) for 0K Ka x t b x t, = < ≤                                 (6.73a) 
 

 

( ) (2 1) for 0
2 1n n

ta x t n b x
n
−

, = + ≤ <
+

.                   (6.73b) 

 
EXERCISE: Reproduce Figure 6.8 above for F=1 and 2( 4)F exp y= − / .  Find the 
solutions for F non-zero only in a region0 Ex X< < . 
 

6.5 Equatorial Ocean Dynamics: Adjustment  
Whenever we assume a "balanced" state in any geophysical system, there is an 

implicit adjustment process that brought that fluid to that equilibrium.  In particular, 
hydrostatic balance and static stability in the atmosphere and ocean are achieved by 
sound waves and buoyancy oscillations respectively. The actual adjustment process is 
generally not explicitly computed; the balanced state is simply assumed. As an example, 
convective overturning, say by convective plumes or other eddies, will bring a statically 
unstable state to a statically stable one 
 

Lower frequency quasi-geostrophic balance, including low frequency behavior in 
equatorial regions, is effected by higher frequency inertia-gravity waves. The adjustment 
to pure geostrophy on an f-plane is similar: this is the celebrated Rossby geostrophic 



adjustment problem. The adjustment by gravity waves is often computed (inter alia by 
primitive equation numerical models) but we will not consider it in any great detail here. 
 

The general method for calculating adjustment to impulsively started forcing may 
be stated as a sequence of steps: 
 

i. Calculate the unbounded response (Sec. 6.5.1) 
ii. Calculate the inertia-gravity waves generated on the switch-on of the forcing 

(but not calculated in any detail here) 
iii. Calculate the western boundary response to i. (Sec. 6.5.2) and iv. 
iv. Calculate the eastern boundary response to i. and iii. 

 
We have already seen an example of this method in the simpler context of the 

barotropic vorticity equation in Sec. 6.2. In general, the long Rossby waves propagates 
energy westward. They do not impinge on the eastern side and the role of the boundary 
there is just to cut off the forcing. They do carry energy into the western boundary, where 
they are reflected as short Rossby waves which make up a western boundary current and 
a Kelvin mode if the Rossby signal has a symmetric part. We will see that the presence of 
the equatorial Kelvin waves makes the equatorial response quite different from 
midlatitudes, even though the Rossby wave behavior is similar.  

6.5.1 Adjustment in the Absence of Boundaries 

We consider the linear solution to a zonal wind stress forcing constrained to a 
limited longitudinal extent but in the absence of boundaries. Therefore we must solve the 
set: 
 

( ) (0, , )t x Eu yv h H t T x X− + =                              (6.74a) 
 

t yv yu h+ =−                                              (6.74b) 
 

0t x yh u v+ + =                                             (6.74c) 
 
where the “top hat” function T(a,x,b) is unity for 0<x<b and zero otherwise. The solution 
will be the zonally unbounded solution Eq. 6.68 plus pieces needed at the edges of the 
forcing region 0x = and Ex X=  needed to guarantee continuity. We can then write: 
 

1 2 3 1 2 3
, , ,K K K n R n R n R

n

= + + + + +∑u u u u u u u                             (6.75) 

 
where subscripts K and R refer to Kelvin and Rossby modes and superscript 1 is the 
unbounded solution (as in Eq. 6.68), superscript 2 is the response determined by 
continuity at 0x = , and superscript 3 is the response determined by continuity at Ex X= . 
There are two additional pieces to the solution in Eq. 6.75 which will not be considered 
further: the inertia gravity waves excited on switch-on, and higher order Bessel functions 
which appear on the eastern side of the forcing discontinuities. 
 

We can use the results following Eq. 6.69 with 0μ =  to write the solution within 
the forcing region directly: 



 

11 24

1
0 exp[ / 2] (0, , )
1

K Et y T x Xπ
⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

u                         (6.76a) 

and  
 

1
, [ (2 1) ] (0, , )n R n n n n Eta n d T x X= − +u R V                        (6.76b) 

 

where the na are given in Eq. 6.73 and 
1

4
2 12n nd aπ += .  

 
The responses needed to guarantee continuity at the western and eastern edges of 

the forcing regions are, respectively: 
 

12 4 [( )] ( ) (0, , )K t x y T x tπ=− −u K                                   (6.77a) 
 

2
, [( (2 1) ) ] ( , ,0)

2 1n R n n n
ta t n x T x

n
= + + + −

+
u R V                      (6.77b) 

 
and 

13 4[ ( )] ( ) ( , , )K E E Et x X y T X x X tπ= − − +u K                     (6.78a) 
 

3
, [( (2 1)( )) ] ( , , )

2 1n R n E n n E E
ta t n x X T X x X

n
=− + + − + −

+
u R V .  (6.78b) 

 
To see what this all means, recognize that within the forcing region, 0 Ex X< < , 

the solution will grow as t as long as signals from the edges of the forcing region have not 
arrived to inform a given point that there is no forcing outside the forcing region. The 
eastern boundary of the forcing regions sends Rossby signals westward with speed 

1(2 1)n −− +  into the forcing region while the western boundary of the forcing sends Kelvin 
signals eastward into the forcing region with speed +1. For definiteness, we plot the 
height field in Fig. 6.10, with 10EX = . In this case, it takes 10 units of time for an 
eastward moving Kelvin signal to cross the forcing region and 30 units of time for the 
first westward moving Rossby signal to cross the forcing region. [Please note that a 
positive height field corresponds to a deeper thermocline so the graphs are not 
ideographic—they must be reflected around the x axis to become so.] 
 



 
 
 
Fig. 6.9. Sketch of the thermocline response with time to unit zonal forcing between 

0x =  and 10x =  in an unbounded basin.  
 

On the equator, the secular growth stops when the Kelvin signal arrives from the 
west or the sum of the Rossby signals arrives from the east. Fig. 6.9 keeps only 4 Rossby 
modes in the computation.  
 

If enough time is allowed for all the Rossby modes to pass all points in the forcing 
region (near the equator, t=30 will suffice) then  
 

1 2 1 3
, ,K K n R n R

n

= + + +∑u u u u u  

and using the solutions in Eqs. 6.76, 6.77a and 6.78b: 
 

1
4 ( ) (2 1)( )n E n

n

x y a n x Xπ= − + −∑u K R .                       (6.79) 

 
Note that expanding the forcing (0,0,1) gives the identity: 
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1
4(0,0,1) [ ( ) ( ) ]T

n n
n

y yπ= +∑K R                                (6.80) 

 
so that the solution (6.79) in the forcing region becomes: 
 

1
4

(0,0,1) ( )

(0,0,1) [(0,0,1) ( )]

T
E n n

n

T T
E

x X y

x X yπ

= −

= − −

∑u R

K  

so that the final solution after all the signals have been heard from is, in the forcing 
region: 

1
4( )(0,0,1) ( ).T

E Ex X X yπ= − +u K                                  (6.81) 
 

The first term has the correct tilt to be the final solution (to agree with 1xh = ) but 
the second term moves the tilting point: On the equator, from Eq. 6.81,  
 

.707E Eh x X X= − +  
 
Which, for 10EX =  gives 2.93h x= −  which, as can be seen from Fig. 6.10 is the final 
value for the height field within the forcing region. One might also notice that because the 
final solution Eq. 6.81 contains a Kelvin term, there will be a zonal current within the 
forcing region having the shape of of a Kelvin mode. 
 

Outside the forcing region, a sequence of height field pictures looks like Fig. 6.10. 
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Fig. 6.10. Sketch of height response to zonal forcing within 0x =  and 10x = . (a) 3t =  
(b) 10t =  (c) 30t =  (d) 60t =  
 

If we sit on the equator at a point to the east of the forcing region, 1X  units from 
the eastern extent of the forcing, ie. at 1Ex X X= + , the height field will start increasing at 
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time 1t X=  and will continue increasing for an additional EX  units of time until the 
signal from the western boundary of the forcing reaches the point. The height field will 
then stop increasing and the sloping height field, of width EX  continues propagating 
eastward with Kelvin speed (in this case, unity).  
 

A similar sequence of events happens to the west of the forcing region except that, 
in order to enforce the tilt 1xh =  within the basin, the height field perturbation is negative 
(the thermocline is closer to the surface) and the signals propagate with the speed of the 
first Rossby wave, -1/3. Note that these pictures are almost correct on the equator where 
the action of a single Kelvin signal and a single Rossby signal accounts for most of the 
response. As we move meridionally off the equator, the situation becomes more complex 
and in particular, the Kelvin signal becomes less important and more Rossby modes must 
be included.  
 

6.5.2 Calculating the effects of meridional boundaries  

 
We now wish to describe how the ocean’s response is modified by the presence of 

meridional walls at 0x =  and Ex X= . We begin at the point where the forced motions in 
the absence of boundaries have been calculated. The task that remains is that of 
calculating the boundary response to these motions. That is, we seek the free solutions of 
the shallow water equations Eqs. 6.30 that are required to reduce the normal velocity to 
zero at the walls: in the case of meridional walls, 0u = . 
 

We may think of boundaries as modifying the unbounded forced response in two 
distinct ways. The first is as a barrier to incident motions: any part of the oceanic 
response bringing energy into a boundary must give rise to a reflection to carry the 
incident energy away from the boundary. The second is as a cutoff of the forcing: for 
example, a western boundary at 0x =  has the effect of modifying the forcing by 
multiplying it by a step function ( )H x  thus switching it off for 0x <  as in the example 
shown in Fig. 6.11. The unbounded solution for time t  at a point 0x >  will have to be 
modified insofar as it depends on motions that originated at points 0x <  which are now 
outside the basin.  
 

In the non-rotating example given earlier group velocity and phase velocity are 
equal. Thus the + mode carries energy into the eastern wall, where it is reflected into the - 
mode. The amplitude of the reflection is determined by the condition 0u =  at the wall 
(Equivalently, by the condition that the reflected energy is equal to the incident energy). 
The roles of the 2 modes are reversed at the west, in the non-rotating example. 
 
EXERCISE: Modify the non-rotating problem given earlier so that there are reflecting 
walls at 0x =  and Ex X=  instead of those longitudes merely marking the extent of the 
forcing. What is the response for 0 5t = . ; 2t = , 2t >> ? In the absence of friction is a 
steady state reached?  
 

For the equatorial case – including waves of all frequencies –the energy reflected 
by incident waves can be reflected by other types of outgoing waves. Moore (see Moore 
and Philander, 1976) has given a method for calculating the reflection of an incoming 



wave. Some of the qualitative features of these reflections may be noted. Each incident 
wave excites a series of waves. A mode incident on a western boundary excites a 
response which is at least as equatorially confined as it, itself, is. Unlike the mid-latitude 
situation, a mixed mode or Kelvin wave will be part of the response. The latter propagates 
away from the boundary quickly; the former remains near the western side, though it 
shows some effects extending into the basin. A mode incident on an eastern boundary 
excites a response which is less equatorially confined than itself. The parts of this 
reflection that are closer to the equator propagate away from the eastern boundary the 
most rapidly. This is a fundamental asymmetry of equatorial dynamics: western 
boundaries tend to concentrate the response on reflection while eastern boundaries tend to 
spread the response on reflection.  
 

Moore’s method generalized without modification to allow the calculation of the 
boundary response to any zonal velocity as long as it is oscillating at a single frequency. 
It may be extended to a motion with arbitrary time structure by analyzing this structure 
into its frequency spectrum, calculating the boundary response as a function of frequency, 
and then synthesizing over all frequencies to obtain the time dependent boundary 
response. In essence, one begins by taking the Laplace transform of the initial motion and 
finally obtains the time dependent response by inverting the resulting Laplace 
transformed form of the response. (See Lighthill, 1969, Anderson and Rowlands, 
1976a,b).  
 

However, as we are only interested in low frequency motions, we may take 
advantage of special properties of the low frequency modes to reach the same results on a 
different way. [This method also applies to meridionally bounded basins (Cane and 
Sarachik 1979) and hence may be used in numerical models: viz Cane and Patton, 1984.] 
 

6.5.2a Western Boundary Response  

The low frequency incident signals can only be long Rossby signals, though 
motions may also be directly forced at the boundary. Say the zonal velocity from all such 
sources is ( )Iu y t,  at 0x = . The reflection must be made up of waves carrying energy 
eastward. At low frequencies these are  
 
(a) Equatorial Kelvin waves, which propagate rapidly. If their amplitude at 0x =  is 

(0 )Ka t,  then their amplitude at x x′=  is ( )Ka x t x′ ′, − ; cf  Eq. 6.65. 
 
(b) Short Rossby waves, which propagate very slowly – so slowly that in the presence of 
friction they will be unable to move very far from the boundary. The totality of short 
Rossby waves at a given time make up the western boundary current. Denoting the sum 
of these waves by ( )B B Bu v h, , , we saw earlier that in the low frequency limit they satisfy  
 

0B B
xyv h− + = ,                                                (6.82a) 

 
0B B B

t yv yu h+ + = ,                                             (6.82b) 
and 

0B B
x yu v+ = .                                                 (6.82c) 



 
The last of these implies there is a stream function  
 

B B B B
y xu vψ ψ= − ; = ,                                          (6.83) 

 
so that, taking the curl of Eqs. 6.82a and 6.82b yields  
 

0B B
tx xv v+ =  

 
and 

0B B
xt xψ ψ+ = .                                                  (6.84) 

 
 

The boundary condition 0u =  at 0x =  means that, for any incident zonal velocity 
Iu  at 0x =   

 
( )( ) ( 0 ) (0 ) 0
2

B o
I K

yu y t u x y t a t ψ, + = , , + , =                         (6.86) 

 
for all y  and t .  
 

It follows from the continuity equation 6.82c and the two boundary conditions: 
0Bv =  at y = ±∞  and 0Bu =  at x = +∞ , that, for all x  and t: 

 
( ) 0Bu x y t dy

+∞

−∞
, , , =∫ . 

 
Hence, integrating Eq. 6.86: 
 

1 2 1 4( ) (0 ) 2 ( )B
I K o Ku y dy u y t dy a y dy aψ π

+∞ +∞ +∞/ /

−∞ −∞ −∞
− = , , + =∫ ∫ ∫ .              (6.87) 

 
Once Ka  has been determined from Eq. 6.87 (0 )Bu y t, ,  is given by Eq. 6.86.  
 

Eq. 6.87 reveals an important property of the western boundary response: to 
leading order, all the incoming zonal mass flux is reflected solely in the Kelvin mode. 
This fact is crucial to the adjustment process within a closed basin. The boundary trapped 
short Rossby modes provide no net zonal mass flux: these modes transport the incoming 
mass meridionally, connecting the incoming mass flux to the equator to be transported 
away from the western boundary as equatorial Kelvin signals. This makes it possible for 
the Kelvin mode to return the net incoming mass eastward regardless of the meridional 
extent of the incident zonal flow. Of course, it is possible to have a large zonal flow at 
some latitudes without having any net mass flux; for example, a westward flow south of 
the equator and an equal eastward flow north of it. In such a case the boundary motions 
provide the meridional transport needed to close these fluid circuits. This transport may 
be found, from the interior solution without explicitly calculating the boundary layer 
structure. That is, once Bu (0,y, t)  is known, then so is the transport B(x 0).ψ =  If desired, 



the structure of the western boundary layer, which is made up of short, slow, eastward 
moving Rossby waves, may be calculated from Eqs. 6.82 and 6.84.  
 
 

6.5.2b Eastern Boundary Response  

At low frequencies the signals reflected from an eastern boundary are long Rossby 
modes; denote the u  and h  components of their sum at Ex X=  by ( ) and ( )R Ru y t h y t, , . 
The only low frequency mode that can be incident on the eastern boundary is the 
equatorial Kelvin mode; let us suppose its amplitude at Ex X=  is ( )K Ea X t, . Then the 
boundary condition 0u =  at Ex x=  means that for all y  and t   
 

1 2( )2 ( ) ( ) 0R
K E oa X t y u y tψ− /, + , = .                                 (6.88) 

 
As we saw earlier, both the Kelvin modes and the long Rossby modes are geostrophic in 
y :  
 

0yyu h+ = ;  

 
hence the sum of the Kelvin and Rossby modes is as well. Since 0K Ru u+ =  at Ex X= , 
it follows that  
 

( ) 0 atK R
Eh h x X

y
∂

+ = =
∂

 

or  
1 2( )2 ( ) ( ) ( )R

E oa x t y h y t A tκ ψ− /, + , = .                         (6.89) 
 
i.e. the height field is constant at all latitudes on the eastern boundary.  
 

Writing Eqs. 6.88 and 6.89 together: 
 

1

0
( ) ( ) ( )

( ) K E n n
n

a X t y a y
A t

∞

=

⎡ ⎤
= , + ,⎢ ⎥

⎣ ⎦
∑K R                         (6.90) 

 
where Ka  is known, but A  and the na s  are not. A may be found by projecting ( )yK  on 
both sides of Eq. 6.90 and using orthogonality, i.e. the fact that ( ) 0n, =K R . The answer 
is  
 

1 4
KA aπ − /= .                                                (6.91) 

 
Projecting nR  on Eq. 6.90 then yields  
 

0na =  for n even 
 



and  
 

2n K na a α= ⋅ for odd n,                                          (6.92) 
 
where, nα is again given by Eq. (6.71). Note that at its highest point ( 0)y =  the Kelvin 
mode height field is less than A  by a factor of X .  
 
EXERCISE: How big is X  and why is this the case? 
 

Since n →∞  all Rossby modes enter the sum in Eq. 6.90, the height A  is set up 
instantly all along the eastern coast out to y →±∞ . This is a consequence of the long 
wave approximation, since with the full system of equations the fastest signal travels 
north and south from the equator only at the speed of a coastal Kelvin wave. However, 
calculations with the long wave approximation appear to show a Kelvin wave 
propagating poleward along the eastern boundary. This may be explained as follows. At a 
latitude My  the widest mode present will be the one for which 2 2 1My M= + :  lower n  
modes have small amplitude at this latitude while larger n  modes travel more slowly and 
so do not extend as far to the west. This mode has group velocity 1(2 1)M −− +  so at time 
t  it extends a distance 1(2 1)Mx M t−= + . Now if we move up the boundary from the 
equator with Kelvin wave speed 1c = , we arrive at latitude My  at time Mt y=  at which 
time 1

M Mx y−=  – the local radius of deformation. Thus if we move up the boundary at the 
Kelvin wave velocity, we always see the wave front at the local radius of deformation. 
The response thus has some of the characteristics of a Kelvin wave though no true Kelvin 
wave is present. Longer time integrations show that the reflection does in fact continue to 
propagate farther westward into the basin. [In nature and in numerical general circulation 
models, the long wave approximation is not made and real Kelvin modes will be traveling 
up the eastern boundary.] 
 

6.5.3 Steady state solutions  

 
We will be particularly interested in how the time evolving circulation approaches 

a steady state. Even though the forcing is steady these inviscid equations need not reach a 
steady state when started from a resting initial state. Nevertheless, we anticipate that the 
long time circulation will bear some special relation to the steady circulation, perhaps, for 
example, oscillating about it. The steady inviscid equations generally do not admit 
solutions satisfying 0u =  at both 0x =  and Ex X= . It is well known that the addition of 
viscosity permits a viscous boundary layer at the western side only (the arguments are 
similar to those given in Sec. 6.2.2). 
 

Furthermore, as illustrated in Fig.6.13d, the retention of the time dependences in 
the forced shallow water equations 6.46 permits a steady state flow to be corrected by a 
time-dependent boundary layer at the western side. We therefore envision a "steady state" 
solution to Eq. 6.46 as actually consisting of a steady interior solution plus a time 
dependent boundary layer correction at the western side. Hence we follow Sverdrup, 
1947, and impose the condition 0u =  at the eastern side Ex X=  on the interior solution. 



Applying this to the steady form of Eq. 6.46 yields  
 

[ ] [ 2 ]
E E

x x

x y y yX X
u G F dx yQ Q dx= − − + +∫ ∫                            (6.93a) 

 
[ ]x yv G F yQ= − −                                                 (6.93b) 

 
2

0{ [ ] } ( )
E E

x y x

x y EX X
h y G F F dx G x X dy y Qdx h

−∞
= − + + = − +∫ ∫ ∫          (6.93c) 

 
where 0h  is independent of x  and y  (see below).  
 

If 0Q ≡  then the circulation is purely wind-driven in which case (6.93) reduces to 
the Sverdrup solution. If the curl of the wind stress is zero then there is no steady motion 
and the sea surface setup balances the wind stress: 
 

x yh F h G= , = . 
 
Such a solution satisfies all boundary conditions without the need of a western boundary 
layer. For a thermally driven circulation ( 0 0)F G Q≡ ≡ , ≠  Eqs. 6.93 say that the 
steady solution is geostrophic with the thermal source locally balanced by mass 
divergence.  
 

The presence of an eastern boundary brings the ocean toward the steady state 
Sverdrup balance. In the present case, the curl of the wind stress may be nonzero showing 
that the way in which the spin-up takes place is not governed by the presence or absence 
of wind stress curl. In this response to a zonal wind, a significant part of the mass 
redistribution required to reach the final state is accomplished by meridional currents.  
 

 
Figure 6.11 . Functions giving the x t,  dependence in the western boundary layer. If the 



incident motion varies like t  then 1( )B Bu h J, ∝  and 2
BV J∝ . If it is independent of t  

after 0t =  then B B
ou h uadJα,  and 1

Bv J∝ . Note that the xt  structure means the shapes 
contract toward the western boundary as t  increases.  
 

6.5.4 Adjustment to the Steady State in a Basin 

We now have all the elements necessary to fit together to describe adjustment to a 
steady state solution in a basin. These elements are: 
 

• The unbounded solution which, until the effects of the boundaries can be felt, 
grow linearly with time if some zonal or mass forcing is present (as in Eq. 6.68) 

 
• The effects of the eastern boundary in cutting off the forcing and in returning a 

series of long Rossby modes. 
 

• The effects of the western boundary which returns a Kelvin mode to all incoming 
signals that have meridionally integrated zonal mass flux, and a western boundary 
layer consisting of short Rossby modes which can redistribute mass along the 
western boundary.  

 
• The approach to the final steady state which occurs first along the equator and 

then gradually more and more poleward.  
 



Fig. 6.12 Schematic diagram of successive stages of adjustment. Description in text. 
(From Cane and Sarachik, 1977.) 
 

Figure 6.12 provides a schematic view of the non-inertia-gravity wave 
components of the solution. Since the zonal current described by the unbounded response 
is generally nonzero, additional motions are stimulated by the presence of boundaries. At 
the eastern side the additional motions are syntheses of long wave Rossby waves 
( 0)kω, ≈ .  These modes propagate relatively rapidly: the group velocity of the n th mode 
is 1(2 1)n −− + . Since the more equatorially confined lower n  modes propagate faster, this 
response extends further into the basin near the equator and becomes narrower with 
increasing latitude. Only the first N  modes travel fast enough to have reached longitude 
x  by time t  where ( )N x t,  is the largest integer such that 12 1 ( )EN t X x −+ ≤ − .  The 
resulting bulge in the eastern boundary reflection is illustrated in Figure 6.12c with a 
dotted line indicating the wave front marking its farthest westward extent. Note that at 
time t  the front can travel no further west than to 3EX t− / .  
 

The western boundary response consists of a Kelvin mode traveling away from 
the boundary with group velocity 1 and a boundary trapped part that grows narrower and 
more intense with time as indicated in Fig. 6.11. The latter is a sum of modes that are a 
synthesis of short wavelength Rossby waves with low group velocity so that these modes 
stay near the western boundary. Most of their energy is in the v  component, which is in 
geostrophic balance. Since their zonal group velocity is so low, their energy density must 



be high in order for their energy flux to balance that of the incident motion. These 
features are qualitatively similar to the midlatitude case.  
 

The asymmetry in the character of the eastward and westward propagating Rossby 
waves helps to explain why currents intensify on the western side of the ocean as we saw 
in the barotropic context in Sec.6.3b. In addition, this reflection has features which are 
distinctly equatorial. Specifically, each incoming wave reflects as a whole series of 
waves, including the mixed mode or the Kelvin wave. Since the Kelvin waves carry 
energy away from the western boundary quickly, less of the incoming energy flux 
remains in the western boundary current than is the case for midlatitudes. At Et X=  the 
Kelvin mode from the western boundary arrives at the east and is reflected as a new series 
of longwave Rossby modes; see Figure 6.12b. By 3 Et X=  the initial eastern boundary 
reflection has crossed the basin and stimulates a new Kelvin wave as well as additional 
boundary trapped motions. The significant difference from midlatitudes is the existence 
of signals that can traverse the basin rapidly. 
 

The adjustment is most complete on and near  the equator since both Rossby and 
Kelvin signals have delivered their strongest messages here first. The bulging signal front 
in Fig. 6.13 works its way westward across the basin and then, when it has passed 
completely across (the length of time depends on the meridional extent of the basin), 
adjustment is substantially complete, although waves fronts continue  to bounce around 
until depleted by whatever inevitable dissipation mechanism is present. The adjusted case 
(the last panel in Fig. 6.13) would then have the steady solutions 6.93 with a constantly 
thinning boundary layer on the western boundary. In the presence of friction, the thinning 
boundary layer would also reach a steady state.  

 



Fig. 6.13: Mode diagram for adjustment (in this case to a meridional wind forcing of form 
1
( )yψ . Kelvin modes reflect from Rossby modes impinging on western boundary, 

Rossby modes reflect from Kelvin modes impinging on eastern boundary. (From Cane 
and Sarachik, 1977) 
 

The modes continue to bounce back and forth between the boundaries as in Fig. 
6.13 bringing the basin closer and closer to final adjustment, with the regions near the 
equator reaching adjustment before regions at higher latitudes.  
 

Our final comment on adjustment is the relevance of our assumed square basin to 
the real world. One might wonder what in reality plays the role of the western boundary. 
The western boundary serves mostly to reflect the Rossby modes into the Kelvin mode. 
Calculations by du Penhoat and Cane (1991) have indicated that the collections of islands 
forming the maritime continent is capable of reflecting most of the incident interannual 
Rossby motions (of order of 80%) so that the maritime continent does form a reasonable 
effective western boundary. 
 

6.6 Periodically Forced Motions 
There is some measure of regular forcing at the annual cycle in both the Atlantic 

and Pacific Oceans. The Pacific also has an admixture of periodic forcing at the semi-
annual period while the Atlantic is has very little semi-annual periodicity. A glance at the 
time series for NINO 3 (Fig. 1.7) shows that there are epochs when warm phases of 
ENSO appear in an almost regular progression and there are epochs where lone warm or 
cold phases appear out of a featureless background. The question “Is El Niño Sporadic or 
Cyclic” is in fact the title of a discussion paper by Philander and Fedorov (2003). The 
basic conclusion of their discussion is that the actual time dependence of the ENSO 
phenomenon sometimes shares characteristics of both.  
 

We have explained the adjustment to forcings that are suddenly imposed and 
considered the time dependent adjustment to this forcing. The response to periodic 
forcing is profoundly different in that we look only at the response at the forcing 
frequency (Cane and Sarachik, 1981). For periodic zonal wind stress forcing where the 
wind stress is zonally uniform, we wish to solve the shallow water equations: 
 

( )exp[ ]xi u yv h F y i tω ω− =− +                                       (6.94a) 
 

yi v yu hω + =−                                                     (6.94b) 
and 

0x yi h u vω + + = .                                                 (6.94c) 
 
While we will not go into the solution in any detail (see Cane and Sarachik, 1981, with 
additions by Neelin et al, 1998), we will indicate how essentially different are the 
solutions to a shallow water ocean forced periodically at the surface and one adjusting to 
an impulsively applied surface forcing.  
 

At each point of the ocean, the solution is a sum of all the equatorial waves 
oscillating at the forcing frequency ω that was forced by every other point of the ocean 



and by its reflections at both boundaries. For wind forcing uniform in the zonal direction 
and extending from the western coast at 0x = and the eastern coast at Ex X= , a single 
parameter describes the entire linear response: ( / )EX cφ ω=  where c is the Kelvin wave 
speed for the baroclinic mode of interest. This parameter may be interpreted as the ratio 
of the zonal size of the basin to the distance a Kelvin wave travels in time 1ω− . Because 
the Atlantic is about one third the length of the Pacific, the shallow water response to 
annual forcing in the Atlantic is basically the same as the response to similar forcing with 
three year period in the Pacific.  
 

Fig. 6.14 shows the response to annual forcing in the Atlantic (lower labels of the 
abscissa which give the distance directly in radii of deformation) or equivalently, the 
response to three year forcing in the Pacific (the upper abscissa labels give the fractional 
distance across the basin: ( ) /E Ex X Xξ = − ). 
 

 
 
Fig. 6.14. Response of thermocline to annual forcing in the Atlantic or three year forcing 
in the Pacific ( .54φ = ). a. Amplitude of response b. Phase of response with respect to 
forcing (negative phases lead)  c. Depth of thermocline on the equator as a function of the 
non-dimensional time. (From Cane and Sarachik, 1981.) 
 

The thermocline clearly does not pivot as a rigid see-saw. Within a radius of 
deformation of the equator, a minimum of amplitude (but not zero) exists about a third of 
the way from the western boundary. Were the thermocline to oscillate as a rigid see-saw, 
the phase would change from zero to 180° at the pivot point. Instead, the phase increases 

eastward near the equator. Since the apparent phase speed is 1( )phasec
x
χω −∂

=
∂

 , there is 

apparent eastward phase propagation with effective phase speed of about / EXωπ  or 
about 1/3 m/sec. Since no actual wave propagates eastward with this speed (the Kelvin 
wave travels an order of magnitude faster), the apparent phase speed is a result of the 
constructive and destructive addition of many different signals, all at the forcing 
frequency ω . 
 

Fig 6.14c shows the motion of the thermocline on the equator. The thermocline 
motion leads the forcing at the eastern boundary with the lead increasing westward. That 
this simple periodic theory gives the general features of thermocline variation in coupled 
models that exhibit regular oscillations may be seen by comparing with Fig. 6.15. The 
main difference between Figs 6.14c and 6.15 is that the wind field in the Battisti & Hirst 
simulation does not extend zonally over the entire basin but is confined roughly to the 



middle third while the SST variability is confined to the eastern third.  
 

 
 
Fig 6.15 SST (Left Panel) and thermocline variations (Right Panel) from a linear coupled 
anomaly model exhibiting regular oscillations at period of about 3.5 years. (From Battisti 
and Hirst, 1989.) 
 
 

6.7 The Role of the Ocean in ENSO 
 

We have seen in Chapter 5 that the tropical atmosphere organizes convection into 
regions of persistent precipitation according to the warmth of the SST it responds to. In 
turn, the surface winds are driven by these same processes, It is the role of the tropical 
ocean to respond to surface fluxes of heat and momentum from the atmosphere and 
change its SST. The change of SST in the tropics is mostly in response to surface wind 
changes in the atmosphere—the changes of surface heat fluxes are predominantly 
damping and respond to SST changes rather than causing them. SST then changes in 
response to changes in the winds  through horizontal advection, which depend on surface 
gradients of SST, but mostly through wind induced changes of upwelling. The 
temperature of upwelled water depends on the depth of the thermocline which also 
depends on changes in winds through signals having characteristics of equatorial waves.  
 

We have seen that the atmosphere organizes surface winds according to the SST 
provided by the ocean. The ocean provides SST changes in response to surface wind 
changes provided by the atmosphere. It is now time to examine the large-scale low- 
frequency motions that arise from the interactions of the atmosphere and the ocean in the 
tropics—this is the topic of Chapter 7. 



7. ENSO Mechanisms  
 

In the earlier days of modern ENSO studies (the early 1980s), it was common to 
find papers that used observed time dependent fields of tropical surface fluxes of heat and 
momentum to drive an ocean model and ascertain that the resulting time dependent fields 
of SST resembled the evolution of ENSO. It was also common to find papers that used 
observed time dependent tropical fields of SST as boundary conditions for an atmospheric 
model and ascertain that the atmospheric response resembled both the local ENSO fields 
of sea level pressure, precipitation and surface fluxes and the remote teleconnections of 
ENSO to the rest of the globe. Both types of studies are consistency checks on the models 
used for explaining ENSO but, of course, neither is, by itself, an explanation for ENSO. 
An explanation for ENSO must tell us where the atmospheric surface fluxes used to force 
the ocean and the oceanic SST used as a boundary condition for the atmosphere come 
from. 
 

The only way to do this is to consistently couple an atmospheric model to an 
oceanic model and see if the coupled model exhibits both the atmospheric and oceanic 
aspects of ENSO. Even if a coupled model does exhibit ENSO behavior, it is not clear 
that the reasons for this behavior can be given: correct simulation does not guarantee 
correct understanding. It is for this reason that we begin with very simple, and therefore 
understandable, coupled models that exhibit interannual variability. It should be kept in 
mind that not all interannual variability can be identified with ENSO. Indeed it is still true 
at this writing (2009) that, while many coupled models give more or less reasonable 
representations of ENSO, and while aspects of the evolution of ENSO can be reliably 
predicted two or three seasons in advance, the basic mechanism for ENSO in nature 
remains uncertain. There are a number of possibilities and it is almost certain that the 
correct mechanism is to be found among these possibilities, either singly or in 
combination. It is the purpose of this chapter to introduce these mechanisms and indicate 
the arguments for their plausibility. It remains for future researchers to pin down the 
precise mechanism from among the possibilities here presented.  
 

In the previous two chapters, we have examined the basic tropical mechanisms for 
the atmospheric forcing of the ocean and the oceanic forcing of the atmosphere. We saw 
that, in the tropical Pacific, surface water warmer than about 29ºC organizes low level 
moisture convergence and therefore produces deep cumulonimbus convection. On 
monthly (and longer) time scales, the time scales relevant for our discussion, we can take 
the relation between the SST and low level convergence as direct and reliable while on 
shorter time scales (a week or less), different organizations of convection can exist for the 
same SST. We also saw that the surface winds on monthly and longer time scales are a 
combination of those forced directly by the regions of deep cumulonimbus convection 
and those forced by the boundary layer horizontal pressure gradients. The result of wind 
forcing on the ocean is then to change the depth of the thermocline which, in concert with 
horizontal advection and upwelling, changes SST. The heat fluxes at the surface oppose 
these SST changes. 
 

In this section, we will meld together these processes in the atmosphere and ocean 
and examine the types of motion that can arise as a result of the interaction. We will see 
that for large enough coupling (the sense of “large” to be defined below) there will 
always be unstable coupled atmosphere-ocean modes that grow exponentially with time, 



with the precise form of these coupled modes depending on the thermodynamics of the 
situation. The most realistic thermodynamics of the simpler models is given by the 
Zebiak-Cane (ZC in the sequel) model. We will see that one interpretation of the ZC 
model can be given in terms of the delayed oscillator paradigm which explains regular 
oscillations at interannual periods that resembles ENSO (although the real ENSO is 
hardly regular). The full ZC model is irregular and nonlinear and the reason for the 
irregularity in the model is reasonably clear, but the reasons why nature’s ENSO is 
irregular is still controversial. 
 

While classic instability is one form of ENSO growth, there is another. Stable 
systems can exhibit the property of “non-normality” (Appendix 3) in which small 
disturbances can first grow (sometimes to rather large amplitudes) before they decay. 
Constantly exciting a non-normal stable system with small random perturbations offers 
another class of theory for ENSO, one that is intrinsically irregular.  
 

A third class of ENSO mechanisms is simply a combination of the two given 
above: unstable ENSO modes can be made irregular either though nonlinear interactions 
and/or by perturbations by inevitable ambient noise in this case, motions of sub-monthly 
time scales. 
 

This chapter will begin with simple models to exhibit some general properties of 
atmosphere-ocean interactions even though they have little relevance to ENSO in the real 
world. The chapter will proceed to the so-called “intermediate models,” in particular to 
the ZC model, and look at the mechanisms that have been diagnosed for this class of 
model. The delayed oscillator mechanism is explored in some detail then some other 
conceptual models, including the recharge oscillator, are introduced and the relationships 
among these models are considered. We then discuss the role of nonlinearities and 
dissipation, and whether their place in nature can be determined. The Chapter will 
conclude with an examination of ENSO in more complex coupled atmosphere-ocean 
general circulation models. 
 

It is hoped that the reader comes away with the (correct) impression that although 
much has been learned, there still remain fundamental problems in modeling ENSO and 
understanding the fundamental mechanisms for ENSO.  
 

7.1 Pioneers of the Study of ENSO: Bjerknes and Others 
 

There were historical precursors to ENSO theory in both the atmosphere and 
ocean---while none were complete, each was important.  
 

Jacob Bjerknes (1969) was responsible for the point of view presented in Chapter 
1, and for the idea that there are two coupled atmosphere-ocean states that comprise the 
warm and cold phases of ENSO. One state has anomalously cold water in the eastern 
Pacific, strong westward trades, heavy precipitation moved westward, and anomalously 
low sea level pressure in the west and anomalously high SLP in the east (i.e. a strongly 
positive Southern Oscillation). The other has warm water extending eastward well into 
the tropical Pacific, weaker than normal westward trades (i.e. anomalously eastward zonal 
winds), eastward expansion of the region of persistent precipitation, and anomalously 
negative Southern Oscillation. Recognizing that these two states involved a cooperative 



interaction between the atmosphere and the ocean was an extraordinary intellectual 
achievement and provided the starting point for all future progress in tropical atmosphere-
ocean interactions. 
 

Recognizing that the atmosphere and the ocean work cooperatively to produce the 
warm and cold phases of ENSO is not a complete theory for ENSO since no mechanism 
has been provided for the transition between states. Indeed, as expressed by Bjerknes, the 
extreme warm and cold states seem stable. 
 

An important advance in the oceanographic aspects of ENSO was the observation 
by Klaus Wyrtki (1975, 1985a) that the sea level in the western Pacific rises before and 
during warm phases of ENSO and declines as the warming approaches its peak. Wyrtki 
(1985a,b) developed a hypothesis for ENSO, a forerunner of what is now known as the 
“recharge oscillator”: the aftermath of a warm event leaves the thermocline along the 
equator shallower than normal (i.e. equatorial heat content is low and SST is cold; this is 
the “La Nina” phase). Over the next few years the equatorial warm water reservoir is 
gradually refilled. Once there is enough warm water in the equatorial band, the rapid (for 
the ocean) equatorial Kelvin and Rossby signals allowed by linear equatorial ocean 
dynamics can move enough of the warm water to the eastern end of the equator to initiate 
the next event. Wyrtki viewed this as working together with the feedbacks described by 
Bjerknes to create the ENSO cycle; it is ocean dynamics that provide the means for the 
never-ending transitions between warm and cold states. Wyrtki’s ideas were derived from 
observational data for wind, SST, and especially sea level, an indicator of the depth of the 
warm water layer above the thermocline. At the same time, Cane and Zebiak (1985) 
proposed a strikingly similar picture, based primarily on the behavior of the intermediate 
Zebiak-Cane (1987) model, discussed below. Neither Wyrtki nor Cane and Zebiak 
expressed these ideas in the form of a simple set of equations, and neither were specific 
about just how the equatorial recharge was accomplished. 
 

7.2 Simple Coupled Models  
 

The first simple model of coupled atmosphere-ocean instability was that of 
Philander, Yamagata and Pacanowski (1984). They used the set of shallow water 
equations for the atmosphere (essentially the Gill model) coupled to shallow water 
equations for the ocean with temperature anomaly in the eastern Pacific set proportional 
to the thermocline depth anomaly. They found eastward propagating SST anomalies on 
interannual time scales. While this is not very realistic (we saw in Fig. 2.17 that the 
anomalies tend to grow in place without much propagation) it was the first model to 
indicate that interannual variability could arise without special artifice, solely from the 
coupling of the atmosphere and ocean.  
 

We will closely follow the work of Hirst (1986) because this work includes the 
Philander, Yamagata, and Pacanowski (and others, notably Anderson and McCreary, 
1985) work as a special case and because the presentation is very lucid and educational. 
The virtue of the model, its simplicity, is also one of the difficulties with the model: the 
interannual variability derived from the model bears scant resemblance to the actual 
ENSO. The resolution of this dilemma will be identified in this section but addressed in 
the next section when we discuss the next in the chain of increasingly more realistic 



models, the Zebiak-Cane model. We emphasize that the presentation is ordered 
didactically rather than historically. 
 

7.2.1 Formulation 
 

The atmospheric model is akin to that of Gill (see Sec. 5.5.2): 
 

t xU yV AUβ ϕ− =− − ,                                        (7.1a) 
 

t yV yU AVβ ϕ+ =− − ,                                        (7.1b) 
and 

2( )t a x yc U V B Qϕ ϕ+ + =− + .                                    (7.1c) 
 

The Kelvin wave velocity ac  in the atmosphere is taken to be 30 m/s and the 

resulting equatorial radius of deformation 

1
2

ac
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 1200km. A and B are dissipation 

parameters for the horizontal velocity and geopotential respectively and Q is the heating. 
 

The ocean model is based on a model of Anderson (1984) and Anderson and 
McCreary (1985). The ocean model assumes the layer above the thermocline, of depth 

,h h+  is well mixed, that there are no mean currents and that the lower layer is at rest (as 
in the 1 and 1/2 layer model of Chapter 3). The mean density of the upper layer is ( )xρ , 
its average value is 0ρ , and the lower layer density, 0ρ ρ+ Δ , is unchanging. Anomalies 
are linearized: 0 0 and T Tρ ρ α ρ ρ α= Δ = Δ with α  taken to be constant (which is a good 
approximation for the upper layer of the tropical ocean).  
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− + Δ + + =− +                  (7.2a) 

 

0
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y

t y y yv yu g Th ghT gT h av
h

τβ α α α
ρ

+ + Δ + + =− +                (7.2b) 

 
( )t x yh h u v bh+ + =−                                               (7.2c) 

 
The temperature equation will be taken as various limits of  

 

t x TT uT K h dT+ =− − .                                             (7.3a) 
 

The Kelvin wave speed 
1 1
2 2

0

( ) ( )oc gh Tghρ α
ρ
Δ

= = Δ  is about 2.5 m/s and the 

equatorial radius of deformation 250km.  
 



The surface wind stress and latent heating of the atmosphere are (linearly) 
parameterized respectively by: 
 

0
SK

hρ
=−

τ U                                                 (7.4)  

and 
 

QQ K T= .                                                    (7.5) 
 

The values of the coupling parameters SK , QK  and the dissipation parameters a, 
b, d and TK  are estimated from observations with the details given in Hirst (1986). 
 

An equation for the atmospheric perturbation energy, 
2

2 2
2

1 ( )
2a

a

E U V
c
ϕ

= + + , can 

be derived directly from Eq. 7.1 where aE< >  is the value integrated over the region of 
interest: 
 

2
2 2

2 2
a

a a

d E Q
A U A V B

dt c c
ϕϕ

= − − − .                               (7.6) 

 
We see from Eq. 7.6 that the only generation term is the first one on the right hand 

side (the other three terms are dissipation terms) so that energy can grow only when 
heating takes place in a region of high thickness or geopotential: i.e. only when latent 
heating heats where it is already warm. Since heating occurs over the warmest waters, this 
is automatically true. 
 

The ocean energetics depends on which precise form of the temperature equation 
(Eq. 7.3) is used. The simplest is Hirst’s case I, where the temperature anomaly is simply 
proportional to the thermocline depth: 
 

T hκ= .                                                     (7.3b) 
In this case, the ocean perturbation energy is 
 

2 2 21 ( )
2

I
o

g TE u v h
h

α Δ
= + +                                                 (7.7) 

 
and the rate of change of perturbation energy is: 
 

2 2 2

0

I
od E g Ta u a v b h

dt h h
α

ρ
⋅ Δ

= − − −
u τ

                 (7.8) 

 
so that, again, the only generation term is the first one on the right hand side of Eq. 7.8 
and it says that perturbation energy can grow only when the wind stress works on the 
perturbation currents, i.e. is in the same direction as the surface currents, for example 
when a westerly perturbation wind stress acts on a weaker westward mean current 



(eastward current anomaly). It will be true for all the models derived from Eq. 7.3 that 
perturbations can grow only under the two conditions already given: that on the average 
perturbation latent heating occurs where the air is anomalously warm and perturbation 
wind stress works positively on the anomalous currents.  
 

The other models derived from Eq. 7.3 are: 
 

Model II:                                               t xT uT dT+ = −                                          (7.3c) 
 

and  
 

Model IV:                                              t TT K h dT= − .                                        (7.3d) 
 
The model using the full Eq. 7.3a is denoted as Model III.  
 

Because the forcing terms τ  and Q on the right hand sides of Eqs 7.1 and 7.2 are 
expressed in terms of the variables themselves by Eqs. 7.4 and 7.5, the full set of 
equations can be put in the form of an eigenvalue problem. First, Fourier transform the 
basic equations in x so that the variables are in the form [ ]( )exp ( )U y i kx tσ−  with a 
specified k real and σ  possibly complex. The equations 7.1, 7.2, and whatever form of 
7.3 is used are then discretized in the y direction and a single eigenvalue problem can be 
found of form iσ=Mξ ξ  where ξ  is a vector of the seven state variables 

( ), ( ), ( ), ( ), ( )y y y h y T yϕU u  in discretized form, M is the matrix obtained from the 
discretized forms of Eqs. 7.1, 7.2 and 7.3, and the boundary conditions specify  that all 
variables go to zero at large y . Any solution to the eigenvalue-eigenfunction problem 
with Im( ) 0σ >  gives unstable solutions that grow exponentially with time--the 
corresponding eigenfunctions give the form of the growing coupled modes. Re( )σ  gives 
the corresponding frequencies of the growing modes.  
 

7.2.2 Stable and Unstable Coupled Solutions  
 

It is worth going through the solutions in some detail since much of our intuition 
about the general nature of coupled atmosphere-ocean modes have been developed from 
solutions to these kinds of simplified models.  
 

It can be generally noted that for each of the four models, when the coupling gets 
strong enough, unstable modes inevitably occur. The coupling is measured by the product 
of Q SK K , so it doesn’t matter which of the coupling constants in Eqs. 7.4 and 7.5 is 
increased, it is only the product that counts. The coupled modes that become unstable are 
different for each of the four models of SST change, I, II, III or IV. Figs. 7.1 and 7.4 show 
the growth rate and frequency for models I and III as a function of coupling (for a 
wavelength of 15,000km, about the width of the equatorial Pacific) with the dashed 
vertical line as best estimate for representative coupling. The right panels in each of these 
figures show frequency and growth rate as a function of wavelength at the representative 
coupling. The dashed lines in the right panels are the values in the absence of coupling. 
 



 
 
Figure 7.1 Solutions for model I. Left panels gives frequency Re( )σ  and growth rate 
Im( )σ  as a function of coupling for specified k=.106 corresponding to a wavelength of 
15,000 km. Right panels give frequency and growth rate as a function of wavenumber for 
the coupling given by the dashed line in the left panels. (From Hirst, 1986.) 
 

Fig. 7.1 shows clearly that as the coupling increases (left panels) a mode becomes 
unstable. The right panel shows that this mode nearly has the dispersion formula for the 
free oceanic Kelvin wave and this is verified by looking at the structure of the coupled 
mode in Fig. 7.2.  
 

 
Fig. 7.2. Structure of the unstable mode in model I. In the ocean, the dashed contours give 
mixed layer depth h anomalies, the dotted contours give SST (T) anomalies and the 
dashed arrows give ocean velocity anomalies. In the atmosphere, solid contours give 
pressure (P) anomalies and solid arrows give surface wind anomalies. The meridional 
distance is measured in units of ocean equatorial radii of deformation—about 250km.  
Contours of P and h are at 90%, 50% and 10% of extreme values (+ and -), while the 
contour of T is at 80 % of extreme value. (From Hirst, 1986.) 
 

The structure of the coupled Kelvin mode is basically that of the Kelvin mode in 
the ocean with the atmospheric pressure pattern arranging itself so that the maximum 
wind anomalies lie over the maximum surface current anomalies, which for Kelvin waves 
is coincident with the deepest depth anomalies which in turn, for Model I, is coincident 
with the maximum SST anomaly. The coupled mode moves almost with the ocean Kelvin 



mode speed and the winds are aligned with the ocean currents to have 0>u τi  so that the 
necessary condition for instability according to Eq. 7.8 is satisfied. For model I, the 
coupled Rossby mode (not shown) has the atmospheric surface winds in quadrature 
(opposite) to the ocean currents and the necessary energetic condition for instability is not 
satisfied—the coupled Rossby mode is damped for model I—see Fig. 7.3 A and B. The 
atmospheric anomalies have a much larger meridional scale but travel with the oceanic 
Kelvin wave speed. 
 

For model II, at large enough coupling, the mode R1 goes unstable at long 
wavelengths while the Kelvin mode K is damped. Again, the internal oceanic structure is 
that of the first Rossby mode with the and the entire coupled mode moving approximately 
with the oceanic Rossby wave speed. The SST anomalies are confined to the equator and, 
because the atmospheric highs in Fig. 7.3D are displaced in a manner characteristic of 
Rossby waves, the equatorial winds are in phase with the ocean currents and the condition 
for instability is satisfied. For model II, the Kelvin-like coupled mode is damped (Fig. 
7.3C). 
 

 
 
 
Fig. 7.3 Summary schematic of damped and unstable coupled modes for Models I and II. 
(From Hirst, 1986). 
 

When we move to model III, where all the terms in the thermodynamic Eq. 7.3a 
are included, the coupled model again goes unstable for large enough coupling but now 
the coupled mode (denoted U) moves slowly eastward at such a slow rate that it cannot be 
identified with any free ocean mode (Fig. 7.4). 

 



 
 
Fig. 7.4 Solutions for model III. Conventions as in Fig. 7.1. U is the arbitrary label for the 
unstable mode. (From Hirst, 1986.) 
 

The horizontal structure of the unstable U mode is shown in Fig. 7.5, the ocean 
aspects of which bear no relation to a free ocean mode. It has long zonal wavelengths and 
its internal ocean depth anomaly and velocity anomaly, as well as the SST anomaly, are 
maximum on the equator. The depth anomaly leads the SST anomaly by about a half 
cycle. The atmospheric part of the mode has large meridional scales characteristic of the 
atmospheric radius of deformation yet travels with the slow oceanic speed.  
 
 

 
Fig. 7.5. Horizontal structure of unstable mode U. Conventions as in Fig. 7.2. (From Hirst 
1986). 
 

The U mode doesn’t look much like the observed ENSO, in particular the 
anomaly propagates slowly eastward while the observed ENSO SST anomaly essentially 
grows in place (e.g. Fig. 2.20a). Given that that this simple coupled model is not a good 
representation for ENSO, what have we learned from this model? We can summarize the 
following points: 
 

• Coupling of the atmosphere and the ocean near the equator can produce unstable 
coupled modes when the coupling is large enough. The instability is weakened by 
increased dissipation.  

 
• Coupled modes will be unstable only if the mix of processes that change the SST 

can produce wind stresses that, in the net, work on the currents at the surface of 
the ocean, i.e. 0⋅ >τ u . 



 
• Coupling of the atmosphere and ocean can lead to modes of interannual period. 

Some of these modes do not involve the participation of the thermocline at all and 
therefore, comparing to observations (Fig. 2.20b), cannot be a representation of 
ENSO.  

 
• Depending on the mix of thermodynamic processes that change the SST, the 

modes can either resemble their ocean counterpart (Rossby or Kelvin modes), or 
not at all resemble them. In cases where the coupled mode looks like a free mode, 
the coupling causes the modes to travel slower than their oceanic counterparts. 

 
• When the full complement of processes is included, the resulting coupled modes 

do not resemble free modes in the ocean.  
 

Perhaps the lack of reality of the coupled mode U (the one with the most complete 
thermodynamics) is due to taking the beta plane to be infinite, and therefore imposing 
boundaries at the east and the west will lead to a more realistic representation for ENSO. 
When Hirst (1988) did this the result was surprising: the coupled modes did not seem to 
see the lateral boundaries of the ocean at all and were very similar to the modes on an 
infinite beta plane. 
 

Wakata and Sarachik (1991) identified the reason for the failure of these coupled 
modes to see the boundaries, and, in the process, provided a link between the Hirst type 
eigenvalue problems and the results of the Zebiak-Cane model in the next section. 
Tracing the derivation of the SST Eq. 7.3 shows that the parameters TK  and d both 

depend on the mean upwelling velocity ( )w y , which arises from the mean wind-driven 
divergence in the surface layer, and the mean thermocline depth ( )h x ,which is tilted from 
east to west. The derivation shows that the correct interpretation of these parameters is: 
 

s
wd
H
γ α= +   and  ( )TK w f h= , 

 
where the functional form ( )f h depends on the relation between the layer depth and the 
subsurface temperature and will be given below in Eqs. 7.14 and 7.15. The relevant point 
for this discussion is that the parameters d and TK  depend on the meridional extent of the 
mean upwelling velocity and the zonal tilt of the mean thermocline depth and therefore 
cannot be considered constant. By choosing these parameters constant, Hirst had basically 
taken the friction parameter d as everywhere large and spatially constant, whereas, in fact, 
its large values are tightly meridionally confined to the equator and are relatively small, 
of value sα , everywhere else.  Having large frictional values everywhere damps the 
Rossby modes and thereby inhibit aspects of the problem involving westward 
propagation.  
 

By solving the same Hirst linear eigenvalue problem for coupled modes in a basin 
but now with these spatially dependent parameters, Wakata and Sarachik (1991) showed 
that a standing (i.e. not propagating) unstable coupled mode in a bounded model basin 
existed only when the east-west mean thermocline was 150m deep in the west and 50m in 



the east and when the meridional scale of the mean upwelling velocity was 150km. This 
coupled mode is shown in Fig. 7.6: 
 

 

 
 

Fig. 7.6 Left Panel: a) Depth amplitude b) SST amplitude, both as a function of latitude. 
Right Panel: a) Thermocline on equator as a function of time moving upward b) SST on 
equator. 360° in the right panel corresponds to the period of the mode, about 2.5 years. 
Because the modes are unstable, the exponentially growing part has been suppressed. 
(From Wakata and Sarachik, 1991.) 

 
We see that the coupled unstable mode gives a reasonable ENSO cycle in a basin, 

albeit one that has too short a period. It should be noted that linear stability models can 
never give the amplitude of the oscillation, only the spatial and temporal properties. We 
learn therefore three more points on our journey to a reasonable ENSO mechanism: 
 

• Propagating signals on the thermocline of the ocean are an important part of any 
coupled ENSO response. This is the same point that Wyrtki established 
observationally from his work with tide gauge data. 

 
• The magnitude and spatial extent of the oceanic dissipation (especially through 

the mean upwelling term) helps determine the propagation characteristics of the 
ocean propagating signals and therefore of the coupled modes. In particular, to 
achieve an almost standing mode (without propagation), as observed, the 
meridional extent of the mean upwelling has to be very small (of order 150km) 
and the slope of the mean thermocline must be near observed.  

 
• Coupled modes in a basin with periods on interannual time scales reasonably 

describing aspects of ENSO can be achieved under constant mean conditions 
without the necessity of an annual cycle. (This is not to say that the annual cycle is 
not important for the understanding of the real ENSO cycle. An obvious question 
is why does the ENSO cycle SST anomaly peak in boreal winter?)  

 



We turn now to what has proved to be a very fertile and useful simplified model 
of ENSO.  It predates the stability calculations we have just described and its design was 
drawn from a consideration of the data. We shall see that it incorporates all the lessons 
the lessons learned from the simple stability calculations described in this section.  
 

7.3 The Zebiak-Cane Model 
 

The Zebiak-Cane model (Cane and Zebiak, 1985; Zebiak and Cane, 1987) is the 
simplest model that includes all the processes known to be important for ENSO and that 
incorporates the lessons we have learned from the simple linear coupled models in the 
previous section. Its major simplification is the formulation of the model as an anomaly 
model, where the anomalies are calculated relative to an annual cycle specified from 
observations. This simplification removes the necessity for simulating the mean climatic 
state and mean annual cycle: instead it requires that the mean and annual cycle in both the 
atmosphere and ocean be specified from observations. In retrospect, this has turned out to 
be crucial since the annual cycle has proven particularly difficult to simulate correctly in 
more complex coupled models (see Sec. 7.8). 
 

The model also simulates the other processes for the atmosphere and ocean that 
determines the SST anomaly at the surface. In particular the ocean includes an explicit if 
highly simplified surface mixed layer, which allows the mixed layer processes of wind 
driven convergence and divergence to be captured. The response of the thermocline to the 
winds are modeled by linear dynamics, and an approximate relation between the 
thermocline depth and the temperature of water entrained into the mixed layer is included. 
In the atmosphere, the effects of SST anomalies on the changes of the surface winds are 
included by the modified Gill-like model discussed in Sec. 5.7. The magnitude of the 
coupling of the wind to the stress is taken at a conventional value and the magnitude of 
the convergence for a given SST anomaly is adjusted to give reasonable magnitudes of 
the resulting surface winds.  
 

To write the heat budget we need the surface advective velocity sfcu , the 
upwelling velocity w, and the temperature of the water entrained into the mixed layer, eT , 
in addition to the physics of the ocean mixed layer. In most places the balance near the 
surface is just 1-dimensional ocean mixed layer physics (e.g. Gill and Niiler, 1973). In 
order to simplify the problem, the mixed layer depth mh is taken to be constant at a mean 
tropical Pacific value of 50m and the temperature of the mixed layer has the same value 
as the sea surface temperature.  
 

Currents are more intense in the surface layer: to model them requires explicit 
consideration of the surface mixed layer. The simplest dynamical model is Ekman layer 
physics for the surface currents, sfcu . The currents also depend on the horizontal pressure 
gradient so we need sfcp . The temperature below the mixed layer subT  depends on the 

vertical motion of the subsurface thermal structure: sub
TT h
z

∂
Δ ≈ Δ

∂
 (Fig. 7.7b) so we have 

to simulate the thermocline variations. The simplest model to determine these is the linear 
reduced gravity model, with one active layer over an infinitely deep abyssal layer. We 
already saw this model in Sec. 6.2. Putting the reduced gravity model together with a 



mixed layer gives the ocean component of the Zebiak and Cane (1987) model (Fig. 7.7a). 
The earlier ocean models of Cane (1979) and Schopf and Cane (1983) were similar.  
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(a)  
Fig. 7.7 Structure of the ocean component of the ZC model. (a) Upper layer structure (b) 
Relation of Tsub and thermocline depth. 
 
 
Summarizing this ocean model:  
 

The dynamics are given by  
 

1
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m

f p
t h

∂ −
+ × +∇ =

∂
u τ τk u                                  (7.9a) 

and 
1( )m eh w∇⋅ =u                                                (7.9b) 

 
for the upper (mixed) layer and  
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u                                   (7.10b) 

 
for the lower layer extending from the bottom of the mixed layer to the (active) 
thermocline. sτ is the surface wind stress, Iτ is the interfacial stress at the bottom of the 
mixed layer and Bτ is the interfacial stress at the thermocline. Since mh and 2h  are 
constant, the equations are linear. The horizontal currents in the surface mixed layer are 
driven by wind stress (Ekman processes) and by pressure gradients. 
 

To recover the shallow water equations: let 1 2 2

2

[ ]
( )

T m

m

h h
h h

+
=

+
u uu and, since the 

stratification within the active layers is weak compared to ρ ρ∇ / (a measure of the density 
difference above and below the thermocline), we may assume 1 2p p≈ .  
 



Eqs 7.9 and 7.10 can be combined to give equations for the total horizontal 
velocity (where r is the momentum dissipation): 
 

T
T Ts Bf p r

t h
∂ −

+ × +∇ = −
∂
u τ τk u u                                 (7.11a) 

and  

( ) 0Th h
t

∂
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∂
u                                         (7.11b) 

 
The equation for the Ekman velocity  Eu , which is just the difference 1 2−u u  is: 
 

E s I
Ef

t h∗

∂ −
+ × ≈

∂
u τ τk u                                       (7.12) 

 

with 
* 2

1 1 1

mh h h
= + . For the long timescales of interest f

t
∂
<<

∂
 so the usual Ekman 

equations apply:  
 

E s s Ef r× = −k u τ u  
 
where I s Eh r∗=τ u , the interface stress at the bottom of the mixed layer, is needed at the 
equator. Zebiak and Cane (1987) argue that it is a stand-in for the nonlinear terms.  
 

The thermodynamic equation for SST anomalies is given as: 
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(7.13) 
 
where ( ) max( ,0)M x x=  so that water from below is brought into the mixed layer only 
when the vertical velocity is upward.  The first term on the right hand side is the 
advection of the total SST by the anomalous currents, the second term is the advection of 
anomalous SST by the mean currents, the third term is the vertical advection of mean 
temperature by the anomalous vertical velocity (as long as it is positive), the fourth term 
is the total vertical advection (as long as it is positive) of temperature through the bottom 
of the mixed layer, and the final term is the surface flux that opposes the SST anomalies. 
While this is an equation for the temperature anomaly  –the departure from the (specified) 
climatological temperatures T – it is important to note that it is fully nonlinear and no 
terms are omitted.  (It is most readily derived by subtracting the equation for the 
climatological temperature T from the equation for total temperature 

and total
total

T T TT T T
t t t
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= + = −

∂ ∂ ∂
.) 

 
The parameterization of the subsurface temperature in terms of the thermocline 

depth is crucial. The water entrained into the mixed layer comes from the entrainment 



zone and is a mixture of the mixed layer water with temperature T and water in the ocean 
beneath it with temperature subT ; with 0 1,γ< <  
 

(1 )e subT T Tγ γ= + − .                                         (7.14) 
 
The subsurface temperature subT is given empirically by: 
 

1 1 1 1{tanh[ ( )] tanh( )}subT T b h h b h= + −  when 0h > ,            (7.15a) 
 
and  
 

2 1 2 2{tanh[ ( )] tanh( )}subT T b h h b h= + − when 0h < ,            (7.15b) 
 
where ( )h x is specified. 
 

The equations are solved in a rectangular “tropical Pacific” basin 15,000 km wide 
extending from 29°S to 29°N. After a small initial kick to ensure that the initial anomaly 
state is non-zero the coupled model is allowed to run freely. The evolution of an warm 
event is shown in Fig. 7.8. 

 
Fig. 7.8 Evolution of warm phase of ENSO in three month intervals from March of model 
year 30 to March of model year 31. The upper part (a) of each month’s display shows the 
SST anomaly for that month and the lower part (b) shows the wind field for that month. 
(From Zebiak and Cane, 1987.) 
 



This figure shows that the evolution of SST anomalies looks realistic, the spatial 
representation is realistic and the anomalies grow in place, essentially without 
propagation. The major discrepancy in evolution is that the warm phase of ENSO lasts 
too long—instead of dying away by northern spring, it extends into the northern summer. 
The winds to the west of the peak SST anomaly looks realistic but the winds to the east of 
the peak are too strong and too zonal. 
 

An important realistic feature is that the model ENSO events tend to peak at the 
end of the calendar year.  Zebiak and Cane, 1987 ( also see Blumenthal, 1991) show that 
the mean conditions in boreal summer and fall are particularly favorable for the positive 
feedback. The coupling weakens into the winter and anomaly growth ceases; one would 
expect the maximum SST anomaly to be attained when the rate of change is zero.  
 

The evolution of the SST anomalies over time are shown in Fig. 7.9 where the 
NINO3 index from a thousand year run of the model is shown. The evolution is clearly 
irregular, with decades of little activity and decades with relatively regular four year 
cycles of warm and cold phases. Since the anomaly temperature equation is complete, 
including nonlinear terms, and the atmospheric heating is also nonlinear, the mean 
anomaly is not constrained to be zero.  In fact, there is a small non-zero mean; the mean 
of the NINO3 anomaly, for example, is about 0.3°C. This is not an inconsistency in that 
nothing in the model formulation requires a zero mean, but it is an error insofar as the 
mean anomaly plus the specified basic state does not add up to the true climatology.  
 

 
 
Fig. 7.9 NINO3 index from a thousand year run of the Zebiak-Cane model. (From Cane, 
1992.) 



 
There is clearly a characteristic timescale of order 4 years. Since the longest 

instrumental record with which to compare it is of order 150 years (Fig.1.17) it is hard to 
know how realistic the long term behavior of the model is, but parts of this long model 
run clearly look quite unlike the observations.. For example, years 570 to 640 have an 
amplitude that is too large and the index is too regular. Years 780 to 820 look more like 
the observed NINO3 record. The combination of Figs. 7.8 and 7.9 show that the model 
captures much of the correct near-surface behavior of ENSO. 
 

 
Fig 7.10. Wind stress (left panel) and thermocline depth (right panel) anomalies on the 
equator . Contour interval for the stress is .05dyn/cm2 with negative (eastward) anomalies 
dashed and positive anomalies solid (eastward anomalies greater than .15 dyn/cm2 
stippled). Contour interval for the thermocline depth anomaly is 10m with positive 
(deeper) anomalies solid and negative anomalies dashed. (From Zebiak and Cane, 1987.). 
 

The subsurface behavior is shown by the motion of the thermocline though the 
ENSO phases shown (along with the surface wind stress) in Fig. 7.10. We see that the 
thermocline starts deepening before the warming starts (in the late spring of year 31) and 
shows eastward propagation characteristics similar to the observations in Fig. 2.20. The 
heat content increases before the surface warming starts and starts to decrease before the 
peak of the surface warming, again similar to observations. The wind stress anomalies are 
roughly in phase with the SST anomalies. 

 
What lessons can we take from this model, the first to attain broad agreement that 

it does, indeed, simulate the real ENSO cycle?  The most important structural difference 
from earlier models is the inclusion of an explicit mixed layer, which enables the ZC 
model to represent all the processes that contribute to determining the SST, notably 
including “Ekman pumping”, the wind-driven surface layer divergence that results in 



strong upwelling of colder thermocline waters along the equator. This is an essential link 
connecting thermocline movements to SST changes, a connection that lies at the heart of 
all our current ideas of how the ENSO cycle works.  Zebiak and Cane (1987) show the 
results of numerical experiments where they artificially alter the effect on SST of changes 
in the zonal mean depth anomaly of the thermocline. Doubling it changes the period from 
~4 years to ~2 years and halving it changes the period to ~5-6 years.  Most significantly, 
holding it fixed at zero eliminates interannual variability altogether. 

 
More generally, the ZC model departs from the practice of coupling two shallow 

water models together to form a conceptual model of tropical ocean-atmosphere 
interactions in favor of a model built from a consideration of what constituted the 
essential physics of the tropical atmosphere, and, most tellingly, the upper layers of the 
tropical ocean.  The design took the Bjerknes feedback mechanism as the starting point, 
and took care to include the physics needed for that to function. It also took to heart the 
implications of the observational evidence presented by Wyrtki that variations in the 
volume of water in the tropics – the thermocline depth – is the central element of the 
ENSO cycle, an element that, fortunately, is adequately captured by the relatively simple 
dynamics of the linear shallow water theory we elaborated in Chapter 6. 

 
If the reader can put herself back in a time when no model, neither a simple 

conceptual model nor a coupled GCM, was  able to create an ENSO that an 
observationalist might acknowledge as akin to the real thing, she can appreciate another 
constraint that the ZC model met: a model would have to produce realistic looking fields 
of SST, winds, etc with a realistic time dependence.  A conceptual model in a few 
variables would not be accepted, even if it oscillated irregularly with the right mean 
period and was backed by a reasonable mechanistic description –even if the mechanism 
was the correct one. It was only after the ZC model that simple conceptual models were 
accepted as telling us something about ENSO.  As we shall shortly see, all the contending 
ideas of how ENSO works use the ZC model, or a very similar model structure, as a 
touchstone.  

 
Results from the model suggest the following hypotheses about the actual ENSO 

cycle:  
 

• ENSO is an oscillation of the coupled atmosphere-(upper) ocean system. 
 

• The interactions essential to creating and maintaining the cycle all take place in 
the tropical Pacific. No extratropical influences need to be invoked. 

 
• That the surface layer of the ocean can respond strongly and swiftly to the 

atmosphere profoundly influences the character of ENSO,  
 

• but the basin wide response of the upper ocean down to the thermocline is at the 
core of the interannual variability that defines the phenomena. 

 
To sum up, in the ZC model and by implication, nature, the ENSO cycle is a 

combination of the Bjerknes hypothesis and linear equatorial ocean dynamics. As 
Bjerknes envisioned it, a warm (El Niño) event results from a positive feedback. Warm 
SST anomalies in the eastern equatorial Pacific reduce the east-west temperature gradient 
and thus the atmospheric sea level pressure gradient, decreasing the strength of the trades. 



The weakening of the winds reduces upwelling of cold water, reduces the eastward 
advection of cold water, and deepens the thermocline in the east, making the upwelled 
water warmer than before. All this increases the warm SST anomaly and the positive 
feedback loop is complete. A cold event (La Niña) has the same feedbacks but with 
opposite sign: colder SST results in strengthened trades, which further cool SSTs.  The 
significant addition to Bjerknes’ original hypothesis is the inclusion of the nonlocal 
modes of thermocline response that are part of the equatorial ocean’s basinwide response 
to the winds. 
 

Given the model’s structure, it is clear from the ZC model results that the 
interannual oscillation, the feature Bjerknes could not account for, is a consequence of the 
equatorial ocean dynamics that control the displacement of the thermocline from its 
climatological state.  In the next sections we will recount the still viable major ideas that 
have been put forward to explain the oscillation. 
 

7.4. The Delayed Oscillator Equation  
 

“There is thus ample reason for a never-ending succession of alternating trends by air-sea 
interaction in the equatorial belt, but just how the turnabout between trends takes place is not yet 
quite clear” (J. Bjerknes, 1969). 

 
The current explanations for the perpetual turnabout from warm to cold states did 

not emerge until after the development of the numerical models, and so are properly 
regarded as one of the fruits of numerical modeling. While the explanation of ENSO can 
be made definite in some of the models, there are still major unresolved issues in the 
explanation of ENSO in nature. 
 

The early ENSO explanations of Schopf and Suarez, 1988, Battisti, 1988, and 
Battisti and Hirst ,1989, have linear equatorial ocean dynamics at their core. As in nature, 
let the main wind changes be in the central equatorial ocean while the SST changes are 
concentrated further to the east. Then the surface wind amplitude, which depends on the 
east-west temperature gradient, varies with this eastern temperature. This eastern SST is 
largely controlled by thermocline depth variations, not necessarily in phase. These 
variations are driven by the changes in the surface wind stress according to the linear 
shallow water equations on an equatorial beta plane. If the eastern SST is warm 
(thermocline depth positive) then the wind anomaly will be westerly, forcing a Kelvin 
signal in the ocean to further depress the thermocline in the east thus enhancing this state.  
Note that this ocean response extends eastward into regions remote from the wind 
changes 
 

As long as an initial warm perturbation of SST in the eastern Pacific leads to a 
westerly patch of wind anomaly further west in the Pacific, there are a number of other 
ways that the warming patch can grow. Currents forced by the wind stress can advect 
warm water eastward down the mean SST gradient to further warm the warm patch. 
Westerly wind anomalies can reduce the cooling due to upwelling to anomalously warm 
the warm patch. This surface layer mechanism is very local, with the upwelling changes 
occurring only directly under the wind changes. Westerly winds can meridionally advect 
warm water toward the equator to further warm the warm patch-- this is also largely local 
to the region of wind changes. Taken singly or in combination, the westerly wind 



anomalies warm the warm patch by this combination of processes and the anomalous 
warm patch grows, and, with it, the westerly wind anomalies also grow.  
 

 
 
Fig. 7.11  Schematic of growing warming phase of ENSO. (From Battisti, Hirst and 
Sarachik, 1989.) 
 

However, this excess of warm water must be compensated somewhere by a region 
of colder water (shallower than normal thermocline). The mechanism is summarized in 
Fig. 7.11, which depicts the warming phase of ENSO in the models.  Equatorial dynamics 
dictates that this be in the form of equatorial Rossby signals, which must propagate 
westward from the wind forcing region. As we saw in Fig. 6.10, a finite patch of westerly 
winds sends upwelling Rossby signals westward to the west of the wind patch and 
downwelling Kelvin signals eastward to the east of the wind patch. When the Rossby 
signals reach the western boundary they are reflected as “cold” equatorial Kelvin signals, 
which propagate eastward across the ocean to reduce the SST there. Thus the original 
warm signal is invariably accompanied by a cold signal—but with a delay. This delayed 
oscillator mechanism accounts for the turnabout from warm to cold states. The 
wraparound Hovmoller diagram from Schopf and Suarez (1988) in Fig.7.12 illustrates 
this in their model.  
 

 
 
Fig. 7.12 Kη is the dynamic height (an inverse measure of thermocline depth) on the 
equator and Rη  the dynamic  off the equator between 5º and 7º N. Note that the east-west 



direction is reversed in (a) and (d) and that (d) and (e) plot negative sea level. Explanation 
of panels in text. Stippled is positive. (From Schopf and Suarez, 1988.) 
 

Positive Rossby signals in the sea level (i.e. deepening of the thermocline or 
downwelling) propagate westward (panel a—note the reversal of east and west) and get 
reflected as positive Kelvin signals (again downwelling) at the western boundary. The 
wind stress anomalies acts near the center of the basin (panel c) and respond directly to 
the SST anomalies. When the wind stress anomaly is positive (eastward) the Rossby 
signal deformations of the thermocline are negative (upwelling) and propagate westward 
to the boundary (panel d—note the reversal of east and west) and reflect as a negative 
Kelvin signal on the equator which then moves eastward (panel e). Reflection at the 
eastern boundary spreads the signal removing it from the equatorial zone, in contrast to 
the western boundary which concentrates the reflection into the Kelvin signal. 
 

To further appreciate the role of equatorial waves in sustaining the ENSO 
oscillation consider the state of affairs when the eastern thermocline and SST anomalies 
are near zero; for example, at the termination of a warm event. Then the wind anomaly 
must be near zero as well, so there is no direct driving to evolve the coupled system to its 
next phase. However, the previous warm event necessarily left a residue of cold Rossby 
signals in the western ocean, which eventually reflect at the west into a Kelvin signal 
which will reduce the SST in the east. The wind then becomes easterly and the cycle 
continues.  
 

Suarez and Schopf (1988) summarize the results implied by Fig. 7.11 by a simple 
delayed oscillator equation: 
 

3( )dT cT bT t dT
dt

τ= − − − ,                                                    (7.16) 

 
where T represents the area average of the temperature of the warm patch in the eastern 
Pacific and τ  is the travel time of the Rossby mode from the warm patch to the western 
boundary plus the travel time of the reflected Kelvin mode from the western boundary 
back to the warm patch: τ is thus the total time delay along the indirect route from the 
wind patch to the western boundary and back to the east.  Since there are many Rossby 
waves with different speeds involved, τ is something of an average weighted by the 
contribution of all the Rossby modes.  In Eq. 7.16, c represents the local growth of the 
patch and b represents the effect of the returning Kelvin signal at the warm patch delayed 
by the travel time τ .  Since the total mass of warm water is not changed by the winds, the 
amount going eastward in the Kelvin signals must be balanced by an equal amount of the 
opposite sign going westward in Rossby signals. This by itself would imply b c= , but 
since the higher mode Rossby signals travel so slowly they would be substantially 
dissipated before reaching the west, implying b c< . Suarez and Schopf take b c< on this 
basis.  
 

The content of Eq. 7.16 is mathematically straightforward: the cT term is simple 
unstable exponential growth with no periodicity. The ( )bT t τ− −  term is a lessening of 
the growth (since b c< ) but growth is still occurring. The 3dT− term is a nonlinear term 
needed to equilibrate the unstable growth at some finite amplitude. With b c<  and 0c > , 
oscillations occur only between the two fixed points  



 
1 2

max
c bT

d

/−⎡ ⎤= ±⎢ ⎥⎣ ⎦
, 

 
and we see that the nonlinear term is essential for a periodic solution.  
 

Eq. 7.16 was heuristic, devised by Suarez and Schopf to explain what they saw in 
Fig. 7.12. On the other hand, Battisti and Hirst (1989) derive a simple linear delayed 
oscillator model from a version of the Cane-Zebiak model. This version of the model, 
presented in Battisti (1988), is far more regular than the original ZC model primarily for a 
reason identified in Mantua and Battisti (1995), namely that the mean climatology is 
weaker than the one used in the original ZC model. The weaker stress climatology in 
Battisti (1988) implies a weaker east-west mean temperature gradient on the equator not 
surprisingly leads to a SST anomaly further east than in the ZC model (e.g. Fig. 7.13) 
which naturally implies that the wind stress anomalies are also further east than in the ZC 
model. Because the mean climatology is weaker, the Battisti (1988) model had to alter the 
relation between subsurface temperature and layer depth (Eq. 7.15) to make it more 
sensitive. The net result is that the instability in the Battisti model is greater than that in 
the ZC model but the weaker mean climatology compensates to give an ENSO cycle of 
about the same magnitude. The major difference is that the Battisti model is regular with 
SST anomaly far to the east while the ZC model is irregular with SST anomaly 
approximately as observed. A detailed comparison between the two models is given in 
Mantua and Battisti (1995).  
 
 

 
 

Fig 7.13. SST averaged between 2°S and 2°N (a) Observed from 1978 to 1993 (b) The 
ZC model (c) The Battisti (1988) model. (From Mantua and Battisti, 1995.) 
 



The delayed oscillator equation to be derived describes the regular oscillation in 
the Battisti (1988) version of the CZ model—Battisti and Hirst (1989) do extensive tests 
to demonstrate the ability of this equation to correctly emulate the results of the full 
coupled model.  
 

The basic assumptions of the derivation are: 
 

• xτ  and SST are in phase while thermocline depth h  leads slightly. This is based 
on the ZC and Battisti model behavior.  We shall see below that it is seen in the 
observational data.  It is also a feature of the Cane and Sarachik (1981) analytic 
calculation of the response of a bounded linear equatorial beta plane ocean to a 
periodic wind stress (see Sec 6.6). 

 
• The signal in both ( )xτ  and SST are small west of 160°W. As discussed above, 

this assumption holds for the Battisti model because its weaker climatology puts 
the wind stress further east than in the CZ model – or in nature. Consequently, 
Rossby signals are able to propagate freely from 160°W to the western boundary.  

 
• Equatorial ocean dynamics within ±  5° of the equator are all that matter. The 

justification is that only the first few Rossby signals (and perhaps only the first) 
contribute substantially to the reflected Kelvin signal. 

 
They further simplify as follows:  

 
• The mean annual cycle is suppressed and all dynamics and thermodynamics are 

on the annually averaged mean state. 
 

• The ocean thermodynamics and coupling are linearized (the ocean dynamics are 
already linear)  

 
Now take the wind stress average τ< >  and the SST average T< >  over an eastern 

equatorial Pacific box, extending from 160°W to 80°W (the model South American coast) 
and from 5°N to 5°S. The linearized temperature anomaly equation averaged over the 
eastern temperature box may be written (Battisti and Hirst, 1989, Eq 2.3):  
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                  (7.17) 

 
where the first term arises from mean zonal advection on the anomalous temperature 
gradient, the second term from the anomalous advection on the mean temperature 
gradient, the third term from mean meridional advection on the anomalous meridional 
temperature gradient, the fourth and fifth term from mean upwelling on the anomalous 
vertical temperature gradient, the sixth term from the anomalous upwelling on the mean 
vertical temperature gradient, and the final term is the local temperature dissipation by 
surface fluxes. As before, ( )M x x=  and ( ) 1H x =  when 0x > and both are zero 
otherwise. 



 
The fourth and fifth terms come from the linearization of the anomalous vertical 

temperature gradient: 
 

( ) ( ( ) )s
T T T T a h h
z

∂
∝ − = −

∂
. 

 
Each of the coefficients ic  may be evaluated from the model. Battisti and 

Hirst (1989) then take the dynamics as: 
 

( )x x
RK L w Lh h h a t aτ τ τ= + = − < − > + < > .  

 
The first term is the thermocline variation due to the reflected Kelvin signal due to 
Rossby signals impinging on the western boundary. There is a delay τ  from the time 
these waves were generated by the wind stress until the resulting Kelvin signal reaches 
the east.  As with the Suarez and Schopf formulation, using a single delay time is 
conflating many Rossby waves, but here it is assumed that the n=1 wave sets the delay 
time The second term is the locally generated thermocline variation Kelvin signal, 
directly forced by the local wind stress.  
 

They further assume, and verify in the model, that the wind stress anomaly is 
highly linearly correlated with the temperature anomaly, and that the upwelling anomaly 
and the zonal current anomaly are highly linearly correlated with the anomalous zonal 
wind stress, which directly forces them:  
 

, ,x xT wτ τ∝ ∝ and xu τ∝ . 
 
As noted above, the last two relations are largely a consequence of mixed layer physics, 
which requires that the wind forcing is local to the response region 
 

Since now every term in is now proportional to the area averaged anomalous 
temperature, this leads to the linear delayed oscillator equation: 
 

( )T bT t cT
t

τ∂
= − − +

∂
.                                              (7.18) 

 
BH calculate the coefficients directly from the terms in Eq. 7.17 based on the 

output of the Battisti (1988) model and thereby estimate:  
 

1 12 2 3 9 180daysyrs yrsc b τ− −= . ; = . ; =  
 
so in this model, b>c. The crucial difference between Eqs. 7.16 and 7.18 is that there is a 
local contribution to cT  from terms c1, c2, c3, c4, c6 and sα  in Eq. 7.17, in addition to the 
thermocline displacement term c5, while the delayed contribution ( )bT t τ− −  comes only 
from c5. The significant cancellations in the local term cT leads to a smaller contribution 
than from the delayed term, contrary to the argument of Suarez and Schopf cited above. It 
is the property that the delayed term is larger than the local term that allows the linear 



delayed oscillator equation 7.18 to have oscillatory solutions---nonlinearity is not 
essential for the oscillation. 
 

We can now complete the description of the regular oscillation in the Battisti 
(1988) model referring to Fig. 7.11: As the warming (say) patch grows in the eastern 
Pacific, the westerly wind patch to its west grows concurrently. The upwelling Rossby 
signal propagates to the west, reflects off the western boundary, and returns to the 
growing warming patch as an upwelling Kelvin signal. The warm patch is now warming 
due to unstable growth and simultaneously cooling due to the continuous action of the 
upwelling Kelvin signal which raises the thermocline and thereby allows the mean 
upwelling term to deliver cooler water to the surface. Because the delayed upwelling term 
is larger than the growth term, as indicated by the delayed oscillator equation, the warm 
patch eventually becomes cold and the cycle continues but now with a growing cold patch 
in the eastern Pacific and an easterly wind stress anomaly to its west. The growing 
easterly wind stress anomaly sends downwelling Rossby signals to the west which 
reflects as downwelling Kelvin signals which returns to start warming the cold patch and 
ultimately turn it to warm and the cycle continues.  
 

The delayed oscillator equation Eq. 7.18 by itself cannot be the correct paradigm 
for ENSO in any model since it sustains growing solutions with no mechanism to limit 
the amplitude, which would therefore grow arbitrarily large: some nonlinearity is needed. 
But if the dynamics is essentially linear, with the nonlinearity acting mainly to limit the 
amplitude without changing the basic linear characteristics of the solution (as shown by 
Battisti and Hirst (1989) for the Battisti (1988) model), then the delayed oscillator 
equation can be a useful analog and guide to the full model.  
 

The linear Eq. 7.18 has solutions ( )oT T exp tσ=  (with σ  complex) when 
 

be cστσ −= − + ,  
 
or, taking the real and imaginary part,  
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= .                                        (7.19) 

 
For a fixed τ, the real and imaginary parts of σ depend on the coefficients b and c.  

In particular, there will be oscillations when 0iσ >  which obtains when  
 

[ 1]exp cb τ
τ
−

> . 

 
For the parameters of the linearized Battisti model, 1cτ ≈ , so that the conditions for 
oscillations becomes, approximately, b c> .  
 
EXERCISE: Show from Eq. 7.19 that the period of oscillation must exceed 2τ . 
 



EXERCISE: Show that the condition for growth 0rσ >  is , approximately, 

[ 1]
2 2

b cπ π
τ

> − −  which for 1cτ ≈ is b c> . 

 
EXERCISE: Show from Eqs. 7.19 that no growing oscillatory solution exists when τ 
becomes small. How small? 
 

The full range of the solutions for fixed .5τ =  yr  is given by Fig. 7.14. Note that 
for c=2.2/yr., increasing b from zero first leads to pure exponential growth with 
decreasing growth rate as b increases until b=c. Increasing b further increases the growth 
rate and the frequency.  
 
 

 
Fig. 7.14. Stability properties of the delayed oscillator equation. Left panel: the growth 
rate rσ . Right panel: the frequency iσ . Both as a function of b and c with units of 
inverse years. Here τ = .5 yr. (From Battisti and Hirst, 1989.) 
 

Nonlinearities are of course necessary to obtain finite amplitude solutions in a  
model that contains linearly unstable modes.  Battisti and Hirst examine the nonlinearities 
in the Battisti (1988) intermediate model  and conclude that the only nonlinearity that 
must be retained to capture the qualitative behavior of the model is the nonlinearity in 
vertical thermal structure ( )subT h  as given by Eq. 7.15. Their analysis yields a nonlinear 
version of (7.18) 
 

3( ) [ ( )]T bT t cT e T rT t
t

τ τ∂
= − − + − − −

∂
. 

 
The last term is derived by approximating ( )subT h as a cubic and noting that h depends 
solely on the wave forced motions, direct and indirect, but not on the surface layer 
physics terms. 
 

Earlier we noted that the Suarez and Schopf (SS) delayed oscillator equation 
requires the nonlinear dissipation term not only to limit the amplitude of the model 
ENSO, but to have an oscillation at all. We have seen that for the Battisti and Hirst (BH) 
delayed oscillator the oscillation depends on having c<b while SS must have c>b because 
in their model both c and b are based purely on linear ocean dynamics, which determine 
that the Kelvin coefficient c is larger than the retained Rossby components b. However, 



we can see that the two models may not be so different after all (i.e. they both allow 
regular oscillations) by linearizing the nonlinear term in Eq. (7.16) about some non-zero 
temperature TB:  
 

2( ) 3 ' ( ).B
dT cT bT t dT T c T bT t
dt

τ τ= − − − = − −  

Now 
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and since T varies between 
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 so that  

 
[ ]2' 3 3 (1 3 ) (1 3 )Bc b c dT b c c b b c bα α α< ⇔ − < ⇔ − − < ⇔ − < − . 

 
Since c>b this will be true if 1 / 3α > , a condition that is quite plausible. We may 

interpret the SS model as using the dissipation that occurs when 2 2
max

1
3

T T> to meet the 

condition enabling oscillations. In the BH model, the magnitude of c is reduced by local 
wind influences, which, for example, reduce upwelling velocity and zonal advection of 
warm water when the tradewinds slacken during an ENSO warm event. The positive 
feedback is thus reduced. These surface processes were left out of SS’s Eq. (7.16) – 
unless we interpret the dissipation term in this heuristic equation as a stand-in for them.  
 

These processes are certainly part of the real ocean, and the real ocean’s ENSO, 
but they may be overstated in the Battisti, 1988, model, which has the wind changes too 
far to the east, increasing the direct effect of winds in the eastern box that Battisti and 
Hirst use to fit their conceptual model. The interaction of the surface layer aspects of the 
ocean and the atmosphere are part of the “mixed” modes studied by Neelin, 1991, (see 
also Jin and Neelin, 1993a,b, and Neelin and Jin, 1993) as distinguished from what we 
will here call the thermocline mode, which involves wave dynamics and boundary 
reflections. Jin and Neelin examine various limits where the two modes are distinct, but 
indicate that the modes merge and both sets of characteristics are features of the ENSO 
cycle, in broad agreement with the analysis of Battisti and Hirst. 
 

Our study of BH and SS has led us to the conclusion that local surface layer 
processes are essential for the oscillation to occur. There is some irony in this since the 
essence of the “delayed oscillator” theory is generally thought to be about equatorial 
wave dynamics, particularly the reflection at the west. 
 

Contrary to the conclusion we reached above, it is possible to have growing, 
oscillating modes that depends solely on wave dynamics. Consider the situation where all 
the wind forcing is to the west of the region where the SST changes. This is a good 
description of real ENSO events until their later stages when the wind changes reach far 
to the east. With the winds to the west, the changes in the SST region must all be 
transmitted by Kelvin signals from the forcing region and there could be no local wind 
influence on SST.  Now a Kelvin signal directly forced by the wind, and a delayed Kelvin 
signal resulting from the reflection of Rossby signals at the west will, for the same 
amplitude, have exactly the same influence on zonal velocity, upwelling velocity, and 
thermocline depth – all the factors that influence temperature. As with the SS model, this 



guarantees that c > b, but now we allow no dissipation or surface processes to provide a 
negative feedback and reduce the amplitude of c. 
 

A model along these lines was constructed by Cane, Münnich and Zebiak (1991; 
CMS hereafter). As with BH they take 
 

, ,x xT wτ τ∝ ∝ and xu τ∝ , 
 
which yields a temperature equation of the form 
 

1 2 ( )sub
T k T k T h
t

∂
= −

∂
. 

 
They then drop the time derivative term on the grounds that 1

1k − is of order a month or two 
while the oscillations of interest have interannual timescales, so relative to these much 
longer timescales temperature adjusts rapidly: 2 1/ ( ).subT k k T h≈  This is the same 
simplification as in Hirst’s Model I. 
 

Following the method of Cane and Sarachik, 1981, described in Section 6.6 CMZ 
solve – analytically – the shallow water equations on an equatorial beta plane bounded by 
meridians at x=0 and x=XE  forced by a zonal wind stress of the form 
 

2( )exp( )ex tAf x y στ μ= −  
 
where 1/2μ− is the meridional scale of the wind stress and 
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Now 2 1 so / ( ) or ( ) ( )x

sub subT A T k k T h A A h T hτ ∝ ∝ = = ∝ . CMZ make one further 
simplification: the h in this expression is the average h in the eastern equatorial Pacific 
box and they replace it with eh , the value of h at the eastern end of the equator on the 
grounds that on interannual timescales this is representative of the box average. Hence 

( ).eA A h=  Here we will look primarily at the linear case eA hκ= with κ  taken as 
constant, the “coupling strength” between ocean and atmosphere. 
 

CMZ show that the results are not sensitive to the zonal width 2 1x x−  of the wind 
patch, so we will only consider the simplest case, 1 2, cx x x→  so that ( ) ( ),cf x x xδ= −  a 
delta function For the present we also take the forcing to be at the center of the basin 
( 1/ 2 )c Ex x= . (Results are quite sensitive to the position of the forcing, as is true for the 
BH model.  Moving this point changes the delay time for the reflected waves.) Then, with 
time scaled by the time it takes for a Kelvin wave to cross the basin (about 2 months for 
the first baroclinic mode in the Pacific) the dispersion relation is 
 



2

cosh sinh
2 sinh
κ μσ μ σ

σ
= + + .                                  (7.20) 

 
This relation is plotted in Fig 7.15 for various values of the meridional width of the wind. 
 
 

 
 
 Figure 7.15  Dependence of the growth rate rσ (top) and frequency iσ  (bottom) on the 
coupling strength κ for various values of μ where the meridional scale of the forcing is 

1/2
yL μ−=  (From Cane, Münnich and Zebiak, 1990.) 

 
We see that that for all κ less than a certain value ( )mκ μ there are oscillating 

growing modes, with periods ranging from 4 times the Kelvin wave crossing time at κ=0 
(this is the free ocean mode of Cane and Moore, 1981) to infinite at mκ κ= .  For 

mκ κ≥ there is only non-oscillatory growth.  The latter is the situation Bjerknes 
envisioned where the positive feedback is unchecked. In this model, that occurs when the 
coupling strength is so great that the reflected wave signal – the delayed signal – is never 
able to catch up with the directly forced Kelvin signal. 
 

Let mσ be the growth rate at mκ κ= . Since mκ is the minimum value of κ for 
realσ : 
 

2

2
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Since 1μ < and we expect mσ to be small we can expand the hyperbolic functions to 
obtain  

1/3 5/3 2/3 1/2 4/3( );   (2 3 ) ( );
3m mO Oμσ μ μ κ μ μ≈ − + = + +  

 
the smaller the meridional scale of the wind forcing the larger the value of mκ and so the 
greater the range of coupling strengths that allow oscillating modes and the larger the 
growth rate for any fixed period. This behavior is evident in Fig. 7.15. 
 



EXERCISE: Note that for the form of wind stress we are using the value on the equator 
is independent of meridional scale, but 1/2xdyτ μ−∝∫ . How would the results be changed 

if the wind stress were normalized so that the integral was independent of scale? 
 

Expanding in a Taylor series about ( , )m mσ κ  yields 
 

1/3
2 3 43 ( ) ( ) (( ) )

2m m m m
m m

Oμκ κ σ σ σ σ σ σ
κ κ

−

= + − − − + −                     (7.21) 

 
and solving for σ by expanding in powers of 1/2( )mκ κ− yields 
 

1/2
1/3 2/32 21 ( ) ( )

9 3m m m miσ μ μ κ κ κ κ κ κ−⎡ ⎤ ⎡ ⎤≈ + − ± −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.                  (7.22) 

 
 

 
Figure 7.16. The approximate solution Eq. 7.22 compared to the exact solution Eq. 7.20 
(From Cane, Münnich and Zebiak, 1990.) 
 
Comparing the approximate solution, Eq. 7.22, to the exact solution, Eq. 7.20, shows that 
these are good approximations to the full equation: quantitatively in the neighborhood of 
( , )m mσ κ and qualitatively for a great range of coupling strengths (Fig. 7.16). It is obvious 
from Eq. 7.22 that there are growing, oscillating solutions for mκ κ< and pure growth for 

mκ κ> . (However, unlike the exact solution, Eq. 7.20, the approximate solution, Eq. 
7.22, has decaying solutions for κ sufficiently small.) As with the earlier models in this 
section, there are large variations in the period of the oscillation for small variations in the 
coupling strength (c and b in the models above). Since these numbers are not very 
precise, this theory does not tell us much about why the observed period is about 4 years. 
 

We conclude that this version of the delayed oscillator does allow growing, 
oscillating solutions without any dissipation or consideration of the surface layer 
processes involved in the fast SST mode.  But, the reader might ask, where is the delay?  
CMZ show that if we regardσ as a (Laplace) transform variable and take / eA hκ =  then 
the version of Eq. 7.20 for any value of cx  transforms to 
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where na± are the absolute values of the coefficients of nx in the expansion of 

1/2(1 )x ±− and (1 ) / (1 ).υ μ μ= − +   The term in curly brackets is the response to the wind 
forcing; the first term is the directly forced Kelvin signal and the terms in the sum are all 
of the reflected Rossby signals, terms simplified ad hoc into a single wave and single 
delay time in the earlier delay equations. The final term on the right is the contribution of 
signals reflected at eastern boundary that propagate west and are reflected back to the east 
as Kelvin signals. This process is omitted in the SS and BH models. There is a nonlinear 
version of this model (Münnich et al, 1991) where, as for BH’s nonlinear model, the 
nonlinearity is due to the nonlinear relation of the subsurface temperature to the 
thermocline depth. Münnich et al, 1991 show that this model can exhibit aperiodic 
behavior, and that such behavior is favored by including the annual cycle or by including 
the asymmetry in the shape of the thermocline (as in Eq 7.15). Note that this equation is a 
pure delay equation, in contrast to the differential delay equations of the earlier models, 
although if we approximate  
 

( ) ( ) ( )T t T t t T t
t t

∂ + Δ −
≈

∂ Δ
 

 
then the BH Eq. 7.18 becomes a pure delay equation as well: 

 
( ) ( ) (1 ) ( )T t t tbT t tc T tτ+ Δ = −Δ − + + Δ . 

 
(Note that Eq. 7.23 will look like this if one drops the final sum (the eastern boundary 
reflections) and replaces the sum of Rossby signals in the curly brackets with a single 
“representative” signal.) 
 

While the delayed oscillator mechanism for regular oscillations is clearly 
operative in the Battisti and Hirst model and does explain the parameter dependence of 
the linearized coupled model that gives rise to these regular oscillations, it does not really 
explain the unique conditions under which the delayed oscillator is valid. CMZ note that 
the same setup in a model on a non-rotating plane instead of an equatorial beta plane will 
have the same sort of delay -- signals traveling west and being reflected east before they 
influence the temperatures that influence the winds – but does not allow growing 
oscillations. CMZ then show that the non-rotating model does allow growing oscillations 
if something breaks the symmetry: either having a mean eastward current so waves 
traveling east are faster than waves traveling west, or making the reflection at the east less 
effective than that at the west. Note that the delayed oscillator of Eq. 7.18 does not seem 
to depend at all on the eastern boundary or signals emanating from it.  This omission is 
made with the realization that the Rossby signals comprising the eastern boundary 
reflections spread the signal poleward, dispersing the upper layer warm (for El Niño) or 
cold (for La Niña) perturbation away from the equatorial zone. In contrast, western 
boundary reflections (and the implied boundary layers consisting of short Rossby signals) 
concentrate the signal into Kelvin signals.  Were this asymmetry not to exist the resulting 



coupled modes would not be oscillatory. In this view, the eastern boundary is essential for 
the delayed oscillator by what it does not do. 
 

Though other mechanisms can give rise to unstable oscillations in coupled tropical 
models (e.g. Jin and Neelin, 1993), it is generally accepted that the delayed oscillator 
paradigm accounts for the behavior of the numerical models discussed above, as well as 
that in the higher resolution coupled GCMs which exhibits an ENSO-like oscillation. 
That is, the reflections at the west are essential for generating interannual oscillations.  
There is less agreement about precisely which other physical processes should be 
included as essential, and it is more difficult still to establish conclusively how it operates 
in nature.  
 

The delayed oscillator is consistent with the refill idea described in the next 
section, which is supported by data (Wyrtki,1985 and the additional time series available 
in the Climate Diagnostics Bulletin of NOAA). Finally, the ZC coupled model, in which 
this mechanism is clearly operative, has demonstrated the ability to predict warm events a 
year or more in advance.  
 

Experiments and analysis with ENSO models have demonstrated very strong 
sensitivities to rather small changes in parameter values. (Most of the references cited 
above provide examples, including Zebiak and Cane,1987, the first detailed description of 
the ZC model.  A recent systematic study is Federov and Philander 2001.) In the anomaly 
models some of these changes are equivalent to changes in the mean background state. 
(Interesting examples of the effects of changes in equatorial heating due to changes in the 
earth’s orbital configuration may be found in Clement et al, 1999, 2000, 2001.) Since a 
greenhouse warming will alter this state, the implication of such sensitivity is that the 
characteristics of ENSO will be changed. There have been a few experiments to explore 
this possibility (e.g. Zebiak and Cane, 1991) but inferences must be highly tentative in 
deference to our limited confidence in the ENSO models and to the great uncertainties as 
to the nature of greenhouse induced changes. This area of research is likely to become 
quite active as climate modeling progresses.  
 

7.5 The Recharge Oscillator and other conceptual models 
 

Bjerknes developed the hypothesis that is still at the heart of all theories for 
ENSO, but it lacked an explanation for the oscillation. The earliest such explanation was 
not the delayed oscillator but the recharge oscillator first suggested independently by 
Cane and Zebiak (1985) and Wyrtki (1985). This idea has been reinvigorated by Jin 
(1997a,b), who was the first to provide a simple equation at the level of 7.16 and 7.18.  
Cane and Zebiak formulated their idea largely on the basis of the ZC model simulations, 
though they do note that it is in agreement with the scant data then available. They put the 
idea as follows: 

 
…This positive feedback is essentially the same mechanism proposed by Bjerknes, the most 
significant change being the inclusion of nonlocal modes of oceanic response. However, the 
feedback will not take hold unless a necessary condition for the instability of the coupled system is 
satisfied. Model results suggest that El Niño events will not develop if the zonally integrated heat 
content in the equatorial Pacific wave guide is lower than its average value. If conditions are 
favorable, an event may be triggered by a variety of perturbations, the most readily available being 
the bursts of westerly wind that occur with great frequency in the western equatorial Pacific. Mean 



conditions in the (northern) summer and fall are favorable to the positive feedback. Hence, once 
begun, ENSO anomalies will grow to large amplitude during those seasons. In the following spring 
the normal seasonal changes in mean conditions  (reductions in trade winds, upwelling, and zonal 
temperature gradient) weaken the coupling between atmospheric and oceanic anomalies and the 
warm event can no longer be sustained. As the system relaxes, it overshoots the mean state in a 
manner characteristic of equatorial ocean dynamics, producing the cold SST's and stronger than 
normal easterlies typical of the year following an El Niño event. At this time the heat content of 
the equatorial ocean is lower than normal. During the next few years the equatorial heat reservoir 
is refilled until the ocean is once again prepared to sustain a warm event. 
 
Their account assigns a crucial role to equatorial ocean dynamics in generating the 

oscillation, but it is not specific about just what aspects of this dynamics are critical for 
allowing oscillations to occur.  It also emphasizes the seasonal variation in the coupling 
strength, an idea subsequently verified by many others (e.g. Blumenthal, 1991). 
 
 

 
Fig. 7.17. Anomalies of upper layer volume of the tropical Pacific. (From Wyrtki, 1985). 
 

The tide gauge network that Wyrtki had deployed in the Pacific showed him (and 
the rest of us) that El Niño events involved a transfer of volume in the warm water layer 
from west to east (cf. Wyrtki, 1979), but he also was able to construct a picture of the 
total amount of warm water in the equatorial Pacific (between 15°S and 15°N) showing 
that this volume decreased during a warm event, and then slowly refilled. This behavior is 
evident in Fig. 7.17 and is confirmed by the more complete observational data now 
available.  Wyrtki was also aware of the theoretical and observational work showing that 
the reflection of equatorial Kelvin waves impinging on the eastern boundary spreads the 
signal north and south, out of the equatorial zone.  Here is his theory for the oscillation: 

 
During periods when atmospheric circulation in the tropics is developed with normal strength, the 
trade winds push warm water toward the west and cause it to accumulate in the western Pacific 
both north and south of the equator. This process lasts several years until a significant amount of 
warm water is accumulated by a depression of the thermocline and by an increase of temperature 
in the mixed layer. There would be no such accumulation if there were no meridional boundaries 
in the ocean. Small, short fluctuations of the trade winds will have little effect on this long-term 
accumulation of warm water. Fluctuations of atmospheric circulation over the tropics will at some 
time lead to a relaxation of the trade wind field sufficiently widespread and long to allow the 
triggering of a Kelvin surge, namely a massive eastward displacement of the accumulated warm 
water along the equator. … The warm water surging to the east is deflected by the coast of 
America to both the south and the north and is lost from the tropical ocean. This fact is evident 
from the sea level observations presented here and from direct observations of heat storage [White 
et al., 1985]. Thus a complete E1 Niño cycle results in a net heat discharge from the tropical 
Pacific toward higher latitudes. At the end of the cycle the tropical Pacific is depleted of heat, 
which can only be restored by the slow accumulation of warm water in the western Pacific by the 
normal trade winds. Consequently, the time scale of the Southern Oscillation is given by the time 
required for the accumulation of warm water in the western Pacific. Its release is triggered by 
fluctuations of atmospheric circulation in the tropics. An E1 Niño-Southern Oscillation cycle 
represents a heat relaxation of the ocean-atmosphere system, in which heat stored in the tropical 
ocean is discharged toward higher latitudes.  



 
Wyrtki is quite explicit about the roles of both eastern and western boundary 

reflections.  In view of the results of CMZ demonstrating the dependence of the 
oscillation on the difference in these reflections, one could judge it to be a more 
satisfactory explanation than the delayed oscillator  models.  On the other hand, it makes 
no mention of the surface layer processes and it does not culminate in equations that 
could be used to calculate characteristics such as growth rate and period (though, as we 
have said, while the conceptual models we have considered do allow such a calculation, 
the dependence on model parameters is too great to say that they truly determine a period 
or growth rate). 
 

Equations based on the recharge oscillator idea were first developed heuristically 
by Jin (1997a). Figure 7.18 illustrates this paradigm. Jin (1997b) derived the same 
equations from a ZC-type model, which, as with BH, dictates parameter choices that 
allow the simple model to mimic the behavior of the intermediate model.  Additional 
work, still ongoing, by Jin and collaborators has extended this recharge model to consider 
nonlinear and stochastic effects.  Jin shows that the BH delayed oscillator is a particular 
case within the recharge oscillator framework, one in which eastern boundary reflections 
are eliminated by setting the reflection coefficients there to zero. He also shows that the 
same physics can be captured by either differential equations or delay equations.  We can 
make the same point by noting that the delay Eq. 7.23 was obtained as a transform of the 
exact Eq. 7.20 while the close approximation Eq. 7.22 (cf Fig 7.16) transforms into the 
differential equation 
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(Dropping the cubic term gives a second order equation more like Jin’s. This additional 
approximation is justified for σ close to mσ in Eq. 7.22.  The reader may easily verify that 
in the linear case ( ) ( )eA t h tκ= this new equation admits growing oscillating modes for 

mκ κ< .)  There are no explicit delays and no obvious wave propagation: the periodic 
variations of the thermocline is given implicitly by the net recharge and discharge.  
 

 
Fig. 7.18. Schematic of phases of ENSO in terms of recharge and discharge. The large 
arrows gives the mass and heat transport out of the equatorial strip. Note that positive 
thermocline depths are deeper: the net thermocline depth is shallower in b and deeper in 
d. (From Jin, 1997a).  
 



The CMZ model is build on the theory developed by Cane and Sarachik (1981) so 
it should be clear that the full treatment of periodic thermocline variations described in 
Sec. 6.7 and utilized by CMZ contains both the delay physics and the  discharge and 
recharge of mass in equatorial strips as in Jin(1997b). An application of this theory to 
annual heat content variations in the Atlantic, where the forcing is predominantly periodic 
at period one year, is given in Cane and Sarachik, 1983. An unanticipated result is that the 
actual recharge and discharge is a small difference of large terms: the direct interior 
discharge-recharge is almost cancelled by western boundary current transfers of mass into 
and out of the zonal strip. Any analog model involving discharges and recharges would 
choose parameters giving the net transfers without a priori knowing the cancellations 
involved. Jin (1997a,b) derives the BH delayed oscillator from the recharge equations , 
and therefore regards it as a special case of the recharge oscillator. On the other hand, our 
various exercises with the CMZ equation ought to persuade the reader that the opposite is 
also true, that the recharge oscillator is inherent in the delay model, and that it may be 
derived from it.  Given the rather amorphous notion of what constitutes either “the 
delayed oscillator” or “the recharge oscillator” –both have wave dynamics and reflection 
processes at their core, but both consider surface layer processes to be an ineluctable part 
of the ENSO mechanism--it is not clear (to us at least) that there is any physical 
difference between them, any case where one paradigm applies and the other does not.  
We can accept both as informative metaphors for a more complex reality. 
 

The restriction of these models to the tropical Pacific region serves to bolster 
Bjerknes’ emphasis on this region. It is entirely forgivable that this simple paradigm does 
not address the remote effects of ENSO, but it is troubling that it does not capture all the 
tropical Pacific features associated with ENSO, notably, the changes in the western 
equatorial Pacific preceding the warming in the east. More generally, the SO is observed 
to exhibit some behavior distinct from El Niño, and this too is not reproduced. These 
tropical Pacific omissions leave open the possibility that connections essential to the 
ENSO cycle are not represented. The analog model of Wang, nicely summarized in C. 
Wang (2001) and references therein, includes specific processes in the western Pacific, in 
particular parameterizing changes in western Pacific winds stresses on the equator in 
terms of thermocline depth. He includes delayed effects and shows that the delayed 
oscillator and the discharge-recharge equations of Jin are obtained as special cases.  
 

While these analogs are valuable and thought-provoking, it was the intermediate 
model of the ZC-type that was primary and the full characterization of time dependent 
thermocline motion that was central to these analogs. None of the analogs are used to 
assimilate data or to make predictions.  
 

The observed ENSO cycle is not regular, and some of the models share this 
feature. Nonetheless, the cause of the observed aperiodicity remains an unsettled issue. 
The results from model and model experiments using stable coupled models (e.g. 
Kleeman, 2008) suggest that it could be due solely to noise; that is, atmospheric or 
oceanic fluctuations distinct from the ENSO cycle. On the other hand, a correlation 
dimension test (Tziperman et al, 1994, Fig. 2) has clearly shown that the ZC model phase 
space is low order, indicating that its aperiodicity is a result of chaotic dynamics. The 
simple conceptual ENSO model of Münnich et al (1991), a version of the CMZ model, 
produces aperiodicity, doing so rather readily if a seasonal modulation is included.  
 



7.6 Stochastically Forced Models 
 

In linearly unstable model systems, a perturbation grows exponentially without 
limit. Something must, in reality, equilibrate the system at finite amplitude. Either some 
nonlinearity limits growth, or the system wasn’t unstable to begin with. We have seen that 
the ZC model has Eq. 7.15, reflecting the nonlinear profile of T(z) in the ocean, as its 
basic nonlinearity: the coldness of the  water upwelled into the surface layer to change 
SST as the thermocline shallows is limited by this relation. The other possibility is to 
explore a different parameter range, one in which the coupled modes are not linearly 
unstable. Initial efforts in this direction were made by Penland and Magorian (1993) and 
Penland and Sardeshmukh (1995) using Markov models constructed to mimic the 
statistics of observed SST. Since the observed time series of SST are already equilibrated, 
the modes are all decaying and the only possible mechanism of growth must be transient 
and is connected to the system’s inherent non-normality (see Appendix 3 on non-
normality, which is a necessary preliminary to this section). Even earlier, Blumenthal 
(1991) similarly constructed a Markov model of the (necessarily equilibrated) output of 
the ZC model and similarly found the ENSO mode as the least decaying mode. In this 
section, we will examine non-normal growth in stable coupled atmosphere-ocean models 
and in particular, in linearized versions of the ZC model.  
 

The issue can be stated succinctly as follows: for a coupled linear model of ENSO 
of the form 
 

d
dt

= +
u Au f ,                                                               (7.25) 

 
where u is the state vector of quantities in the atmosphere and ocean, and A is the linear 
evolution operator, and f some combination of nonlinearity and random noise, the linear 
stability properties of the system are determined by the nature of the eigenvalues of A. If 
the eigenvalues of A have a positive real part, then there are exponentially growing 
modes and f must contain some nonlinear term in order to limit the amplitudes of these 
modes. If the matrix A is non-normal (see Appendix 3), then even if the real parts of 
eigenvalues of A are negative, so that all the normal modes decay, there may be transient 
disturbances that first grow and then decay. If this is the case, then a purely random 
forcing f in Eq. 7.25 may be sufficient to excite such a set of disturbances 
 

Thomson and Battisti (2000 and 2001) made a model of this type that has the 
didactic advantage for this exposition of being a simple variant of the model described in 
Battisti (1988) based on the ZC model and already treated in the previous section. The 
Battisti model has a single unstable ENSO mode. Thompson and Battisti linearized the 
model and, by expanding in meridional parabolic cylinder functions, as in Chapter 6, 
expressed the model in the matrix form Eq. 7.25. This allows the modes, adjoints, and 
propagators to be easily obtained from the linearized evolution matrix A. 
 



 
Fig 7.19 The ENSO mode in anomalies of SST (upper) and thermocline anomalies 
(lower). Because the ENSO mode is periodic with period 2.74 years, the real part 
represents the peak (warm) phase and the imaginary part represents the transition phase 
between peak warm and peak cold. (From Thompson and Battisti, 2000.) 
 

The ENSO mode, i.e. the eigenvector of the matrix A, is given in Fig. 7.19. This 
mode was calculated in the presence of an annual cycle and has a growth rate of 1.8 per 
year and a period of 2.74 years, similar to the values calculated by Battisti and Hirst 
(1989). Because the matrix A is non-normal, the initial state that grows most rapidly into 
the mode is not the mode itself but is rather the right singular vector of the propagator (or 
the optimal for short, see Appendix 3) and depends on the time to optimization. Because 
there is an annual cycle, the optimal also depends on start month and the largest growth is 
attained for a nine month optimal starting in May and peaking in January.  

 

 
 
Fig. 7.20. Optimal in SST anomaly (left panel) and thermocline depth (right panel) 
leading to largest non-normal growth. (From Thompson and Battisti, 2000.) 
 

The optimal has an east west tilt in SST and a feature in the southeast part of the 
basin. The thermocline component of the optimal has a trough all across the equator and a 
shallow feature in the southeast part of the basin. The optimization time is such that the 
optimal shown in Fig 7.20 is very close to the leading eigenvector of the adjoint matrix 
A+. The optimal in Fig 7.20 grows into the mode in Fig. 7.19. The optimal for other 



months and other optimization times looks very much like Fig 7.20 and the SST part of 
the optimal in Fig. 7.20 agrees with optimals calculated from the SST only (Chen et al, 
1997).  
 

Because the linearized A has unstable modes, Thompson and Battisti changed the 
parameters of the coupled model to stabilize the ENSO mode so that a statistically steady 
state may be attained when the system is forced by random noise. They created stable 
models by various combinations of reducing the coupling strength, increasing the 
dissipation, and reducing the reflection coefficient at the western boundary. (Since the 
western boundary of the Pacific is punctuated by passages into the Indian Ocean, one 
might expect that some of the Rossby wave mass flux would not reflect into Kelvin 
waves. Du Penhoat and Cane, 1991 calculate the reflection coefficient to be 0.8.)  The 
NINO3 index resulting from forcing a set of these stable models by random noise that is 
uncorrelated (“white”) in both space and time is shown in Fig. 7.21. 
 

 
 
 Fig. 7.21 Niño3 index for set of stabilized models. (a) Model stabilized by reducing the 
coupling constant but leaving the reflection and dissipation parameters alone The .97 is 
the decay rate over the course of the year(b), (c) and (d) Models stabilized by reducing 
reflection coefficient and increasing dissipation rate to give the decay rates .97, .8, and .6 
(e) Observed Niño3 index for 40 years from COADS. (From Thompson and Battisti, 
2001.) 
 

Fig. 7.21 displays an interesting range of model behaviors.  The slightly stabilized 
models, N.97 and T.97, may be described as regular oscillations with low frequency 
amplitude modulation.  As in the original Battisti model, the periods are shorter than the 
observed ENSO.  Increasing the stability (the decay rate) increases the period; in the two 
examples here it is around 4 years.  The heavily damped T.60 model is prone to produce 



large amplitude La Niña events, while the more modestly damped T.80 seems to have the 
most realistic behavior of the four.  
 

The amplitude of the non-normal disturbances excited by the stochastic forcing all 
tend peak at times less than a year. The sustained responses in Fig. 7.21 do not result from 
kicking off an optimal at t=0 and then having it grow as if untouched by the random 
forcing.  Rather, at each subsequent time the optimal is increased by the part of the 
random forcing that furthers its growth, and soon stands out from the other modes, modes 
with less inherent ability to grow (i.e. with lower growth rates).  The sum of the tiny bits 
grows into the ENSO mode (Fig. 7.22). 
 

 
 
Fig. 7.22 Individual monthly perturbations (thin solid lines) of the T80 simulation adding 
up to the ENSO signal (dashed line). (From Thompson and Battisti, 2001.) 
 

The formal solution of Eq. 7.25 with no initial perturbation (u(t=0) = 0) is 
 

( ')

0
( ) ( ') '

t t tt e t dt−= ∫ Au f . 

 
It has been shown that there is a sequence f(t’) that will generate the sequence u(t’) with 
the largest amplitude at time t (or the u that is maximum in some other norm).  This u is 
referred to as the stochastic optimal. Seminal work by Farrell and Ioannou (1993) in a 
fluid dynamics context (reviewed in Ioannou and Farrell, 2006) and work applied 
specifically to the ENSO problem by Kleeman and Moore (1997; reviewed in Kleeman, 
2008), and by Chang et al. (2004), all introduced the concept of  stochastic optimals, the 
structures of the large scale fields particularly sensitive to stochastic forcing.  While all 
the coupled models used in these various works were linear and stable, the model 
differences meant that stochastic optimals also differ. 
 

Moore and Kleeman (1999) using meridionally symmetric physics, find that the 
large scale intraseasonal forcing, in particular the Madden-Julian Oscillation, is most 
efficient at producing interannual variance. It should be noted that the unstable ZC model, 
described above, is known not to have the Madden-Julian Oscillation yet the reality of its 
simulated ENSO and the skill of its prediction of the phases of ENSO rank with the best 
of any of the models. It is hard not to conclude that while the Madden-Julian Oscillation 
may be important for describing the phases of ENSO accurately, it is perhaps not crucial 
for the fundamental existence of ENSO.  
 



7.7 Noise or Chaos? Stable or Unstable? Linear or Nonlinear? Does It 
Matter and Can We Tell? 

In the remainder of this section we discuss some issues that presently divide the 
ENSO community into those favoring noise and those favoring chaos.  We conclude by 
asking if the distinction matters and if we can tell the difference between the two. 
 

7.7.1 The Cause of Irregularity 
 

The literature offers noise and chaos as two distinct possibilities for the 
irregularity of ENSO. The argument for forcing by stochastic noise is straightforward: 
small perturbations grow either because the system is unstable, or because it is stable and 
non-normal, or because it is both unstable and non-normal. In each case, there is a 
sensitive dependence on initial conditions and random perturbations grow, implying 
irregularity. There is no question that there are small scale, high frequency (relative to 
ENSO) fluctuations in the atmosphere and in the ocean, but whether this stochastic noise 
is driving ENSO is open to question.  
 

The ZC model (Sec. 7.3) does not have random noise and its source of irregularity 
must be different. Mantua and Battisti (1995) argue that the source of irregularity in the 
ZC model is the nonlinear interaction of the ENSO mode with the so-called “mobile 
mode,” a coupled westward propagating coupled Rossby mode. Zebiak and Cane (1987) 
show (their Figure 18) that with a background state fixed at July conditions interannual 
oscillations still appear, but become regular.  They state that this holds for other months 
as well, albeit with different amplitudes and periods.  They conclude that the seasonal 
cycle is responsible for the irregularity in their model, but do not rule out the possibility 
that there are plausible parameter sets that would allow irregularity even in the absence of 
a seasonal cycle. Jin et al., 1994, and Tziperman et al., (1994, 1995, 1997) also argue that 
the ENSO mode interacts with the seasonal cycle to produce irregularity and show that 
their rather  different ENSO models all follow the universal quasi-periodic route to chaos 
as model parameters are varied. Tziperman et al (1995) specifically study the ZC model 
and show, in agreement with the earlier analyses of Jin et al and Tziperman et al of 
simpler, “toy” models, that the chaos is due to irregular jumping of the interannual 
oscillatory mode between different nonlinear resonances with the seasonal cycle.  
Loosely, if the nonlinearity is strong enough, the interannual mode tends lock in to the 
seasonal cycle, quantizing its period to a multiple of the annual.  However, the mode is 
indecisive about which period to choose and jumps irregularly between its choices (3 
years or 4 years for the ZC ENSO), though there may be times when it sticks with one or 
the other for a number of cycles.  This analysis also accounts for the tendency of ENSO to 
be phase-locked to the seasonal cycle and peak in boreal winter. 

7.7.2 The Cause Of Equilibration At Finite Amplitude 
 

When the coupled interactions produce a stable interactions, there is no need to 
explain the finite amplitude of the ENSO mode since the only way to get growth is 
through non-normality: the ENSO mode grows out of small stochastic forcing and then 
decays. When the coupled interactions are strong enough for the coupled interactions to 
produce instability, the equilibration to a finite amplitude ENSO mode occurs either 
through strong nonlinear terms (such as the T3 in Eq. 7.16) or through the nonlinearity 



implied by Eq. 7.15 which limits the amount of warm and cold water available through 
upwelling.  
 

7.7.3 Stable or Unstable? 
 

As we see, both the nature of irregularity and the cause of equilibration of the 
ENSO mode to finite amplitude depends on whether or not the atmosphere-ocean 
interactions are stable or unstable, which in turn depends on how strong is the coupling 
between atmosphere and ocean and how dissipative is the system, which includes how 
reflective are the Rossby signals at the western boundary.  
 

The reflection of signals at the irregular western boundary is the best understood 
of these issues: it is generally agreed that the reflection coefficient at the western 
boundary is of order .8 (e.g. Du Penhoat and Cane, 1991). The coupling, depends on the 
relation between the stress and the wind (Eq. 7.4), which is well known, and the relation 
between the SST and the heating (Eq. 7.5), which is pretty well known, and the relation 
between the heating and the wind, which is pretty well known, and the relation between 
the wind and the SST, via thermocline displacements and otherwise, which again could 
be characterized as pretty well known.  Unfortunately, all the “pretty well known” steps 
add up to considerable uncertainty. 
 

This leaves dissipation. For the same coupling strength if the dissipation is large 
enough the coupled interaction will be stable and if the dissipation is small enough, it will 
be unstable.  The momentum dissipation time in the ZC ocean model (Eq. 7.11a) was 
taken to be (r-1=) 2.5 years. Thompson and Battisti, 2000, argue, on the basis of Picaut et 
al., 1993, that the dissipation is much greater; the dissipation time is between 6.5 and 8.5 
months.  Fedorov (2007) however, points out that the dissipation depends on time scale 
and the value given by Picaut et al., 1993, should be assigned to the annual cycle. For the 
interannual time scales appropriate to ENSO he estimates that the correct dissipation time 
is 2.3 years, essentially the value used in ZC. This argues for the coupled ENSO mode to 
be unstable, even in the Battisti version. 
 

7.7.4 Does it matter and can we tell? 
 
We address the second queston first. Two structurally distinct models can exhibit 

many indistinguishable behaviors. We may illustrate this by a relevant construction. 
Blumenthal (1991) constructed a Markov model -- a noise-driven stable model of the 
form (7.25) -- from the output of the ZC model, which is clearly nonlinear and has been 
shown to be chaotic (Tziperman et al, 1994, 1995). The Markov model was quite 
successful in simulating the behavior of ZC and Blumenthal went on to analyze the 
optimal vectors, etc of this noise-driven model, but, obviously, avoided any assertion that 
the ZC model must therefore be a stable noise-driven system. When the data being fit 
comes from Nature, there is no such check on the temptation to take a model’s mimicry 
of a few aspects of the observations as proof that Nature works just like the model. 

 
Cane et al (1995) asked what it would take to determine if data came from the 

chaotic ZC model or from a noise driven linear (Markov) model derived from time series 
of ZC fields. They conclude that it would be possible with 500 to 1000 years of 



observations of, say, NINO3 SST anomalies. This assumes the data is accurate --more 
accurate than one could expect of proxy data. This aside, the conclusion is unduly 
optimistic. The test they use to distinguish between the nonlinear model and the linear 
knock-off depends on the more regime-like behavior of the chaotic nonlinear model and 
would be fooled if an external influence such as solar radiance variations or volcanic 
eruptions were inducing persistent regimes, a possibility strongly suggested by Mann et al 
(2005) and Emile-Geay et al (2007, 2008). We are not aware of any other attempt to 
directly address the “can we tell” question. Perhaps there is a test with greater statistical 
power than that used by Cane et al (1995), so we do not assert that it can never be 
answered affirmatively.  
 

Does it matter? It depends. It surely matters as a matter of intellectual curiosity: 
we would like to know just how the ENSO system functions It probably matters if we 
need to know if even in the absence of external forcing the system is likely to exhibit 
decades long persistent regimes (no El Niños, many El Niños, persistent cold states, 
etc.…) that could have devastating consequences like persistent drought.  A particular 
interest is the impact on predictability, which arises in Chapter 8. A short answer is that it 
matters in principle, but, alas, in practice this difference is overwhelmed by the limits on 
our current predictions due to limited data, and more importantly, to errors in the models 
and to shortcomings of the schemes for using the data to initialize the models.  

 
We all know that the real ENSO exists in a complex mix of nonlinearity and 

higher frequency “noise”. Our inability to distinguish between the “noise” and “chaos” 
paradigms indicates that the real ENSO operates near the critical divide in “parameter 
space” where control passes from one to the other. There will be no profound behavioral 
differences between a state that is marginally stable and one that is slightly unstable. A 
more pressing issue at present is the failure of most of our complex coupled General 
Circulation Models to achieve a respectable simulation of ENSO. 
 

7.8 Modeling ENSO by State-of-the-Art Coupled Climate Models 
 

The basic idea of ENSO simulation is the same whether we deal with  
comprehensive coupled models or the simpler coupled models detailed in the previous 
sections. The atmosphere is coupled to the ocean and, to the extent the atmosphere 
determines the correct surface wind stresses and heat fluxes and the ocean calculates the 
correct SST, the correct ENSO should arise spontaneously in the model Tropical Pacific.  
 

7.8.1 General Concepts 
 

The more comprehensive models have higher resolution; follow water vapor, 
liquid water, ice, and snow explicitly; treat the radiative properties of aerosols and clouds 
explicitly; contain parameterizations for shallow and stratiform clouds; realistically define 
the ocean margins and bottom; have far more explicit and high resolution treatment of the 
vertical ocean processes (especially mixing); and treat land processes explicitly. Further, 
the atmosphere and the ocean are treated on a global basis and therefore polar processes 
are also included. Some of the models have sophisticated physical, chemical and 
biological models for the uptake of carbon dioxide and other radiatively active gases (e.g. 
methane, nitrous oxide). There are now (2009) of order of a dozen independent complex 



coupled models in the world and most are used both for examining the current climate of 
the earth and for also for simulating the future response of the coupled climate system to 
the addition of radiatively active gases and aerosols to the atmosphere.  
 

One might think that coupling more comprehensive, and therefore more complex, 
models of the atmosphere and ocean together will provide definite advantages over the 
simpler models when it comes to simulating ENSO. It turns out, however, that there are 
problems with these more complex models not only simulating ENSO itself, but 
particularly in the correct simulation of the mean tropical conditions and tropical annual 
cycle. These are troublesome tropical biases that have persisted throughout the various 
upgrades of the comprehensive coupled models over the years. Since ENSO, and the 
tropics in general, play such a crucial part in all aspects of the global climate system, 
these biases are a serious limitation on the capacity of the climate models to give the 
correct response to the addition of these radiatively active gases and form one of the 
major obstacles to progress.  

7.8.2 Simulation of the Mean Climate and Annual Cycle 

 
Fig. 7.23 Annual mean SST from observations (panel a) and from a number of 
comprehensive coupled climate models used to simulate the response of the climate to the 
anthropogenic addition of radiatively active constituents to the atmosphere (panels b to j). 
(From Sun et al, 2006.) 
 

There has been a tremendous amount of activity around the world in simulating 
the earth’s climate by comprehensive climate model in order to assess the climatic 



response to the addition of greenhouse gases to the atmosphere (especially IPCC, 2007). 
These comprehensive models use atmospheric resolutions of order 150 km (T85 in 
spectral language), use state of the art parameterizations of clouds and precipitation, 
couple atmosphere, ocean, land, and cryosphere models together, and, all things 
considered, should provide a good simulation of the earth’s mean climate. Yet, for 
reasons still unexplained, significant biases remain in all the models. 
 

Fig. 7.23a shows the annually averaged SST in the tropical Pacific. The other 
panels show the simulation by a number of comprehensive climate models. All the models 
have the cold tongue extending too far to the west and the South Pacific Convergence 
Zone (SPCZ) is too zonally aligned rather than pointing off to the Southeast Pacific. The 
source of the westward extension of the cold tongue is that all the models have too strong 
easterlies extending too far westward. The net effect of this mean bias is that the region of 
persistent precipitation that lies over the warm pool in the western Pacific is too far west 
in the mean. Strong warm phases of ENSO, which tend to make the tropical Pacific a 
uniform warm temperature, therefore would have the SST anomalies extending too far to 
the west.  
 

The annual cycle of SST is confined to the eastern Pacific, mostly to the east of  
160°W. Here, the situation is mixed. Most models are not capable of giving a realistic 
simulation of the tropical annual cycle.  
 

 
 

Fig. 7.24 Annual cycle of Pacific SST on equator as anomalies from the annual mean. 
The multi-model ensemble is MME (After Fig. 2 of E. Jin et al., 2008—courtesy Emilia 
Jin).  
 

As we see from Fig. 7.24, none of the coupled models analyzed simulates an 
accurate annual cycle. Even for those models where forcing only the ocean with 
climatological fluxes gives the correct annual cycle of SST, coupling to the atmosphere 
gives incorrect annual cycles of SST Fig. 7.25. This Community Climate System Model, 
shown in Fig 7.25, exhibits an annual cycle that is completely out of phase with 
observations—the cold season is in June and July rather than September-October. There 



is also some hint of biannual variability. Since the forced uncoupled ocean model gives 
the correct annual cycle, the biases in the climatology is a function of the coupling—its 
ubiquity indicates that its cause is recondite. We may note here that while the exact 
mechanism of the coupled annual cycle in the tropical Pacific is not well understood, the 
annual cycle is presumably not purely forced by the sun since, as we have seen in Fig. 2.2 
that the solar forcing is biannual on the equator while the response is annual—the annual 
cycle is therefore a reasonable test of some of the same coupled mechanisms as ENSO 
itself. Each of these models is state of the art yet no one can yet say why one has a 
reasonable annual cycle and one does not. 

 
 

 
 
Fig. 7.25 Simulations of the annual cycle b) and c) compared to observations a). b) shows 
the forcing of the ocean with observed climatological fluxes at the surface while c) is the 
fully coupled CCSM. (From Large and Danabasoglu, 2006.) 
 

It is important to note that when the mean climatology has biases, the anomalies 
from the mean are necessarily suspect. Further, since the mean is incorrect, the heat 
sources that drive the predictable part of mid-latitude variability are in the wrong places at 
the wrong times and therefore give incorrect mid-latitude variability. While ENSO 
prediction (see Chapter 8) is not immediately affected by mean biases since the prediction 
are initialized by observations, the prediction evolves freely and therefore tends towards 
the wrong climate thereby eventually corrupting the forecast (this is an example of 
climate drift).  A complete analysis of the annual cycle in all the models used in the 
IPCC, 2007, is given in E.K. Jin et al, 2008 and in de Szoeke and Xie, 2008, with results 
that are consistent: the mean and annual cycles are currently generally poorly done in 
coupled atmosphere-ocean models for reasons that are not presently known. The first of 
these papers attributes the inability of these coupled climate modes to correctly simulate 
and predict ENSO to this fundamental problem in the models. Fixing these coupled model 
biases therefore becomes a very high priority for the next generation of comprehensive 
climate models. 
 

7.8.3. Simulations of ENSO 
 



As we pointed out in the previous section, all the current coupled comprehensive 
climate models have a bias that puts the annually averaged cold tongue too far to the 
west. It will therefore come as no surprise that the simulation of ENSO in these models 
has the ENSO SST anomalies also too far to the west. Fig 7.23 shows that all the 
comprehensive climate models exhibit this bias. In addition, all models have their periods 
too short compared to observations and the north south extent of the zonal wind 
anomalies are too meridionally confined. These biases exist in the presence of 
thermocline simulations which can be either too shallow or too deep. 
 

On the plus side, the magnitudes of the SST anomalies are approximately correct 
and the relationships between the thermocline anomalies, the zonal wind anomalies, and 
the SST anomalies are approximately correct indicating the basic correctness of the 
simulations according to the observations presented in Sec. 2.4. This basic correctness of 
the relationships illustrates continued progress over earlier assessments of the ability of 
comprehensive climate models to simulate ENSO. 
 

 
Fig, 7.26 Upper left panel: Observations of standard deviation of interannual SST 
anomalies from the monthly climatology. Other panels, show comparable standard 
deviation of comprehensive climate models from their own monthly climatologies. (From 
Capotondi, Wittenberg, and Masina, 2006.) 
 

It must not be thought, however, that the modeling situation using comprehensive 
climate models is acceptable. IPCC (2007) indicates that the response to the 
anthropogenic addition of radiatively active gases is only trustworthy on continental 
space scales, approximately 5000km. Given that the time dependence of thermal forcing 
of midlatitudes by the tropics is poorly simulated, both spatially and temporally, it is not 
surprising that this is true. This is one more example of the indivisibility of climate: in 



order to simulate the correct spatial and temporal dependence of long term climate, it is 
necessary to simulate all time and space scales that communicate with the time and space 
scales of interest. In practice, this means that no time scale, no space scale, no climate 
process, and no small scale process, can be arbitrarily neglected.  



8. ENSO Prediction and Short Term Climate Prediction 
 

We begin by making some non-standard distinctions, solely for convenience in the 
following discussion. We will refer to “ENSO prediction” as the process of predicting the 
SST in the tropical Pacific a month to a year or so in advance. We will call “short term 
climate prediction” the procedure of predicting the climatic conditions in the global 
atmosphere or over land away from the tropical Pacific a month to a year in advance. The 
utility of this distinction is that ENSO prediction can only be accomplished by coupled 
models whereas short term climate prediction, which depends in part on the thermal forcing 
due to the distribution of regions of persistent precipitation and is partly determined by the 
SST distribution in the tropical Pacific, can be accomplished by a global atmospheric model 
(with predicted tropical SST specified) but can also be accomplished by a fully coupled 
climate model. The distinction will become clearer in our discussion of one-tiered and two-
tiered prediction below. 
 

The possibility that coupled climate models, whether simple or complex, can predict 
aspects of the future evolution of ENSO is not at all obvious. The atmosphere is known to be 
of limited predictability, basically because it is chaotic: inevitable small errors in the initial 
conditions grow and, depending on the growth rate, eventually limit the skill of prediction 
after a given time. Since the error doubling time of the atmosphere is generally no more than 
a few days, the ultimate limit of prediction of the detailed state of the atmosphere is on the 
order of two weeks. No prediction of the weather beyond this limit can be made. 
 

How then can we make predictions of the evolution of ENSO several months in 
advance? The answer lies in the nature of the coupling of the tropical atmosphere to the 
relatively sluggish tropical ocean. To the extent that the SST distribution in the ocean 
determines the statistical distribution (but not the instantaneous distribution) of cloud heating 
over the interval, say, of a month, the slow evolution of the ocean SST determines the 
evolution of the statistics of the atmosphere (the original argument was given in Shukla, 
1981). Similarly, the statistics of the atmosphere applied as fluxes at the ocean surface 
determines the evolution of the ocean. It is the ponderous ocean component of the climate 
system involved with the evolution of the coupled system that permits long prediction times. 
What is forecast is the SST or, equivalently, the statistics of the atmosphere in equilibrium 
with the SST on times scales of a month or so. Even if the atmosphere is chaotic, the SST can 
be predicted and therefore the statistics of the atmosphere in contact with the ocean can be 
predicted. Note that this argument obtains only for the tropical regions where the interaction 
of the ocean with the atmosphere is strong and where the atmospheric statistics on monthly 
or longer timescales are directly determine by the ocean. In midlatitudes, the state of the 
atmosphere is not determined by local SSTs and short term climate prediction requires that 
remote tropical SSTs exert control. It is likely to turn out that only the tropical SST is 
predictable a month to a year in advance and only those aspects of the global climate that 
depend on tropical SST can be foreshadowed with any skill at all.  
 

Since the most useful type of future information is the probability distribution of 
future outcomes, ensemble forecasting has become the most useful prediction tool. Ensemble 



forecasting is based on the idea that the tropical ocean does not determine the instantaneous 
state of the tropical atmosphere, but does determine its monthly (and longer) averaged 
statistics. The exact state of the tropical atmosphere, i.e. the distribution of clouds, the height 
of the boundary layer, the exact instantaneous value of the wind stresses, is not in general 
known. Therefore if a set of different forecasts can be accomplished, each with slightly 
different initial atmospheric conditions, all consistent with what is known about the 
atmosphere, and each compatible with the initial ocean SST, the distribution of the forecasts 
will serve as the probability distribution function (pdf) of future outcomes. In this way, the 
statistical aspects of the future atmosphere are limned out in the ensemble distribution of 
predictions. The peak of the pdf is the most likely future outcome and the width of the pdf 
gives an indication of how certain is the forecast—the more sharply peaked the more certain.  
 

Since there are many coupled models, each built independently by different modeling 
groups and, therefore, each presumably having different and independent biases and errors, it 
turns out, unintuitive though it may seem, that the combination of forecasts among different 
models gives a better forecast than the forecast produced by any individual forecast system. 
These combinations of forecasts into a multi-model ensemble also gives a better idea of 
future probabilities and uncertainty than any individual model. A multi-model ensemble is 
limited only by the number of coupled forecast systems extant in the world. It may at some 
(distant) point in the future happen that one forecast system proves itself to be the absolute 
best and performs without systematic errors of any kind-- in that case the multi-model 
paradigm may be abandoned, It will still be true that ensembles with slightly different initial 
conditions will be required to  give an idea of future uncertainty since it will never be true 
that the atmospheric initial conditions over the ocean will be observed with perfect fidelity at 
fine scales. 
 

8.1 Weather Prediction 
 

While the concentration of this Chapter is on prediction a season to a year in advance, 
the comparison of the similarities and differences of weather prediction and short term 
climate prediction proves illuminating. Aside from the obvious usefulness of the forecast 
information a few hours to a few days in advance, the twice a day (or in some cases four 
times a day) model-based analyses of the atmosphere gives a synoptic view of the 
atmosphere and forms the basis, though reanalysis (see Sec. 8.2), for the rational growth of 
the atmospheric record over long intervals of time. 
 

Weather prediction proceeds by a number of standard steps (see e.g. Persson and Gravini, 
2005 for a very useful and complete review): 
 

1. Observations of the atmosphere, both direct and remotely sensed, are collected within 
a few hours of the initial time (i.e. within the initial time window). In general, the 
weather services of the world send their data to the Global Telecommunication 
System (GTS) which then makes the global collection of data available to all weather 
services. 

 



2. The observations are assimilated into a numerical model of the atmosphere by a data 
assimilation procedure. This model-based analysis of the atmosphere is performed by 
combining the observations with the output of the forecast system for the initial time. 
Since the observations are imperfect and, by themselves, do not define the state of 
entire atmosphere (especially in regions where no data exists or where the data is of 
such poor quality that the model gives a better estimate than the poor observations 
themselves), this combination of model with observations gives the best possible 
estimate of the state of the atmosphere. How the system knows the relative quality of 
imperfect observational data and model data is the essence of data assimilation. 
Sometimes model information at previous or future times is used to give the best 
estimate of state of the current atmosphere—the so called 4-dimensional data 
assimilation procedures. With a good data assimilation procedure, the analysis should 
give the best possible estimate of the state of the atmosphere at the given initial time.  

 
3. The initial state for the forecasts is produced, essentially the model based analysis at 

the initial time plus some subsidiary adjustments (removing gravity waves, adjusting 
the envelope of mountains, adjusting for shocks, etc.). 

 
4. The model is run from the initial state out to n days thereby providing forecasts for all 

times up to and including n days. 
 
5. As each real forecast time is reached, the forecast is compared to the analysis for that 

time in order to score the forecast.  
 
6. The forecast cycle is continually repeated and a series of forecasts is built up and 

verified by the series of analyses. The long series of forecasts is used to determine the 
overall skill, to analyze the dependence of skill on season and synoptic conditions, 
and to examine the forecasts for persistent biases in specific regions.  

 
The predictability of the atmosphere is limited to something of order two weeks since 

the error doubling time is on the order of two days or so. This arises because the atmosphere 
is a chaotic system and inevitable errors in the initial conditions grow until the forecast 
accumulates so much error that it becomes valueless. The skill of forecasts has continuously 
increased over the years, partly due to the expansion of coverage enabled by satellite 
observations, partly by the increased ability of data assimilation systems to deal with satellite 
data, partly by improved assimilation techniques for more standard data, and partly by 
general improvements in the atmospheric models used for weather forecasting.  Much of this 
progress is attributable to being able to make more model experiments and forecasts at finer 
scales made possible by continuing increases in computing power.  Improved forecasts can 
be expected as long as the observing system is, at the very least, maintained.  Unfortunately, 
experience has shown that this cannot be taken for granted despite the obvious benefits it 
enables. 
 

8.2 Seasonal-to-Interannual Climate Prediction 
 



As we saw with weather prediction, the components of a prediction system are: 
observations, assimilation, analysis, initialization, forecast by model, and validation. The 
forecast model can range from simple statistical forecasting to the most complex coupled 
atmosphere-ocean forecast systems.  
 

There were various statistical forecasts of the evolution of ENSO before 1986 (see 
e.g. Sarachik, 1990) with the first forecast using dynamical coupled atmosphere-ocean 
models made by Cane, Zebiak and Dolan, 1986, forecasting the onset of the 1986/7 warm 
phase of ENSO from initial prediction time in the (northern) Spring of 1986. The model used 
was the Zebiak-Cane model and, in the absence of ocean data in the tropical Pacific, the 
model was initialized by using the Florida State University (Legler and O’Brien, 1988) winds 
to force the ocean component of the model up to the initial time. The prediction proved to be 
correct and the era of ENSO prediction and short range climate prediction was launched.  

8.2.1 General Concepts 
 

There is no climate observing system so the observations taken for weather 
prediction, oceanography, agriculture, hydrology, etc. must form the observational base of 
climate prediction. A climate observing system would satisfy the principles of climate 
observations and would be adequate to form a model based analysis of the coupled 
atmosphere-ocean-cryosphere-land system. In the absence of such a climate observing 
system, and in the absence of ongoing analyses of the climate system, compromises must be 
made.  
 

A measurement, once taken, is fixed in time and can never be retaken at precisely the 
same time. Some atmospheric measurements are taken and recorded but for one reason or 
another, did not make it to the GTS in time. As these data taken at previous times are 
recovered , a new analysis of the atmosphere at these previous times can be performed by 
redoing the weather forecasting procedure at these previous times. Indeed, this can be done 
over the entire record using a single (best available) forecasting procedure and the record of 
stored and recovered data. If this is done with the best current models and data assimilation 
techniques, then the best possible series of analyses of the atmosphere from the beginning of 
global observations to the present time can be obtained. This ongoing process is called 
reanalysis. It should be clear that reanalysis can never overcome inadequacies in the original 
measurements: it can, however, both correct for inadequacies in the original model (which 
may then possibly ameliorate problems with the original measurements) and can also use 
recovered observations which were not part of the original analyses.  
 

One can conceive of a similar procedure for climate: data in the atmosphere, ocean, 
land, and cryosphere is assimilated into a comprehensive coupled climate model (using the 
model predictions to the initial time as a first guess) to perform a comprehensive model-
based analysis of the climate system. This analysis of the climate system would then form the 
basis for the initial conditions for the climate forecast. It would also be the optimal way to 
extend the observational climate record since data in each part of the system would have 
some influence on the other and the climate analysis would be the best possible estimate of 
the state of the entire climate system. This procedure is presently not yet done. 



 
An important question in all forecasting procedures is how to score the forecast: i.e. 

what constitutes “skill”. Clearly some comparison between the forecast at time tn and the 
analysis of the observations at time tn must form the basis of skill. The simplest possible 
measure of skill is the correlation of an index of a predicted quantity with its measured value 
and the root-mean-square (rms) difference of the amplitude of the predicted quantity with its 
measured value, both averaged over a long series of predictions. (Note that correlation alone 
measures the coincidence of phase without regard to amplitude and by itself is not a good 
measure of skill.) Persistence is the correlation and rms error of the observed quantity as it 
evolves compared with its initial value, thus indicating how well the initial value of a 
quantity predicts the future evolution of the same quantity, again averaged over many 
realizations of the initial value. There is no general agreement about what level of skill is 
useful. It does seem clear, however, that at a minimum, skill that does not exceed the skill of 
persistence adds no value and therefore is useless.  
 

Fig 8.1. shows an example of the skill so defined from the prediction system using the 
ZC model which, in the absence of long records of ocean data, is initialized by running the 
ocean model with the Florida State University winds to spin up to the initial state of the 
ocean. The Figure shows the correlation of predicted NINO3 with observations, as a function 
of months of prediction (left panels) and the growth of error of the NINO3 again as a 
function of months of prediction (right panel). Also shown is the persistence (heavy line), the 
forecasts by the original Cane-Zebiak scheme (as described in Cane, Zebiak, and Dolan, 
1986---dotted line), and forecasts using a newer data assimilation procedure that improves 
the initial state of the coupled model (Chen et al., 1995). Note that in this prediction scheme, 
the predictions did not beat persistence at lead times less than 4 months. The source of this 
problem is the initial error which is large for the original prediction system and is improved 
by the new adjustment procedure. Note also that prediction skill varies considerably from 
decade to decade (also see a longer set of forecasts in Chen et al., 2004). 

 

 



 
Fig. 8.1 Skill scores for NINO3 index for predictions using the Cane-Zebiak model. Left 
column: Correlation of predicted and observed NINO3 index over the time interval noted.  
Right column: Root mean square difference between the predicted and observed NINO3 
index over the time interval noted. (From Chen et al., 1995.) 
 

An important concept for all types of prediction is that of the probability distribution 
function of future outcomes. While it is certainly true that the state of the climate system as it 
evolves is unique, the prediction of the future state is necessarily imperfect. It helps to think 
about a range of future outcomes, expressed as the probability of each of the possible 
outcomes. Thus even if the forecast is relatively sure about a certain outcome (say a winter in 
the upper ten percent of warmth) there may still be certain probability that the opposite of the 
outcome will occur (say a cold winter). The more certain the forecast, the more sharply 
peaked is the distribution about the forecast value. The less certain the forecast, the flatter is 
the probability distribution of outcomes. The basic problem of prediction therefore becomes 
the determination of the best method of determining the future probability distribution of 
outcomes. This is usually done by performing an ensemble of individual predictions that span 
the range of possible outcomes.  
 

The reliability of the probability distribution can be tested in a hindcast mode---over 
many past years of data, ensemble retrospective forecasts are made and the predicted 
distribution of outcomes is compared with the actual distribution of outcomes over the entire 
record.  
 

Predicting a probability distribution of outcomes complicates the scoring of the skill 
of prediction. At a very minimum, the actual future outcome should lie somewhere within the 
predicted probability distribution. It should also be clear that while the skill can be 
determined objectively, there is no objective measure of the usefulness of a given level of  
skill—any information about the future is better than no information about the future and 
should be useful to someone who can take advantage of whatever skill is present.  
 

As a final point, which we will return to in discussing the  applications of predictions 
(Chapter 10), it will prove useful to a user of future climate information to know that a range 
of future outcomes is possible and that the user should act on climate information 
judiciously, keeping in mind that sometimes the opposite of what is most likely might just 
possibly occur. Since each possible future climate outcome implies an impact, a range of 
impacts, perhaps some beneficial, some malign, is implied. This judicious treatment of the 
range of future probabilities of impacts is the essence of climate risk management.  
 

8.2.2 One-Tiered and Two-Tiered Short Range Climate Prediction 
 

Ideally, the steps for short term climate prediction are similar to those for weather 
prediction: 
 



1. Data is gathered in the atmosphere and ocean and at the land and ice surface and 
assimilated into a coupled climate model. 

 
2. The data is combined with the forecast for the initial time (the so-called “first guess”) 

and an analysis of the whole climate system is made. 
 
3. This analysis, plus whatever practical adjustments need to be made, form the initial 

state of the forecasts. A number of possible perturbed initial conditions are produced 
for the construction of forecast ensembles.  

 
4. The coupled model is run into the future for each of these initial conditions. 
 
5. At each forecast time, the forecast is compared to the analysis at that time and 

statistics of skill are gathered. 
 
6. The cycle is continually repeated. 

 
Because the climate evolves so slowly that it would be impractical to determine skill in 

real time, an additional step is needed: 
 
7. A series of retrospective forecasts is performed using the longest possible series of 

past analyses (or reanalyses) used both for initialization and for scoring (a 
retrospective forecast is one performed and scored on past data). Using this long 
series of retrospective forecasts, the overall skill of the forecast system is determined, 
the regional and seasonal stratification of skill can be assessed, and any systematic 
biases can be determined. Using the knowledge of biases obtained from the 
retrospective forecasts, forecasts can be corrected (so called post-processing). 

 
Because of the lack of data in the oceans and the huge amount of computer time it 

takes to run coupled models, compromises are often made. The original Cane-Zebiak model 
is itself a compromise: it predicts the SST anomalies in the tropical Pacific at modest cost in 
computer time but it does not predict the effects around the globe since its active domain 
encompasses only the tropical Pacific. Subsurface data up till now has only been available in 
the tropical Pacific (see Chapter 2) so another common compromise is to allow the ocean to 
be an active participant only in the tropical Pacific and specify the ocean SSTs at their 
climatology or observed values elsewhere. Yet another compromise is to calculate the SST 
anomalies in the tropical Pacific from a simplified system (such as the Cane-Zebiak model or 
some other intermediate model) and use the resulting forecast SST distribution as boundary 
conditions for a relatively high resolution atmospheric general circulation model to determine 
the effect of the forecast SST anomalies on the global atmosphere. Calculating the SST 
anomalies with a coupled model and using the results as boundary conditions for a different 
higher resolution global atmospheric model is called two-tiered forecasting. Initializing the 
entire ocean and then performing the forecasts with a global coupled model is called one-
tiered forecasting.  
 



The prime advantage of one-tiered forecasting is that the model climate evolves 
consistently throughout the model globe. The disadvantages are: first, that coupled models 
are expensive to run, and second, that there is no advantage to initializing the entire ocean if 
the data to do this is missing or otherwise inadequate in major parts of the ocean. 
 

The prime advantage of two-tiered forecasting is that global atmospheric models are 
less expensive to run than fully coupled models. The disadvantage is that the coupled model 
used to generate the SST boundary conditions for the atmospheric model is usually regional 
and some other method must be used to generate SSTs elsewhere on the globe. This can be 
done by persistence or by some statistical method but in any case, need not be fully 
consistent with the SSTs that would be generated by a global coupled model.  
 

8.2.3 Ensemble Prediction and Probability Distributions 
 

In both one- and two-tiered forecasting, ensembles of forecasts are performed to give 
an idea of the probability distribution of future outcomes. In one-tiered forecasting, an 
ensemble of initialized ocean conditions is coupled to the atmosphere, where each initial 
condition defines one member of an ensemble of forecasts. In two-tiered forecasting, an 
ensemble of SST anomalies is generated from the coupled model and, for each of these SSTs, 
a number of atmospheric initial conditions consistent with each boundary condition is 
generated. These additional members of an ensemble are generated for the second tier 
atmospheric model by using slightly different atmospheric initial conditions, each consistent 
with each SST boundary condition.  
 

8.2.4 Multi-Model Ensembles 
 

In a carefully controlled series of retrospective forecasts using common boundary 
conditions for two-tiered forecasting, the PROVOST project (PROVOST, 2000) found that 
different models gave different probability distribution functions of future outcomes. Since 
none of the models could be dismissed as clearly worst (i.e. each was best in some places at 
some times) only some combination of the different models would more correctly approach 
the true range of probability of outcomes. Further, the combination of models gives a better 
mean forecast. In a detailed follow-on program (Palmer et al., 2004, DEMETER, 2005) using 
only coupled models, the detailed justifications, both empirical and theoretical, are given for 
multi-model ensembles (Hagedorn, Doblas-Reyes, and Palmer, 2005; Doblas-Reyes, 
Hagedorn and Palmer, 2005).  
 

Our current understanding is that the best forecasts of mean values and the best 
possible probability distribution of future outcomes is given by combining ensembles from 
individual models into larger multi-model ensembles. The more members of the multi-model 
ensemble, the better the forecast and the more useful the probability distribution function of 
the forecast.  
 
 



8.3 The Current Status of ENSO Prediction and Short Term Climate 
Prediction 
 

There have been many excellent recent reviews of ENSO prediction and short term 
climate predictability and prediction, both by single models and by multi-model ensembles 
(Latif et al, 1998; Goddard et al, 2001, the previously cited PROVOST and DEMETER 
volumes, Chen and Cane, 2008, and E.K. Jin et al., 2008).  

 
A complete set of monthly ENSO forecasts of NINO 3.4 indices from the year 2002 

to the present by a number of dynamical and statistical models are archived at the 
International Research Institute for Climate and Society website (http://iri.columbia.edu). As 
an example, Fig. 8.2 shows summary forecasts of a large number of statistical and dynamical 
models over the years 2006 and 2007. This is a good period to look at because the ENSO 
state in the tropical Pacific was warm towards the end of 2006 and cold towards the end of 
2007. Note that we will not be concerned with the performance of individual models (these 
can be found at the IRI website) but we note the following general features that have been 
cited elsewhere in the literature: 
 

• At present, there are no clear winners among the classes of intermediate coupled 
models, full global dynamical models, or statistical models.  

 
• Every model busts sometimes. 

 
• All the models have trouble with predicting the amplitude of warm and cold phases of 

ENSO. 
 

• Forecasts initialized before the (northern) Spring seem to go bad most often.  
 

• Once Spring has passed, most models tend to go in the right direction. It should be 
noted that the phases of ENSO are already developing in Spring so that a cursory 
examination of observed values usually gives a reasonable forecast. 

 
• While it is not clear solely from the time interval shown in Fig. 8.2, examination of 

longer intervals indicate that stronger warm or cold phases of ENSO tend to be better 
predicted than weaker ones (Goddard and Dilley, 2005).  

 
• The skill does not seem to have improved much since the first dynamical forecast in 

1986 (Barnston et al, 1999).  
 

• Intraseasonal variability is not initialized and could account for the poor skill in 
forecasting the amplitude of ENSO since, as we have seen, intraseasonal wind 
variability at the surface can greatly enhance the pre-existing surface winds (Sec. 
2.6). Since forcing from propagating intraseasonal thermal sources could force the 
midlatitudes some two weeks later, a possible source of long range weather 
variability in midlatitudes is currently being neglected (e,g, Vecchi and Bond, 2004).  



 
• As is clear from Fig. 8.1, and from the experience of other forecasters, skill 

varies decadally for reasons that are at present poorly understood. 
 

 
 
Fig. 8.2 Forecasts of NINO3.4 for a number of statistical and dynamical models for 
overlapping three month intervals from December 2005 to September 2007. The solid line is 
the observed value. (Downloaded from 
http://iri.columbia.edu/climate/ENSO/currentinfo/archive/200709/dynamical2.gif.) 
 

The skill of short range climate prediction depends entirely on whether or not the 
region of interest is in the tropics or mid-latitudes. In the tropical Pacific, accurate prediction 
of SST anomalies should enable accurate prediction of temperature and precipitation over 
specific regions: the west coast of equatorial South America, the Pacific Islands, the maritime 
continent, parts of Australia, etc. For example, during warm phases of ENSO, the region of 
persistent precipitation expands into the central Pacific and away from the western Pacific. 
Upon a forecast of a warm phase of ENSO, it is therefore a good call that that the maritime 
continent would be dry. Conversely, upon a forecast of a cold phase of ENSO, it is a good 
call that the maritime continent is rainy. Because there are considerable spatial variations 
over the maritime continent, more precise regional projections can only be made by more 
highly resolved models (e.g. Qian, 2008) used in a downscaled mode (i.e. the SST is 
predicted, a global atmospheric model is run in two-tiered mode, and using the output of the 
global atmospheric model as boundary conditions, a very high resolution regional model is 
run). Within the tropical land areas, but outside the tropical Pacific, the area of dry conditions 



tends to be larger during warm phases of ENSO and the area of wet conditions tends to be 
larger during cold phases or ENSO (Lyon and Barnston, 2005).  

8.4 Improvements to ENSO and Short Term Climate Prediction  
 

We can summarize the future road to progress in terms of improvements to each 
aspect of the forecast procedure: theoretical understanding, observations, assimilation 
procedures, and models.  
 

There are three basic theoretical issues that are presently unresolved and whose 
resolution would contribute greatly to our ability to improve the prediction of tropical SST 
and its effects. The first is the issue of the ultimate limit of predictability of tropical SST. If 
we are currently at the limit of predictability, then it would save a great deal of time and 
effort to know this, since the predictability of tropical SST could be improved only in 
accuracy, not in range. The limits depend on the mechanisms for ENSO: if ENSO is due to 
stable atmosphere-ocean interactions, then its predictability time could not be much more 
than the disturbance growth time, something of order of a year (Thompson and Battisti, 
2001). If ENSO is due to unstable atmosphere-ocean interactions, then the fundamental 
limitation would be the length of time that motions on the thermocline retain their integrity 
(the so-called “memory of the ocean”) and the initialization of the thermocline could 
foreshadow the evolution of the system for much longer than a year. Chen et al (2004) show 
that the large events are predictable more than one year ahead. Fig 8.1 indicates that for some 
periods, the predictability of ENSO is considerably greater than a year while for some 
periods it is not.  
 

This leads to the second theoretical issue: the decadal modulation of SST in the 
tropical Pacific and hence of all aspects of global climate influenced by SST.  Since we know 
that these changes do impact climate, the prediction of ENSO alone is not a sufficient goal. 
Decadal variability is an area of active research as we write this, and at this time we can’t say 
if the decadal variations we observe in the tropical Pacific are controlled by the same 
processes active for interannual ENSO variations, if they are caused by something quite 
different, or if a mixture of the two is involved. In recent – and future – decades we would 
expect global warming to be involved, but just how is not yet clear (see Chapter 9). In either 
case, the time scales of global warming are intertwined with the time scales of decadal 
variability and we can no longer assume a stationary climatology, which calls the anomalies 
into question. The point can be well illustrated by Fig. 8.3 which compares anomalies from 
the mean of the record (Fig. 8.3a) with anomalies from a decadal running mean whose origin, 
as we have pointed out, is still undeciphered. The continuing warm phase of ENSO of the 
early 1990s, for example, so evident when taken with respect to an stationary mean looks 
insignificant when taken with respect to the decadal running mean. It is possible that the 
decadal variability of ENSO predictability is due partly to this confusion of anomalies but it 
is also probably that it is dependent on the specific nature of the mechanism for the decadal 
modulation of ENSO which remains unknown. 
 

The third theoretical issue is the nature of the propagation of signals from the tropics 
to the midlatitudes in the atmosphere. Even if we know the SST, and therefore the monthly 



distribution of heat sources in the tropics, this not mean that we perfectly know the effects of 
these thermal sources on the higher latitudes. First because these effects might be lost in the 
large natural variability of the mid-latitude systems, and second, because the propagation of 
signals from tropics to mid-latitudes through vertically and horizontally sheared winds is but 
imperfectly understood (e.g. Hoerling and Kumar, 2002; Liu and Alexander, 2007).  
 

The observational situation is equally fraught. To the extent that the limitation on 
forecasting is due to our lack of understanding of decadal modulation, the ENSO observing 
system (Chapter 2) is inadequate. It has been in place only since 1995 and therefore cannot 
yet produce the long records needed to define the subsurface dynamics of decadal variability 
and, because it was designed to observed the waveguide (within 8° of the equator), it is not 
meridionally extended enough to define the observed meridional structure of the decadal 
signal in the tropics (Fig. 2.33). On the other hand, to the extent to the extent the basic 
inadequacy is the lack of a well defined intraseasonal signal, the current weather observing 
system in the tropics is weak on defining the structure, phase and amplitude of the synoptic 
intraseasonal oscillation.  
 

The theory and practice of data assimilation in weather prediction is developing 
rapidly (Kalnay, 2003) but in a climatic context it is far behind. A coupled analysis of the 
climate system, consisting of data assimilation into a coupled climate model, is the only way 
to assure that the data from the subsystems of the climate system (atmosphere, ocean, land, 
ice and snow, etc) are mutually consistent. A coupled analysis of the climate system is the 
consistent way to initialize coupled forecasts.  

 
Finally, we have seen that the coupled models have specific biases (e.g. Fig 7.20 and 

Fig. 7.21) and that these biases necessarily cause the coupled model to drift to the wrong 
climate state even if the forecasts are properly initialized. While the current causes of these 
biases are not known and are presumably subtle in origin (else one of the coupled modeling 
groups would surely have already corrected them) the need to have the tropical forcings in 
the right place at the right time is a necessary condition for getting the global interannual 
variability correct. Thus, while coupled models are being run at higher resolution and with 
more realistic parameters, until the reason for these ever present biases is understood, the 
limits on predictability are more tightly constrained than the ultimate limit on predictability 
allows. 
 

The best way to improve all aspects of the prediction process is to commit to 
continuously and uninterruptedly provide the predictions, learn how to use them for specific 
applications in specific regions of the word, and complain mightily when the prediction skill 
is inadequate. The continuous confrontation between model predictions and reality and the 
ongoing attempt to learn to use the forecasts for the benefit of society is the surest way to 
scientifically learn the problems of the prediction procedures and to build the societal 
appetite to commit the resources to resolve these problems.  



 
Fig. 8.3: (From Fedorov and Philander, 2001). SST anomalies over 5°S to 5°N, 80°W 

to 120°W in the tropical Pacific. (a) Relative to the average over the entire record (b) 
Relative to a decadal running mean of the record.  



Chapter 9: ENSO, past and future1 Or: ENSO by proxy and 
ENSO in the tea leaves 
 

In this chapter we review what is known about ENSO as recorded in paleoclimatic 
proxies, and what is expected for ENSO as we enter a climate state altered by anthropogenic 
greenhouse gases. In neither case can we confidently construct a reliable picture from  
instrumental data; in one case we draw inferences from proxies to reconstruct what the 
climate was, and in the other we rely on imperfect models to foretell the future. 
 

Our knowledge of ENSO in the paleoclimate record has expanded rapidly from the 
late 1990s. The ENSO cycle is present in all relevant records, going back 130 kyr (kilo-
years) to the previous interglacial (Hughen et al, 1999).  It was systematically weaker during 
the early and middle Holocene (the last 10,000 years), and, as we shall see, model studies 
indicate that this results from reduced amplification in the late summer and early fall, a 
consequence of the altered mean climate in response to boreal summer perihelion.  Data from 
corals shows substantial decadal and longer variations in the strength of the ENSO cycle 
within the past 1000 years; it is suggested that this may be due to solar and volcanic 
variations in solar insolation, amplified by the Bjerknes feedback.  There is some evidence 
that this feedback has operated in the 20th century.  
 

All of us now anticipate a change in climate brought about by human activity.  
Among other things, we will have to adjust to a change in the year-to-year variations in 
climate.  Will there be more El Niños, or more powerful El Niños? How will El Niño itself 
change in a greenhouse world?  The short answer, to be expanded upon in Sec. 9.3, is that the 
best estimate at this time, which is based on the comprehensive general circulation models 
used in the IPCC 4th Assessment Report (IPCC,2007), is that it will not change much at all, 
but we have very low confidence in this answer.  
 

Another critical issue is whether the impacts of the ENSO cycle will change. For 
example, over the past century, the period for which we have instrumental data, there is a 
statistically significant association between poor monsoons in India and El Niño events.  This 
relationship seemingly broke down in the 1990s (Kumar et al, 1999); monsoon rainfall was 
near normal during the powerful 1997 event.  In contrast during the very strong 1877 El Niño 
there was severe drought in India leading to widespread famine.  Kumar et al (1999) 
speculated that the change in the monsoon-ENSO relationship might be a consequence of 
global warming.  However, the “normal” association seemingly has returned, as the moderate 
2001-02 El Niño was accompanied by a weak monsoon. 
 

9.1 ENSO Past 

9.1.1 ENSO in the Pliocene 
 

                                            
1 Much of the material in this chapter appeared in Cane, 2005. 



The Pliocene is the geological period traditionally taken between 5.33Ma (5.33 
million years ago) and 1.8 Ma, though it would be better to put its termination with the onset 
of substantial northern hemisphere glaciation at 2.73Ma. What makes it so interesting is that 
it was the last time the Earth was as warm as it is about to become: ~3°C warmer than the 
pre-industrial era.  Atmospheric CO2 levels are thought to have been ~400 ppm. Though 
there is great uncertainty in this estimate (it might well have been 350 ppm or 450 ppm), we 
have some confidence that it was something close to values in the year 2000 and less than 
twice pre-industrial CO2 concentrations (see references in Haywood et al, 2005; also Pearson 
and Palmer, 2000).  
 

The paleoproxy data for the period is most often interpreted as indicating a 
“permanent El Niño”, although none has the temporal resolution to rule out the possibility of  
interannual variability with stronger or more frequent El Niño events than in the modern 
climate.  A number of studies, but most importantly Wara et al (2005), indicate that the 
thermocline in the eastern equatorial Pacific (EEP) was much deeper than in the modern 
ocean, and the EEP surface temperature was comparable to and perhaps even higher than that 
in the western equatorial Pacific.  Molnar and Cane (2002) show that the global pattern of 
differences from modern climatology resembles the El Niño pattern, particularly the pattern 
of anomalies that accompanied the 1997-98 event (Molnar and Cane, 2008). 
 

Philander and Federov (2003; see also Federov et al, 2006) advanced the hypothesis 
that the permanent El Niño state was due to the thermocline being everywhere deeper than in 
modern times – too deep to allow the colder water within the thermocline to reach the 
surface, as it does in the modern eastern equatorial Pacific.  The onset of major northern 
hemisphere glaciations is attributed to the thermocline shallowing, though the reason for this 
change is not specified.  They argue that the change in teleconnections to the high latitude 
northern hemisphere with the demise of the permanent El Niño state triggers the growth of 
glaciers. 
 

There are few coupled model simulations of the Pliocene.  Lunt et al.,2008, extended 
the work of Haywood et al. (2005, 2007) using the Hadley Center coupled climate model 
(HadCM3) and an ice sheet model.  They conclude that the change from a permanent El Niño 
has very little effect on the growth of glaciers in Greenland, but that a decrease in 
atmospheric CO2 consistent with (the very imprecise) reconstructions of the time history of 
atmospheric CO2 is sufficient to account for the onset of glaciation. This model does not 
produce a permanent El Niño even with CO2 elevated to 400 ppm.  Taken at face value this 
would rule out the interpretation of the Pacific paleoproxy data as indicating a permanent El 
Niño as well as the notion that the change in the tropical Pacific had a role in the onset of 
glaciation at the end of the Pliocene.  However, the verisimilitude of the model is 
questionable and in some respects it seem at odds with proxy data from the Pliocene; for 
example, the data assembled by Molnar and Cane (2002) points to a cooler climate in the 
Gulf of Mexico region.   
 
 



9.1.2 ENSO in the Holocene 
 
 

 
 
Fig 9.1. Paleo-ENSO variability from fossil corals. (A) Left hand side: Seasonal resolution 
(thin lines) and 2.25 year binomial filtered (thick lines) skeletal 18O records from  fossil 
corals from the Huon Peninsula, with the record from modern coral DT91-7 shown for 
comparison. Right hand side: 2.5-7 year (ENSO) bandpass filtered coral  18O timeseries. (B) 
Standard deviation of the 2.5-7 year (ENSO) bandpass filtered timeseries of all modern and 
fossil corals shown in (A). An asterisk after the coral label indicates that the timeseries is < 
30 years long. The horizontal dashed lines indicate maximum and minimum values of 
standard deviation for sliding 30-year increments in the modern coral records. (From 
Tudhope et al, 2001) 
 
 



There is good evidence that the ENSO cycle has been a feature of the earth’s climate 
for at least the past 130,000 years (Tudhope et al 2001; Hughen et al, 1999).  Figure 9.1 
shows records from fossil corals collected on the Huon Peninsula in New Guinea, a location 
in ENSO’s “heartland”.  In general, an oxygen isotope signal reflects temperature, salinity, 
and global ice volume. After correction for ice volume, in this location it primarily reflects 
variations in rainfall, which has much greater range there than temperature.  In any case, 
since greater precipitation and warmer temperatures occur together there, we can take δ18O as 
an index of ENSO without troubling to disentangle the temperature and salinity signals.  
Every record shows oscillations in the 2-7 year band characteristic of ENSO.  The records 
cover only a small fraction of the time since the last interglacial, so the possibility of some 
period without oscillations or with markedly different oscillations cannot be ruled out.  
However, there are enough records to be able to say that if there are such periods they cannot 
be common.  We note that an ENSO model (Clement et al, 2001) shows ENSO stopping only 
twice in the past 500,000 years: during the Younger Dryas, and about 400 kyr earlier when 
the orbital configuration was most similar to the Younger Dryas. 
 

An earlier study of a laminated core from a lake in Ecuador (Rodbell et al 1999; also 
see Moy et al, 2002) was interpreted at first as showing an absence of ENSO in the early and 
middle Holocene (Rodbell et al 1999; Federov and Philander, 2000, 2001).  In this work the 
proxy for ENSO is the clastic sediment washed into the lake during the heavy rains that occur 
almost exclusively during El Niño events.  This material is lighter in color than the usual lake 
sediments, so the number of El Niño events may be counted. It is more consistent with the 
Tudhope et al (2001) record to suppose that although the ENSO cycle continues, there were 
few El Niño events during this period strong enough to wash material into the lake.  In this 
view, ENSO does not start circa 5000 BP, but merely picks up strength.  Because ENSO 
amplitudes can vary so much over a century (e.g. Figure 1.17), the fossil coral records are too 
short and too few to allow a confident statement that the early and middle Holocene were 
surely marked by a weakened ENSO cycle.  The lake record, however, covers the whole 
period, and shows a systematic difference between the early-middle Holocene and the last 
5000 years.  The fossil coral records strongly suggest that the ENSO cycle was also weaker 
than at present during the glacial era, and of comparable amplitude to the modern during the 
last interglacial.  More records are needed to establish that this description is indeed correct. 
 

It is still not clear what changes in the mean state of the tropical Pacific (SST, SST 
gradients, upper ocean temperature structure; location and abundance of rainfall; wind 
patterns) accompanied these marked changes in ENSO variance through the Holocene. In 
particular, a continuing middle Holocene controversy is whether the mean state of the eastern 
equatorial Pacific was warmer or colder than today.  On the basis of warm water mollusk 
shells found on the coast of Peru at latitudes where they are not present today, Sandweiss et 
al. (1996) inferred that the mean temperatures were warmer – a persistent El Niño state.  This 
is not consistent with other geological evidence or the proxy temperature record of Koutavas 
et al (2002).  Moreover, if an El Niño-like state prevailed, there should have been more rain 
at the lake sites in Ecuador.  A possible resolution of this apparent discrepancy was offered 
by Clement et al., 2000, who suggest that the warm water mollusks survive not because of a 
permanent warm (El Niño) state, but because the cold (La Niña) phase of ENSO was also 
weaker at this time of reduced variability. 



 
Why was the behavior of ENSO so different in the early and middle Holocene?  The 

likely cause is the difference in the earth’s orbital configuration at that time. Perihelion 
occurs in January at present, so 11,000 years ago when it occurred in July solar radiation was 
greater during boreal summer. Clement et al (200) imposed the perturbation heating due to 
orbital changes over the past 15,000 years on the ENSO model of Zebiak and Cane (1987). 
Figure 9.2 compares the number of strong warm events in the model simulation with the 
Ecuadorian lake record of Moy et al (2002). As in the proxy record, the model simulation has 
a weaker ENSO cycle during the early and middle Holocene.  The average period between 
events is not greatly different, but strong events are rare.  An interesting feature of Figure 9.2 
is the peak in the number of warm events about 1000 years ago present in both data and 
model.  Clement et al, 2000, found that the general shape of this curve – few events in the 
early and middle Holocene, rising to a peak at ~1000BP and then declining – was consistent 
across an ensemble of runs and concluded that these features were a consequence of the 
changing orbital forcing. 
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Fig. 9.2 Number of warm ENSO events in 100 year windows. The black line with squares is 
proxy data from a lake in Ecuador (Moy et al., 2002). Warm ENSO events are defined as 
light colored strata in the sediment record, which reflect pluvial episodes during large El 
Niño (warm) events. The solid line shows the ensemble mean of 7 simulations with the 
Zebiak-Cane model forced by the orbital variations of the last 12,000 years. The dotted lines 
show the minimum and maximum values over the ensemble. Warm ENSO events are defined 
in the model as years in which the DJF SST anomaly in the NINO3 region (5°N-5°S, 90°W-
150°W) exceeds 3°C. This event index corresponds to the middle of the rainy season in 
coastal South American during which large SST anomalies associated with ENSO events are 
capable of causing the ITCZ to move equatorward and bring large precipitation anomalies to 
the region. (From Cane et al, 2006) 
 

There is considerable sub-orbital timescale variability in the model runs, and even 
more in the lake record. While some of the latter is no doubt due to the nature of the 
“recording device”, some is a feature of ENSO.  The intermediate model has limited physics, 



and so has limited ways of generating internal variability.  Moreover, external factors, 
particularly variations in solar radiance and in volcanic aerosol might be expected to induce 
variations in the ENSO cycle. Asmerom et al, 2007, showed that a proxy record for ENSO 
derived from a speleothem from a cave in New Mexico was highly correlated with a proxy 
for solar irradiance.  Emile-Geay et al., 2007, forced the Zebiak-Cane model with a proxy-
derived solar irradiance timeseries for the Holocene and found a substantial and statistically 
significant enhancement of centennial-to-millennial scale ENSO variability.  If the orbital 
variations were added to this forcing they found the same general pattern of weak ENSOs in 
the early and middle Holocene as in earlier work. 
 

In both the model and real versions of the modern climate, ENSO events amplify 
through a “growing season” that runs through the boreal summer and into the autumn, after 
which growth ceases and anomalies begin to decay.  (Thus El Niño and La Niña events peak 
around the end of the calendar year, when the rate of change is zero.)  The growth is a 
consequence of the Bjerknes feedback; there is a positive feedback for only part of the year.  
In the model simulations of the early Holocene the growth of anomalies ends around August, 
before the summer is over.  This shorter growing season means that anomalies do not reach 
the peak values of today. The equatorial oceans received about the same annual solar 
radiation but its seasonal distribution is quite different.  Northern hemisphere insolation was 
stronger in the late summer and fall, so the Intertropical Convergence Zone, which tends to 
lie over the warmest water, was held in place in the higher tropical latitudes.  A key link in 
the Bjerknes feedback is from SST to enhanced heating to changes in the winds, but the 
heating is associated with low level convergence, and if the convergence cannot be moved on 
to the equator the link is broken and the ENSO anomalies do not grow. 
 

This analysis is based on a model of intermediate complexity, one that omits 
mechanisms that might alter the outcome, such as the advection of subsurface temperature 
anomalies.  However, a number of studies with comprehensive coupled general circulation 
models have also been shown to have a weak amplitude ENSO cycle at 9kyr BP and 6 kyr 
BP (Otto-Bliesner et al, 2003; Liu et al, 2000).  Again, the Bjerknes feedback operates.  They 
also point out that the stronger summer heating creates a stronger Asian monsoon, enhancing 
the tradewinds, which leads to a weaker ENSO cycle. 
 

9.1.3 ENSO in the Pleistocene 
 

Thus orbital changes alter the mean climate and this in turn changes ENSO behavior 
markedly.  The Tudhope et al., 2001, records also suggest that ENSO was weakened by 
glacial conditions at times when the model, which sees only orbital changes, maintains its 
strength (Clement et al, 1999). The changes in orbital forcing and from modern to glacial are 
both strong perturbations, taking us far from modern conditions, so this period is a good test 
for models. A favorite glacial target for both observationalists and modelers is the Last 
Glacial Maximum (LGM), the period circa 20 kyr BP when the last glacial epoch was at its 
coldest. Unfortunately, paleoproxy data do not yet give a clear picture of what the tropical 
Pacific looked like at this time.  It has been suggested that the eastern equatorial Pacific was 
in an El Niño-like state (Koutavas et al, 2002), but the picture that seems to fit the data best is 



that the ITCZ was closer to the equator, with the oceanic fronts also shifted to the south 
(Koutavas and Lynch-Steiglitz, 2005).  Viewing the difference from the modern state as a 
north-south shift appears to be a better fit than the ENSO mold.  We cannot say much from 
data about ENSO variability and the CGCMs give inconsistent results, with the NCAR model 
showing stronger ENSO variability (Otto-Bleisner et al., 2003) and the Hadley Center model 
(Hewitt et al., 2001) showing little change. 
 

9.1.4 ENSO in the Last Millennium: the response to solar and volcanic variations 
 

Studies of ENSO over the last millennium provide examples of shifts in ENSO 
behavior without strong forcing.  There are shifts in ENSO variance with timescales of 
decades to perhaps centuries, typically associated with changes in mean temperatures in the 
eastern equatorial Pacific.  They could be a consequence of unforced natural variability, but 
we will make the case here that they are more likely a response to the variations in radiative 
forcing due to volcanic activity and changes in solar output.  These forcings are not only 
much weaker than the orbital changes, but they have far less seasonal and latitudinal 
structure, so they provide more direct lessons for the greenhouse climate. 
 

Decadal variations in ENSO are intertwined with Pacific-wide decadal variations in 
SST, sea level pressure and winds. The Pacific Decadal Oscillation (PDO) has a pattern 
much like ENSO in the tropical Pacific (See Fig. 2.33), but broader; it has its largest 
amplitude in the midlatitude North Pacific (Mantua et al 1997; Deser et al, 2004).  Recent 
work has shown that there are decadal variations in the South Pacific, strongly expressed in 
the movement of the South Pacific Convergence Zone, and that these are linked to the PDO 
(Garreaud and Battisti, 1999; Power et al, 1999; Deser et al, 2004).  Power et al (1999), 
noting that “PDO” is usually taken to be centered in the North Pacific, prefer “Interdecadal 
Pacific Oscillation” (IPO) to emphasize the basin wide nature of Pacific variability.  Having 
the signal appears in both hemispheres implicates the tropics as a likely source, and some of 
this work shows a direct connection in the data (see especially Deser et al, 2004).  How much 
of the basin wide decadal variability is driven from coupled interactions in the tropical 
Pacific similar to ENSO, and how much is attributable to mid-latitude sources is an area of 
active research.  The IPO (or PDO) has been shown to affect the connections between ENSO 
and rainfall in Australia (Power et al, 1999) and North America (Gershunov and Barnett 
1998).  It appears that the total SST perturbation in (at least) the tropical Pacific must be 
considered to capture global impacts; ENSO alone is insufficient. 
 

It is difficult to reach firm conclusions about decadal variations from the instrumental 
record, which is only long enough to provide half a dozen or so instances.  The principal 
proxies able to resolve decadal variations are tree rings and isotopic analyses of corals.  Both 
are at annual resolution and also resolve ENSO.  The relevant tree rings are primarily proxies 
for precipitation in places where the influence of ENSO and the IPO are strong.  They are 
thus indirect proxies for ENSO, subject to other large-scale climate influences as well as the 
usual local and biological effects.  This problem can perhaps be overcome by using multiple 
sites to extract the signal that corresponds to ENSO or the IPO; see Mann, 2002 for a broad 
discussion.  This approach has been used by a number of investigators to construct indices of 



the IPO going back several centuries, primarily using tree rings, (Biondi et al 2001; D’Arrigo 
et al 2001; Gedalov and Smith 2001; Villalba et al 2001), but also using both tree ring and 
coral data (Evans et al 2001, 2000; Mann et al 2000) and corals alone (Evans et al 2002). 
 

The corals from a given site used in these reconstructions have been from a single 
coral head, allowing records of a few hundred years or less.  Cobb et al (2003) overlapped 
shorter segments of fossil coral in a manner similar to the way tree ring time series have been 
spliced together from individual trees.  The result is displayed in Figure 9.3.  Palmyra (6°N, 
162°W) is in a prime location to provide an ENSO proxy, and Cobb et al.’s δ18O record from 
modern corals correlates with the NINO3.4 SST at r = –0.84 in the ENSO band, a value as 
high or higher as the correlation of any two commonly used ENSO indices (e.g. SOI, 
NINO3, NINO3.4) with each other.  It is likely that the δ18O signal primarily reflects rainfall 
and so correlates better with NINO3.4 (and NINO3) than with local SST (see Evans et al., 
2002). 

 

 
 
Fig. 9.3 The annual mean NINO3 response of the Zebiak-Cane model to the combined volcanic and 
solar radiative forcing is compared with reconstructions of ENSO behavior from Palmyra coral 
oxygen isotopes. The model is run over the interval AD 1000-1999; the coral reconstruction, shown 
as as darker grey curves, is available only for the 4 intervals shown.  The  continuous faint grey curve 
is the annual mean model NINO3 anomaly (in °C relative to the AD 1950-1980 reference period) 
averaged over a 100 member ensemble.  Despite the averaging considerable variability remains, 
largely due to the influence of volcanic eruptions.  The heavy black line shows 40 year smoothed 
values of model NINO3.  The coral data (darker grey curves) are scaled so that the mean agrees with 
the model (see Mann et al, 2004 for details). Thick grey lines indicate averages of the scaled coral 
data for the three available time segments; the thick black lines are the ensemble-mean averages from 
the model for the corresponding time intervals. The associated inter-fourth quartile range for  the 
model means (the interval within which the mean lies for 50% of the model realizations) is also 
shown (dashed grey lines). The ensemble mean is not at the center of this range, due to the skewed 
nature of the underlying distribution of the model NINO3 series. After Mann et al., 2004. 
 



Figure 9.3 also displays the results of a 100-member ensemble calculated by forcing 
the Zebiak-Cane model with a slightly updated version of the Crowley, 2000, solar and 
volcanic forcing (Mann et al., 2004). Given the ~ 1°C variance in a single model run, one 
would expect the variance of the mean of a 100 member ensemble to be ~ 0.1°C if the 
variance in each member is independent, but if some of the variability is forced then the 
variance of the mean will be higher. Regardless of whether it is noise-driven or a 
consequence of chaos, the variability of ENSO makes it impossible that even a perfect model 
would agree in detail with the single realization present in the observational record. If the 
ENSO variability is forced, then it is possible for values averaged over a number of ENSO 
events to agree.  Indeed, Figure 9.3 shows, for both model and data, cold SSTs in the mean in 
the late 12th – early 13th centuries, moderate SSTs in the 14th- early 15th centuries, and warm 
SSTs in the late 17th century.  In all three cases the means of the observations and the model 
ensemble are consistent within the ensemble sampling distribution (dashed lines on Figure 
9.3).  Moreover, the late 17th century warmth and the 12-13th century cold are well separated 
within the distribution of states from the model ensemble runs:  one would expect the later 
period to be warmer than the earlier one in roughly 7 out of every 8 realizations.  If  these 
statistics carry over to reality, we would expect nature’s single realization to be warmer in the 
later period with close to a 90% probability.  In both data and model there is also a 
systematic difference in the strength of the ENSO cycle in the two periods.  There are 
numerous large El Niño events in the late 17th century and very few in the 12th to early 13th 
century period.  (This difference is statistically significant at the 0.1 level for both model and 
data.)  Thus both data and model show that for the last millennium more (less) ENSO 
variability goes with a warmer (colder) mean SST in the eastern equatorial Pacific. 
 

The differences -- in the model run, at least -- are a consequence of the Bjerknes 
mechanism (Clement et al., 1996).  The result is, at first, counterintuitive: the warmer 
tropical Pacific temperatures occur at a time of increased volcanic activity and global cooling 
(Crowley, 2000; Jones et al 2001) and visa versa.  If there is a cooling over the entire tropics 
then the Pacific will change more in the west than in the east because the strong upwelling in 
the east holds the temperature closer to the pre-existing value.  Hence the east-west 
temperature gradient will weaken, so the winds will slacken, so the temperature gradient will 
decrease further – the Bjerknes feedback, leading to a more El Niño-like state.  This chain of 
physical reasoning is correct as far as it goes, and the agreement between the data and the 
simulation with the simplified Zebiak-Cane model is evidence for the idea that the Bjerknes 
feedback holds sway in response to a change in radiation forcing.  But the climate system is 
complex and processes not considered in this argument, such as cloud feedbacks, might be 
controlling.  
 

9.2 ENSO in the Twentieth Century 
 

Before turning to model projections of the future, we briefly consider what can be 
learned from the changes since the rise of CO2 began in earnest in the late 19th century.  
Trenberth and Hoar,1997, noting that greenhouse gas concentrations rose sharply in the past 
few decades, argued that the increase in the frequency and amplitude of ENSO events in the 
1980s and 1990s was highly unusual, significantly different from the behavior in the 



preceding century, and thus attributable to anthropogenic causes.  Rajagopalan et al (1997) 
used a different statistical model to formulate their null hypothesis and concluded that the 
behavior was not significantly different from that in the earlier part of the instrumental record 
(also see Wunsch, 1999).  The arguments are technical and inconclusive; the reader is invited 
to compare the last quarter of the 20th century with the last quarter of the 19th century in 
Figure 1.17 and decide if the level of ENSO activity in the two eras is strikingly different.  
By some measures the 1877 El Niño was more powerful than any of the events in the 20th 
century.  Record drought in India, as well as severe droughts in Ethiopia, China, Northeast 
Brazil and elsewhere, all contributed to what is fairly described as a global holocaust (Davis, 
2001). 
 

We noted that the data of Cobb et al.,2003, showed cooling in the eastern equatorial 
Pacific at times in the past when the global climate warmed due to increased solar radiation 
or reduced volcanism, a result reproduced in the modeling study of Mann et al, 2004 and 
explained by the Bjerknes feedback.  However, this same relation does not seem to hold for 
the 20th century, when radiative forcing and global temperatures increase.  (Crowley, 2000 
found the greatest disagreement between global mean temperature and a model forced by 
solar, volcanic and greenhouse gas variations in the early 20th century.)  Perhaps this change 
in behavior is due to the impact of atmospheric aerosol or perhaps there is something missed 
in our argument when the radiative increase is due to increased greenhouse gases. Another 
possibility is suggested by the result of Cane et al., 1997, whose plots of temperature trends 
from 1900 to 1991 are updated to 2000 in Figure 9.4.  The trend in the eastern equatorial 
Pacific is not significantly different from zero, but the east-west SST gradient does become 
significantly stronger over the century – as would be expected from the Bjerknes feedback. 
Complicating the picture, Vecchi et al., 2006, show that the sea level pressure (SLP) gradient 
– the SOI – didn’t change or perhaps weakened.  Thus the change in SST and the change in 
SLP are not consistent with the Bjerknes view of how the two should behave.  At the time of 
writing this discrepancy is not resolved and it reduces our confidence in our ability to foretell 
ENSO’s future behavior. 
 

 



FIGURE 9.4 Time series of: (top) the average SST anomaly in the WP region (120°E to 160°E; 5°N 
to 5°S); (middle) average SST anomaly in the NINO3.4 region (120°W to 170°W; 5°N to 5°S); 
(bottom) the difference WP-NINO3.4, a measure of the zonal SST gradient. The least squares 
estimate of the linear trends in the 3 time series (°C per century) are 0.41±0.06, -0.08±0.25, and 
0.50±0.25, respectively. (Updated from Cane et. al., 1997: from Cane, 2005) 
 
 

9.3 ENSO in the Future 
 

If we are to trust a model to predict ENSO in the greenhouse world, it is necessary, 
though perhaps not sufficient, that it reproduces the changes in prior centuries.  In addition to 
simulating changes, it greatly increases our confidence if the model can simulate the defining 
features of the present ENSO cycle with some skill.  Is the mean frequency close to 4 years?  
Is the largest warm anomaly where it is observed in the eastern equatorial Pacific?  Does the 
model’s cold tongue extend too far to the west, into the warm pool region?   
 

At the time of writing, the comprehensive Coupled General Circulation Models 
(CGCMs) representing the “state of the art” are those used in the IPCC Fourth Assessment 
(IPCC, 2007).  Many recent papers appraise the quality of these model ENSOs and attempt to 
assess their predictions for the future of ENSO; the paper by Guilyardi et al., 2009, is 
something of a meta-summary of this work, with many references.  While the AR4 models’ 
ENSOs are much improved over those of the previous generation of CGMs (see especially 
AchutaRao and Sperber, 2006), errors remain in their simulations of both the mean state of 
the tropical Pacific (e.g. Fig. 7.23), the annual cycle (Fig. 7.24) and ENSO-like interannual 
variability (Fig. 7.25).  The simulated rainfall patterns have not improved, and AchutaRao 
and Sperber, 2006, find that “the quality of the El Niño composite precipitation rate 
anomalies is directly proportional to the quality  of the boreal winter tropical precipitation 
rate.” They also find that ENSO teleconnections to North America are better when the 
tropical rainfall pattern is improved. 
 

In virtually all models the equatorial cold tongue extends too far to the west, and the 
pattern of interannual variability follows suit. This means that heating anomalies driving 
teleconnections may be in the wrong place, and that aspects of ENSO physics, such as zonal 
advection of temperature, may be exaggerated (cf Guilyardi, 2006, and Capatondi et al. 
2006). The wind stress response to eastern  equatorial Pacific SST anomalies in the models is 
narrower and displaced further west than observed.  Capatondi et al., 2006, note that “the 
meridional scale of the wind stress can affect the amount of warm water involved in the 
recharge/discharge of the equatorial thermocline,  while the longitudinal location of the wind 
stress anomalies can influence the advection of the mean zonal temperature  gradient by the 
anomalous zonal currents, a process that may favor the growth and longer duration of ENSO 
events when  the wind stress perturbations are displaced eastwards. Thus, both discrepancies 
of the wind stress anomaly patterns in the  coupled models with respect to observations 
(narrow meridional extent, and westward displacement along the equator) may be responsible 
for the ENSO timescale being shorter in the models than in observations.”  We note here that 
the same consequences follow from the linear periodic theory developed in Chapter 6 even 
without considering zonal advection; see Cane et al., 1991. 



 
The studies of the AR4 models typically involve about 20 different models and, using 

somewhat different measures, generally conclude that 5 or 6 of them produce reasonably 
good simulations of ENSO.  These models have a peak in variance somewhere in the 
observed ENSO band of 2-7 years, are irregular, and have an amplitude not too far from the 
observed. They extend too far to the west, but do have the largest SST anomalies in the east, 
if not always as far east as they should be. 
 

In most of the AR4 model runs for the 21st century the SST is projected to warm more 
on the equator than off it.  Some models show a strengthened east-west gradient, but most 
show it weakening.  If only the six or so “best” models are considered then the change from 
present conditions is very small (Van Oldenborgh et al., 2005).  Models do not agree on what 
will happen to the amplitude of ENSO; some decrease it, some increase it and some stay the 
same.  On average it doesn’t change much at all.  The period between ENSO events 
decreases slightly in most models, a change Merryfield, 2006, attributes to the (~5%) 
increase in baroclinic mode wave speed that follows from the increased stratification in the 
ocean associated with a greater warming near the surface than at depth.  He notes that this 
change is consistent with delayed-oscillator theory. 
 

In summary, the models have not converged on a projection for the future of ENSO 
and the tropical Pacific.  On average, they suggest that the change from present behavior will 
not be very great, but the spread among the models is too wide to be confident about what the 
future holds in store for the tropical Pacific and all that it influences. 
 

9.4 Conclusions 
 
Glendower:  I can summon spirits from the vasty deep. 
Hotspur: why, so can I, or so can any man; but will they come when you do call for them? 
 
Henry IV, Part 1, Act 3 Scene 1 
 

ENSO variations impact climate world wide because the changes in the heating of the 
tropical atmosphere they create alter the global atmospheric circulation.  Changes in the 
mean state of the tropical Pacific would have similar impacts.  Since societies and 
ecosystems are profoundly affected, we would like to know how ENSO and the mean state of 
the tropical Pacific will change in our greenhouse future.  We must rely on models to make 
such predictions, since the past does not provide a true analogue of the new climate we are 
creating.  Our comprehensive coupled general circulation models are impressive 
achievements, now able to simulate many features of the climate with striking verisimilitude.  
The ENSO cycle, however, is not their forte.  Present attempts to summon the ENSO of the 
future bring forth a motley and uncertain set of responses.  The paleoclimate record shows us 
that ENSO behavior is quite sensitive to climatological conditions, so it stands to reason that 
ENSO will behave differently in the future.  But we can’t say how it will differ with any 
confidence.  Indeed, the models’ consensus estimate is that it won’t change much at all.  
 



There are reasons for optimism.  The quality of ENSO simulations has improved 
dramatically in the past decade, and further progress is likely if computing power grows 
adequately.  The paleoclimate record, almost devoid of information about ENSO only a 
decade ago, is expanding rapidly and even now provides enough information to test models 
under conditions substantially different from modern.  Thus there is hope that we can soon 
increase our confidence in forecasts of future variability.  But at present the future of ENSO 
lies in depths of vast uncertainty, beyond our summons. 



10. Using ENSO Information 
 

The problem of using ENSO forecasts is not at all straightforward. The basic 
difficulty arises from the fact that forecast information is probabilistic—our knowledge of the 
future is given imperfectly and we must learn to use this imperfect knowledge in an 
intelligent manner, especially when the skill is not high. 
  

To illustrate the problem, we begin with an (admittedly fanciful) analogy. Suppose a 
stranger whispers in your ear that he offers you a rare and unusual gift: a coin that looks and 
feels like every other coin of its type but will fall heads 55% of the time. The coin is yours to 
keep but it is up to you to find out how to make use of this gift.  
 

The first problem is to find out if the stranger is telling the truth. So you flip the coin 
and it shows tails. This of course does not indicate that the stranger’s words are fraudulent: 
one must flip the coin a very large number of times. So you flip the coin 100 times and 53 
times it shows heads and 47 times it shows tails. This is promising but it still doesn’t prove 
that the coin is what the stranger said it is. So you flip the coin 1000 times and it falls heads 
552 times and tails 448 times. Now it seems to be true that the stranger has told the truth--the 
coin is indeed a 55% heads coin. The more you flip the coin, the closer it comes to 55% 
heads.  
 

How to use this coin? Clearly you wouldn’t go to a casino and bet a million dollars on 
heads: while the chance of winning this million dollars is slightly improved, the chance of 
losing a million dollars is 45% and this would be a disaster-- to lose this amount of money 
you would be in debt for life.  So you decide to bet a dollar at a time but do this for a large 
number of times. At the end of a day in which 2000 coin flips are made, i.e. two thousand 
one dollar bets, you are likely to have won 1100 times and lost 900 times for a net gain of 
200 dollars. While this seems highly inefficient, and progress seems abnormally slow, after a 
year of coin tossing, you win $73,000 and this is enough to live on. The stranger has indeed 
given you a valuable gift: a living income for life. (The reader is urged to look at Lewis, 
1997, for a truly informative and entertaining guide to the unexpectedly relevant science of 
coin tossing.) 
 

We see that a small advantage in probabilities can be used to advantage, not to get 
rich, but to get by. We know very little about the future in this example---only that the 
probability of a head is slightly higher than tails. The use of any prediction system that is 
probabilistic rather than deterministic has some of the same properties: it takes a large 
number of events to gain some idea of the true probability of occurrence and it takes a large 
number of uses of the probabilistic prediction to learn how to use the information to see if its 
use is worthwhile. Clearly, the higher the probability of a positive outcome, the more we 
know about the future, the faster one can determine the usefulness of the predictions, and the 
faster one can decide that its use is beneficial. The use itself must respect the probability of 
occurrence in order to be beneficial: this generally means that the gains are moderate and in 
proportion to the skill of the forecast. Any skill at all should lead to the possibility of 
beneficial use over an long enough time. Another way of saying this is that any information 



about the future, no matter how small, should be useful if properly approached. This 
approach is the problem addressed in this chapter. 
 

This chapter will deal with using ENSO information. Physical science determines the 
nature of the information available, but social conditions determine whether and how the 
information is used. Attitudes, organization, participation, and communication are crucial 
factors in determining the use of ENSO information. We start with some general 
considerations, move on to the use of past and present information and give a general 
framework for thinking about the use of forecasts. Some extant and possible future 
applications are identified and discussed and the general framework is exploited to discuss a 
general approach to overcoming the barriers to the use of ENSO information.  
 

10.1 General Considerations  
 

There are three basic kinds of ENSO information: past ENSO information gathered 
by historical records and paleoclimatic proxies, current ENSO information (“nowcasts”) 
diagnosed from the existing observational network, and future ENSO information, in the 
form of forecasts with lead times of 3 to 12 months. As we will indicate, each of these three 
types of information is useful to the extent it tells us something about the future. Note that we 
will not deal with the use of information about the future response of ENSO on decadal and 
global warming time scales since information is lacking about both the scientific content of 
this issue (see Chapter 9) and the use of such information---this is not to say this type of 
forecast would not be of great benefit if it were available. 
 

We may characterize the general issue of using ENSO information in terms of six 
distinct questions which are commonly asked in the literature of knowledge utilization: 1. 
What is the information to be used? 2. Who will convey the message? 3. What is the medium 
by which the information is to be conveyed? 4. To whom? 5. For what action? 6. To what 
effect? We should consider these questions as interlinked, since, for example, the nature of 
the information required depends on the kind of action contemplated and the choice of those 
to convey the information may depend on the media available.  
 

Only the first of these questions is the kind of physical science question that has been 
treated in this book. All the other questions are questions of social organization and policy 
and can be approached only by social science inquiry. It must be emphasized that the success 
in using ENSO information depends on successfully implementing these social issues (see 
National Research Council, 1999) but the detailed resolution of these social questions 
depends on the scale on which the information is to be used.  
 

As the most direct small scale example, we are all used to listening to the morning 
radio or television weather forecast in order to decide what to wear and whether or not to 
take an umbrella. No particular shaping of the forecasts is made (although the graphical 
displays on television vary from channel to channel) and the action involved is solely up to 
the initiative of the listener. The ongoing evaluation of the forecast is personal and informal 
and this subjective evaluation determines the action the listener decides to take. 



 
When the scale becomes larger, the time scale longer, our experience with this new 

type of forecast more tenuous, and the stakes greater (perhaps involving  large amounts of 
money, property, natural resources, or lives) this passive approach no longer suffices. The 
user has to be identified, the method of communicating with the user (both to convey 
information and to determine the needs and situation of the user) has to be perfected and the 
user has to be helped in acquiring, understanding, and using the information. Ultimately, the 
sustainability of physical systems to observe, model, and forecast the climate will depend on 
the user(s) being satisfied enough with the effort to insist that these prediction systems, 
expensive though they are, be maintained. 
 

10.2 Using Past ENSO Information 
 

If every year were climatically the same, and the seasons repeated exactly, we would, 
in the course of time, learn what actions would be optimal at each season. Farmers, for 
example, would learn to plant at an optimal time of year, fertilize at some other optimal time, 
and harvest at an optimal harvest time.  
 

The fact that each year is different climatically from each other year, i.e. the climate 
varies interannually, means that there is a basic uncertainty in what is going to occur next 
year. Farmers then have to build uncertainty into their planning for the next year. They have 
to anticipate that some years will be very wet and they have to get the seed into the ground 
early and fertilize copiously to take advantage of this rainfall, while other years will be so dry 
that they will barely have a crop to harvest. In this latter case, they may want to carry 
insurance against total crop failure or belong to a cooperative to spread the risk. Knowing 
that each year is different from each other means either that an unvarying set of actions is 
designed for each time of the year to cover every contingency (i.e. to make the system 
resilient), or that adaptive actions are taken in accordance with the anticipated climatic 
conditions. Making the system resilient to a wide range of contingencies almost always 
means that many resources are devoted to resilience and the return on investment is 
necessarily less than if a more targeted approach to each year were possible. Until the advent 
of the type of short range climate prediction described in Chapter 8, no information about the 
next year existed and only the resiliency approach was feasible. The basic function of 
adaptive response informed by climate information is to target the response only to the most 
likely contingencies thereby conserving resources and increasing efficiency.  
 

While it may seem that past climate information has little practical value, there are 
situations in which knowing how interannually varying climate behaved in the past will limit 
the basic set of actions to be taken in the future. Past climate information can tell us how 
different each year is from each other and how probable are longer runs of persistent 
conditions, e.g. droughts and pluvials. 
 

Past ENSO information is of direct use for those Pacific locations directly under the 
influence of ENSO. For example, droughts and attendant forest fires obtain in and around 
Borneo when warm enough phases of ENSO occur for the region of persistent precipitation 



to move far into the central tropical Pacific and away from the maritime continent. Similarly 
wet conditions obtain when cold enough phases of ENSO occur for the region of persistent 
precipitation to retreat to the region of the maritime continent. In order to be able to plan for 
these conditions, it becomes important to know the frequency of wet and dry conditions and 
therefore the frequency of very warm and cold phases of ENSO. If these conditions are rare, 
normal agriculture can take place with reasonable certainty that disruptions will be rare. If 
climate is slowly changing, so that periods of warm and cold phases of ENSO are becoming 
more common, the only way of really knowing this is having a past record of ENSO against 
which to compare.  
 

As an other example, streamflow in parts of the Western U.S. depends on winter 
precipitation which varies both with the phases of ENSO and with its decadal modulation. 
This streamflow is used for a variety of applications: transportation, recreation, drinking 
water, irrigation water, fish recruitment, and hydroelectric power generation.  Clearly, if the 
precipitation was low for a significant amount of time, some of the basic assets that influence 
life and economy would be at risk. So if a region were drought prone for a significant 
fraction of time, alternate mechanisms for acquiring energy and water would be required. 
Here both the interannual and decadal modulation of  precipitation is important to define the 
probability of dry conditions.  A direct measure of past precipitation in a region can be 
obtained through combinations of proxy data for precipitation: for example lake sediments 
and tree rings.  
 

As a (famous) example of how this kind of past precipitation information can be used, 
we note that the Colorado Compact, signed in 1922, allocated the water of the Colorado 
River to various downstream states and to Mexico. The allocation was in absolute amounts: 
7.5 million acre-feet of water was granted in perpetuity to each of the Upper and Lower 
Colorado Basin and an additional 1 million acre-feet for the Lower Basin (which includes the 
water hungry regions of Arizona and California).  In addition, a treaty signed in 1944 
guaranteed 1 million acre-feet to Mexico and tribal nations within the Colorado basin have 
gradually been winning and exercising rights to more and more water from the river. Because 
the Compact was assumed to be based on robust flows in the Colorado, no provision was 
made for determining allocations in case of scarcity. The flow of the Colorado is known to be 
strong when warm phases of ENSO are current in the tropical Pacific and are also known to 
be modulated on longer time scales by the Pacific Decadal Oscillation and on still longer 
period times scales by longer period variability in the Atlantic. Long period droughts in the 
region are known to coincide with multi-year cold phases of ENSO (Cole et al., 2002).  
 

A glance at Figure 10.1 shows the basic problem with the Colorado Compact: the 
precipitation on which the Colorado Compact is based was abnormally high for the early part 
of the twentieth century which led to high flows in the early part of the century--the flows 
have not been as high since. The Colorado Compact was based on abnormally high flows, 
which in the absence of long records, were assumed to be normal, and the river was therefore 
over-allocated-- this has led to problems that persist to this day.  
 



 
 
Fig. 10.1 Flow at Lees Ferry, Arizona (which divides Upper and Lower Colorado Basin and 
therefore includes consumptive use in the Upper Basin and is essentially the amount of flow 
available to the Lower Basin). The dashed line is the overall trend and the shaded regions are 
periods of sustained droughts.. (From USGS, 2004.)  
 

If in 1922, a long term reconstruction such as the one in Fig. 10.2 were available, it 
would have been realized that there are long term variations in the flow and that the early 
twentieth century flows were not typical and that the flow at the time of the Colorado River 
Compact was unusually large. The allocation then might have been given as percentages of 
current flow rather than as absolute amounts and some scheme for allocation in the face of 
scarcity might have been written into the Compact. 
 
 

 
Fig. 10.2 A long reconstruction of natural flow at Lees Ferry, Arizona. Different lines are 
slightly different reconstructions. (From Woodhouse, et al., 2006.) 
 

Past ENSO information has another crucial use. Since warm and cold phases of 
ENSO recur relatively infrequently, it would take a very long time to develop a prediction 
system in real time. Obtaining past records of ENSO and its effects allows a series of 
predictions to be initialized, made, and validated in an amount of time short compared to the 
evolution of the system. It is as if the stranger in Section 10.1 came with a long record of 
previous coin tosses so that the record could be perused, rather than generated, in order to 
verify that the coin was slightly biased.  



 

10.3 Using ENSO Nowcasts  
 

We now have an observing system in place that allows us to know, in real time, the 
conditions in the tropical Pacific. No longer will warm and cold phases of ENSO progress 
without our knowing it. Knowing that there is a warm or cold phase of ENSO in progress can 
be useful in a number of ways, basically the same ways that are implied by an ENSO 
forecast. 
 

Strong warm and cold phases of ENSO become evident by the late summer to fall of 
the year in which the peak phases occurs. In this sense, the evolution of the canonical ENSO 
(Fig. 2.20) contains predictive information about the future evolution of the phases of ENSO 
and knowing the current state of  the evolution of ENSO allows a few month prediction of 
future phases. For example, on knowing that a strong warm phase of ENSO was developing 
in the fall of 1997 on the basis of real time observations and forecasts , an El Niño alert was 
declared by NOAA Climate Prediction Center and, knowing that heavy rains was one of the 
common consequences of warm phases of ENSO, water managers in California cleared 
ditches and canals while Florida water managers lowered water levels in lakes and canals, 
both to avoid local flooding (Changnon, 2000). Individuals in California chose to fix their 
roofs sooner (rather than postponing this decision) to avoid water damage. Additional 
examples of the use of forecasts for the 1997-8 warm phase of ENSO are given in Pielke, Jr. 
(2000). 
 
 

10.4 End-to-End Forecasting 
 

The basic idea of applying ENSO forecast information is that the (probabilistic) 
forecast will eventually lead someone (or some organization) to make a decision that will 
lead to favorable outcomes, either in terms of money gained, time saved, or natural resources 
preserved. That the requirements of such a process are not new led Hammer (2000) to argue 
for a systems approach to the decision support implied by ENSO  forecasting. Sarachik 
(1999) proposed a similar approach and called such a system “End-to-End Forecasting”. 
 

The steps in end-to-end forecasting are: 
 

1. Making the probabilistic ENSO forecast and making available the forecast and its 
uncertainty. 

2. Communicating the ENSO forecast. 
3. Elucidating the impacts due to ENSO (along with the impacts due to other low 

frequency phenomena: Pacific Decadal Oscillation, SST in other basins, North 
Atlantic Oscillation, etc.) in a region. 

4. Downscaling and shaping the forecast for regional use. Making resource forecasts.  
5. Assessing the uncertainties in the local climate or resource forecast. 



6. Examining the normal decision making process of the potential user including the 
decision calendar, the decision-making structures, the freedom to make decisions, 
etc., in order to shape and target the ENSO forecast. 

7. Negotiating the forecast with potential users to better shape and target the forecasts 
for their benefit. 

8. Using the forecasts and other information to evaluate the possible outcomes of 
making a range of decisions. Taking action on this basis. 

9. Evaluating the benefits of the actions taken on the basis of the forecasts. 
10. Refining the entire set of procedures on the basis of the evaluation. 

 
These steps are not to be considered a linear sequence to be performed in a defined 

order—the list is simply an identification of the steps needed, with some clearly depending 
on the others. A number of these steps need further discussion.  
 

Probably the single most important factor in facilitating people and organizations to 
use the forecasts is making them relevant to the local region in which people live, work, and 
plan for the future. This is done in steps 3 to 7 above. ENSO will have large scale effects on 
temperature and precipitation in certain regions (as in Fig. 1.4a,b) but just identifying this 
level of impact is not adequate to define the true effects on a locality. The forecast has to be 
given specificity in three separate and interrelated ways: by downscaling the climate forecast 
in terms of local variables, by elaborating the effects of the regional climate forecast in terms 
of the effects on local resources, and by targeting the forecast to the specific needs of the 
user.  
 

For example, the large scale forecast might be downscaled to give the local 
probability of precipitation in a river basin and a hydrology model of the local river system 
might be coupled to this basin probabilistic precipitation forecast to give a probabilistic river 
flow forecast. The negotiation in step 7 refers to potential users of river flow forecasts, say 
the hydroelectric power industry, recognizing that precipitation forecasts might not be useful 
for their needs and requiring that flow forecasts, say six months in advance, is what they 
really need, enters into negotiation with the forecasters to agree on a product that is both 
useful to the user and possible for the provider. Clearly the necessity for the user to make 
known specific needs and the forecast provider’s wish to meet these needs implies a long 
period of sustained engagement while these contrasting issues get worked out.  
 

Specific examples of resource forecasts abound in the literature. Cane, Eshel and 
Buckland, 1994, noted that maize yields in Zimbabwe correlated highly with the SST 
characteristic of the changing phases of ENSO (alternately with the Southern Oscillation 
Index) so that if this high correlation is maintained, a skillful forecast of ENSO implies a 
skillful forecast of maize yield. Shaman et al., 2003, were able to use seasonal climate 
forecasts (mostly based on ENSO teleconnections) to forecast soil wetness in Florida and, 
because soil wetness correlates highly with human St. Louis Encephalitis (SLE) (presumably 
through the intermediary of a mosquito vector), they were able to construct a forecast system 
for SLE (Shaman et al., 2006). Stephens et al., 2000, used crop models coupled to seasonal 
climate forecasts (mediated by weather models  appropriate to the forecasted seasonal 
climate) to forecast the wheat crop in Australia. A quasi-operational  streamflow forecast 



maintained for the western part of the state of Washington (Wiley, 2006) and for the entire 
western part of the U.S. (Hamlet and Lettenmaier, 2006) on the basis of downscaled and bias 
corrected official seasonal outlooks issued by the U.S. Climate Prediction Center.  
 

The final stage of forecast use is making (or altering) a decision on the basis of the 
forecast. Just about every human enterprise has some weather or climate aspect and the 
climate forecast has to be presented in a way appropriate to the decision to be made.  
 

It should be noted that beyond the purely physical science steps of taking the data and 
making the forecasts, the success of end-to-end forecasting depends primarily on social 
factors. How to engage the user, how to communicate the forecasts, how to analyze the 
decision processes of a user, how to engage and sustain the engagement with the user—these 
are all matters for social science research.  
 

10.5 Using Forecasts—Some Potential Examples 
 

Except in the direct region of the tropical Pacific, useful forecasts of local 
precipitation or temperature usually have other requirements than simply predicting the 
phases of ENSO. In large regions of the western U.S., monthly precipitation depends not 
only on the state of ENSO but also on the state of the Pacific Decadal Oscillation and 
possibly the state of the Atlantic so that a better forecast can be obtained if ENSO is forecast 
and the state of the PDO and the Atlantic SST known. In Northeast Brazil,  a combination of 
ENSO and the state of the tropical Atlantic determines the rainfall (Uvo et al., 1998). In east 
Africa, the rainfall is determined by both the state of ENSO and by sea surface temperature 
in the Indian Ocean (Goddard and Graham, 1999).   
 

Because the forecasts are made in an ensemble sense, the forecasts (possibly 
downscaled) of rainfall or temperature in a region will have a range of probability centered 
around some central value. This probability distribution for the quantity of interest is the 
output of the prediction system.  
 

The first dynamical forecast by coupled atmosphere-ocean models was first made in 
1986 using only winds as initial data and the ENSO Observing System (Fig. 1.16) was not 
put into place until 1995 so there has not been time for a complete end-to-end system to 
establish itself. We will content ourselves here with indicating what applications of ENSO 
forecasts have been suggested, recognizing that it will take many years to fully evaluate the 
use of the forecasts.  
 

In agriculture, the decision can be what to plant, how much fertilizer to add, or how 
much crop insurance to buy. In water resource management, the decision can be how much 
water to spill from a dam, how much water to allocate to power generation and how much to 
fish survival, and how much to downstream municipalities for drinking water. In retail sales, 
the decision could be how much to order and when to stock winter apparel, and whether or 
not to buy natural gas futures to heat the stores and warehouses. Fishers may decide whether 
or not to buy additional boats or equipment to fish their traditional fishing grounds, whether 



or not to move to different grounds, and whether or not to sell fish stocks on future delivery 
contracts. International aid organizations may decide to stock emergency food aid early and 
in specific locations in response to forecasts of low agricultural output and health 
organizations may decide to inoculate in anticipation of heavy mosquito infestations.  
 

The private sector can use ENSO forecasts for staging, future hedging, and regional 
allocation. Because much of the private sector activity is conducted in competitive situations, 
information about uses and strategies are rarely made public. Changnon (2000), however, 
reports that power utilities were the most consistent users of the 1997 ENSO forecast and the 
uses included revamped maintenance schedules, revised buying on the natural gas spot 
markets, revised plans for stocking coal for the coming winter, and altered strategies for 
futures contracts.  
 

10.6 Improving the Use of Climate Information 
 

It has been noted in a number of different surveys of water management in the U.S. 
(Pulwarty and Redmond, 1997; Callahan et al., 1999; Rayner et al., 2005) that seasonal to 
interannual forecasts are rarely used in making decision about next years water. In the words 
of Callahan et al, 1999, “The barriers to managers’ use of climate forecasts include low 
forecast skill, lack of interpretation and demonstrated applications, low geographical 
resolution, inadequate links to climate variability related impacts, and institutional aversion 
to incorporating new tools into decision making”.  Lest this seem like everything, Nicholls 
(1999, 2000) has pointed out that (Western) human thought seems to be subject to a number 
of well studied cognitive illusions and biases which prevents even well educated people from 
fully understanding probability and uncertainty and this leads to what must be considered 
irrational decision making.  
 

There is not a unique answer to overcoming these barriers to the use of climate 
information---every step in the process has to be addressed. If we use the series of steps 
given in Sec. 10.4, we can suggest the following improvements:  
 

1. Consistently and continuously improve the prediction system by a coordinated 
sequence of improvements to the observing system, the coupled models, the data 
assimilation techniques, and the suite of ensemble predictions. 

2. Shape the large scale forecasts so that the best information can be consistently given 
from, preferably, a single authoritative source with the distribution of ensemble 
results encapsulated in a forecast probability distribution. Choose the medium and 
communicators for maximum salience and credibility. 

3. For each region, have local organizations catalog, research, and make generally 
available the impacts of ENSO variability and the percentage of variability explained. 
Add information about impacts due to longer term variability including PDO, NAO, 
the Atlantic multi-decadal variability etc.  

4. Have regional organizations downscale the large scale forecasts and make resource 
models to examine the range of resource variability in response to climate variability 
and in response to specific distributions of forecasts.  



5. Have these organizations catalog and make available the uncertainties in the local 
resource forecasts by means of the models in 4.  

6. Establish and improve research into the normal decision processes sector by sector for 
public institutions (private institutions will presumably do this themselves or hire 
other private institutions to do this). 

7. Design a participation process that allow the users to interact with the forecast 
providers to formulate a forecast that has value to the users and gives support to the 
providers. 

8. Design a set of simulation tools that allows the users to get comfortable with the use 
of climate information in making decision in a simulated learning context where 
nothing is at risk. This allow the nature of various decisions to be considered and 
compresses the time scale so that many simulated decisions can be made in a 
relatively short time. 

9. Evaluate the consequences of each decision in 8. to build confidence in the system. 
10. Establish an organization (a Climate Service) responsible for the success of the entire 

system and its constant improvement.  
 

Finally it should be pointed out that every new idea or technology follows a known 
path as it works its way into society (Rogers, 2003). From early adopters, to general 
adoption, to adoption by laggards, the rate of adoption depends in an essential way on the 
properties of the new idea itself. There are five attributes of an innovation that helps 
determine its rate of adoption: relative advantage, simplicity, compatibility or fit, 
observability, and trialability. From this point of view, a hand held video game which is far 
better than Pac-Man, simple to learn and use, compatible with the leisure pursuits of 
teenagers and those of similar tastes, violating no cultural or religious norms, obvious to 
anyone looking over one’s shoulder, and readily tried for one’s self, is a perfect product that 
has all the attributes to rapidly diffuse into society. Climate prediction, however, while telling 
more about the future than no information, is difficult for the average person to understand, 
gives probabilistic information that conflicts with our need for certainty, is conducted by 
specialists out of the view of most people, and takes a very long time and special knowledge 
to test for oneself. It therefore has almost none of the attributes that makes it easy to diffuse 
into society and one could therefore expect that it would take a very long time to be accepted 
as a common technology. The observing system and the coupled prediction and analysis 
system is expensive to maintain and improve so it is a race to find and satisfy users of ENSO 
information lest the will to spend the money to maintain the observing and prediction system 
lags. Adoption of ENSO prediction is by no means a sure thing and has to be constantly 
worked at to succeed. 



11. Postview 

11.1 Looking Back 
 

We have examined, in some detail, the observations relevant to both the tropical 
Pacific and to ENSO, and the processes in the atmosphere and the ocean needed to 
explain ENSO. In the atmosphere, these processes are: the processes that anchor the 
regions of persistent precipitation to warm SST anomalies; the processes that determine 
the convergence of moisture over warm SST anomalies to maintain the regions of 
persistent precipitation; and the processes that determine the anomalous surface winds in 
terms of anomalous SST and its associated anomalous precipitation. In the ocean, the 
processes of interest are: the processes that change SST to produce SST anomalies; the 
processes that determine the depth of the mixed layer; and the processes that determine 
the time dependent anomalous position of the thermocline in response to forcing by 
anomalous wind stresses.  
 

Because the present complex coupled numerical models of climate do not yet 
simulate the tropical climatology or the phenomenon of ENSO with a sufficient degree of 
realism, we have concentrated analysis on the simpler (“intermediate”) coupled models. 
These models are simple in that they have relatively few degrees of freedom, can be run 
for large numbers of cases and parameter changes, and can be analyzed relatively 
exhaustively. Rather than repeat what we have already discussed in Chapters 7 and 8, let 
us summarize what is known and not known about ENSO and its predictability.  
 

We learned that the delayed oscillator equation is a robust analog for regular 
ENSO oscillations. It provides a conceptual model for regular oscillations in an 
intermediate coupled atmosphere-ocean model, and in addition, is capable of correctly 
describing the changes of period when some of the basic model parameters are changed, 
in particular the size of the basin, the magnitude of the various couplings, and the 
magnitude of the dissipation. (We note that the same might be said of the recharge 
oscillator equation, which we argued embodies the same essential physics.) Moreover, we 
saw that the simplest fully non-linear model, the Zebiak-Cane model, is not only capable 
of simulating the basic features of ENSO, it is also as good a prediction model as 
currently exists for predicting the occurrence and amplitude of warm and cold phases of 
ENSO a season to several seasons in advance. We saw that the ZC model had a basic 
atmosphere-ocean instability as its fundamental dynamics.  
 

We also saw, again in a simplified context, an alternate formulation of ENSO 
which, while retaining the same underlying dynamics as the ZC model, appeared in a 
completely different guise. Stable coupled linear models driven by higher frequency 
‘noise’ simulates similar ENSO properties and has similar predictability properties up to 
a year in advance. In this stable case, a year seems to be at the limit of predictability. We 
argued that there is no current way of deciding the issue of stability or instability in the 
real ENSO system (as opposed to models of ENSO where the stability of the coupled 
interactions determining ENSO is known, or rather can be known) so that a more 



practical test is the range of  predictability of ENSO. The current models are able to 
predict the SST anomalies characteristic of ENSO a few seasons in advance with 
retrospective forecasts indicating that there are some epochs where the range of 
predictability is up to two years in advance. If we understood the reason for this decadal 
modulation of predictability, and if the two year range in some epochs was in concert 
with non-normal disturbances having their usual one year period of growth, then we 
could conclude the system was unstable. At the present time, the ifs have it and we 
cannot come to any conclusions about the stability or instability of ENSO based on the 
range of predictions.  
 

While we have a paradigm for regular oscillations, ENSO is not regular and the 
issue of the actual mechanism for irregularity has not been definitively settled. The two 
candidates are forcing by noise and scrambling by nonlinear interactions. Since the linear 
version of any atmosphere-ocean model is non-normal, small amounts of noise will force 
rather large amounts of variance when the linear system is either stable or unstable. 
Nonlinearities require interactions between different time scales and the obvious 
candidate to interact with the interannual time scale is the annual cycle. A number of 
simple models have been shown to produce irregularity through this mechanism but 
again, there is no way to know what the actual mechanism is in nature. Perhaps it is some 
combination of the two possible mechanisms.  
 

We conclude that the overall situation is less than satisfactory. While we have 
hints of mechanism and of the ultimate range of predictability from a large number of 
simpler model studies, and while we can make useful predictions even without knowing 
the precise mechanism, we cannot presently know if there is more prediction skill to be 
mined at greater range or if the skill can be much increased at the current range of 
prediction. Perhaps the situation is somewhat analogous to the case of weather prediction 
some forty years ago where forecasts were (futilely) attempted at far beyond the range of 
deterministic predictability. It took Lorenz’ seminal insight that the system is chaotic, and 
that the ultimate range of predictability could be determined by understanding the growth 
rates of initial errors, before clarity could be attained.  
 

11.2 Looking Ahead 
 
 If we are to achieve the needed clarity in the future elucidation of ENSO, a 
number of prerequisites seem essential to us.  
 

• We need longer records of the past behavior of ENSO in order to document the 
relationship between the changing mean climate and the behavior of ENSO. 
While the record of ENSO in the glaciers of the tropics is rapidly disappearing 
due to melting, there are still corals and other proxies to be discovered and there 
are real possibilities that a more comprehensive past record of ENSO can be 
obtained. 

 



• We need to assure the future record of ENSO and the observations needed to 
interpret the decadal behavior of ENSO. This requires a commitment to the 
existing TAO-Triton array (Fig. 1.16), to a meridional expansion of this array, and 
to the maintenance of satellite altimetry and scatterometer wind stress 
measurements 

 
• We need to understand specific processes with a view towards inserting them in 

comprehensive climate models with a good degree of accuracy. In particular we 
need to understand how a single tropical heat source (i.e. region of persistent 
precipitation) forces the mid latitudes after emitting planetary waves that travel 
though the full three dimensional wind field between the tropics and midlatitudes. 
We also need to understand the kind of low level stratus clouds that lie over 
upwelling regions off the west coast of South America. Current models do not 
adequately simulate these clouds leaving the upwelling regions of Ecuador and 
Peru, which should be cold due to upwelled water and shielding by stratus, too 
warm.  

 
• We need to understand the annual cycle in the tropics and use this understanding 

for simulation. As we saw, the mean climate and the annual cycle are poorly done 
in all present comprehensive climate models. Because the annual cycle is poorly 
done, anomalies with respect to the model climatology are poorly defined and the 
location of the heat sources in the tropics are in the wrong place at the wrong 
times, thereby misplacing forced variability and limiting the accuracy of 
midlatitude variability. The single most important obstacle to the present 
simulation of variability, including ENSO, in climate models is the poor 
simulation of the climatology. 

 
• With the climatology fixed in comprehensive climate models, we need to 

experiment with these models to better elucidate the nature of ENSO. In 
particular, it will be of great interest to see if the set of comprehensive coupled 
climate models, each built out of the best possible components and the most tested 
parameterizations for clouds, mixing, and surface fluxes of heat and momentum, 
give robust and consistent results for the stability or instability of ENSO. 
Whichever it is, it will also be possible to experiment with these models to test 
whether the amount of internal noise is correct and to experiment with different 
amounts of external noise added to whatever  internal noise is present to elucidate 
the role of noise in mechanisms for ENSO. It will also be possible to examine the 
life cycle of ENSO in these models and to check whether or not the Madden-
Julian oscillation is important by examining the nature of ENSO with the MJO 
and then with the MJO artificially suppressed. Finally, if these comprehensive 
models have the correct decadal patterns, it should be possible to elucidate the 
nature and cause of decadal modulation of ENSO.  

 
• We need to advance the state of data assimilation in coupled models so that the 

initialization of ENSO prediction is advanced and so that a complete model based 
analysis of the climate system becomes possible. Currently, data taken in either 



the atmosphere or ocean does not consistently constrain the system since data 
assimilation is done in each system separately. A coupled data assimilation would 
guarantee that the data is dynamically consistent and allows an optimal estimate 
of the state of the entire coupled system, necessary for both initialization for 
prediction and analysis for archiving. A model based analysis of the climate 
system performed regularly and systematically is the only way to consistently 
grow the climate record. 

 
• We need to continue to explore and demonstrate the beneficial use of ENSO 

predictions so that users become more sophisticated in understanding the basis of 
the forecasts and hopefully, on the basis of their positive experiences, demand 
more and better climate information. Adaptation will undoubtedly become one of 
the major themes of the 21st Century and crucial tools of adaptation are 
predictions a year in advance and information about how climate variability, in 
particular ENSO, will change as the climate warms.  

 
During the last twenty years of the 20th Century, ENSO studies concentrated on 

the simpler intermediate coupled models of ENSO. We expect 21st Century ENSO 
studies to concentrate on simulation with comprehensive climate models. When the bias 
problems involving the climatology have been solved, we expect that these 
comprehensive climate models can be used to solve some of the pressing ENSO 
problems involving the precise mechanism for ENSO, the role of stochastic noise, the 
ultimate limit of ENSO predictability, the response of ENSO to a changed mean climate, 
and the nature of decadal modulation of ENSO. We see enormous opportunities in the 
future in solving a set of problems that are currently stymied by the lack of 
comprehensive enough tools to address them, in particular comprehensive climate models 
and the sustained observations needed to elucidate decadal variability in the Pacific. 
ENSO is not presently a solved problem—perhaps one of the readers of these words will 
some day rectify this situation. 
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Appendix 1. Some Useful Numbers 
 
Radius of Earth:  6370 km 
 
Area of Earth:  0.51x1015 m2 
 
Solar Constant: 1367 W/m2 
 
Area covered by Oceans:  0.36x1015 m2 
 
Heat Capacity of Water:    Cpw = 1 cal/gmK = 4.19 x103  J/kgK 
 
Heat Capacity of Dry Air      Cpa = 0.24  cal/gmK = 1.0x103  J/kgK 
 
Density of Air (at surface): 1.23 kg/m3 
 
Density of Water: 1 gm/cm3 = 103 kg/m3  = 1 tonne/m3 
 

Planetary Vorticity Gradient: 11 1 1
02.28 10 cos secdf m

dy
β φ− − −= = ×  where 0φ is latitude. 

                                              11 1 11.62 10 secmβ − − −= × at 45˚ 
 
1 year has 3.15x107 sec (which can be remembered as π �x107 sec) 
 
Latent heat of Water:  L = 2.5 x 106 J/kgK 
 
Universal Gas Constant: R = 8.31x103 J/Kmol 
 

For Dry Air: p vR c c= − , 7
2pc R= , 5

2vc R= . 

 
Derived Quantities: 
 
The mass of a water column of  area 1m2 area  and 10 m deep is 10 tonnes 
 
The mass of the total air column exerting 1020hPa at surface is about 10 tonnes 
 
50 W/m2 into a column of area 1m2 of water 50 meters deep heats the column 1K in 50 days 
(“The 50-50-50 rule”) 
 
100 W/m2 into a unit column of water 100 m deep heats that column 0.6 K/mo. 
 
100 W/m2 into a unit column of air to the top of the atmosphere heats the air column 0.8 
K/day 
 



It takes 29 W/m2 to evaporate 1 mm/day of water from the surface.  
 
For the mean temperature of surface of the earth, T=15ºC=288K, σT4 = 390 W/m2 .  For 
T=300K, σT4 = 459 W/m2 . 
 
 



Appendix 2. The Parabolic Cylinder Functions 
 

Consider the equation: 
 

2
2

2 ( ) 0d a y
dy
ψ ψ+ − =                                              (A2.1) 

 
on an infinite plane: y−∞ < < ∞ . The solutions to (A2.1) for which 0ψ → as y →±∞  exist 
only when 2 1a n= + . The normalized solutions are (Gradshteyn and Rizhik, 1965, Secs. 7.37 
and 7.38) 
 

2

1/ 4 1/ 2

1 1( ) exp( ) ( )
(2 !) 2n nn

yy H y
n

ψ
π

= − ,                       .(A2.2) 

 
where ( )nH y  are the Hermite Polynomials: 
 

2 2

( ) ( 1)
n

n y y
n n

dH y e e
dy

−= −  . 

 
The normalized solutions to Eq. A2.1 are orthonormal: 
 

( ) ( )n m nmy y dyψ ψ δ
∞

−∞

=∫ , 

 
where 0nmδ =  if  n m≠ and 1nmδ =  if n m= .  
 

 
2

0 exp[ ]
2
yψ = −   is clearly symmetric about 0y = . All nψ with even n have 

even symmetry about 0y =  while nψ  with odd n have odd symmetry. As can be 
seen directly from (A2.1), nψ  is oscillatory between the two turning points 

2 1y n=± +  and decays as 
2

exp[ ]
2

n yy −  poleward of each turning point.  

 
 The solutions have the following properties: 
 

1 1
1

2 2n n n
n nyψ ψ ψ+ −
+

= +                                    (A2.3a) 

and 
 



1 1
1

2 2
n

n n
d n n
dy
ψ ψ ψ+ −

+
=− +  .                                 (A2.3b) 

 
The following two integrals prove useful in taking projections: 
 

1 1
4 2

2
2 [(2 )!]( )
2 !n n

ny dy
n

πψ
∞

−∞

=∫                                    (A2.4) 

 
1 1
4 2

2 1
2 [(2 1)!]( )
2 !n n

ny y dy
n

πψ
∞

+
−∞

+
=∫ .                                (A2.5) 

 
 The source of the square roots of π  can be seen by considering the 
integral: 
 

12 2 2

0 0

1exp[ ] 2 exp[ ] exp[ ] ( )
2

y dy y dy t t dt π
∞ ∞ ∞

−

−∞

− = − = − =Γ =∫ ∫ ∫ , 

 
where Γ  is the gamma function (see Gradshteyn and Rizhik, 1965, Sec. 8.31): 
 

0

( 1) t zz e t dt
∞

−Γ + = ∫ . 



Appendix 3. Modal and Non-Modal Growth 
 

A3.1. Context 
 

Assume we are dealing with a linear evolution equation:  
 
 

d
dt

=
x Ax                                                             (A3.1) 

 
where x is a n row vector which contains all the state variables of the problem and A is the n 
by n linearized evolution matrix. We will also take A to be independent of time (i.e. 
“autonomous”). If A is the result of discretizing a system of differential equations, A may be 
very large.  
 

The formal solution to (A3.1) is: 
 

0 0( ) [exp ( )] ( )t t t t= −x A x                                         (A3.2) 
 
where the expression in brackets is the exponent of a matrix. This can be written  

0 0( ) ( , ) ( )t t t t=x R x  where R is the propagator, which takes the system from the initial state 
x(t0) at time t0 to the current state x(t) at time t.  
 

If ei is an eigenvector of A and λi the corresponding eigenvalue, 
 

i i iλ=Ae e                                                        (A3.3) 
 
so that if we choose an eigenvector (“mode”) for the initial state, 0 i(t ) = x e  then the solution 
is  
 

( ) exp[ ]i it tλ=x e , 
 
so that the solution grows (or decays) with rate Re[λi] and oscillates with period Im[λi]. The 
shape of the solution stays the same as the solution evolves—i.e. it stays the shape of the 
original mode. Any initial vector can be expanded as an eigenvector expansion and each 
eigenvector separately will evolve to the final time without change of shape. The final state is 
then a sum of evolved modes (see Eq. A3.9  below). 
 
 

A3.2. Matrix Background 
 



A3.2.1. Normal Matrices 
 

A p by p square matrix B  is said to be normal if + +=BB B B  where superscript 
“+” refers to the adjoint (complex conjugate transpose). If + +≠BB B B the matrix B  is non-
normal. 
 
☼Theorem (Noble and Daniel, p329):  
 

All normal matrices B can be diagonalized by a unitary transformation:  
 

+ = D U BU   or +B = UDU                                             (A3.4) 
 
where D is diagonal and U is unitary: + +=  = UU U U 1 , i.e. + -1= U U . 
 

Since U is unitary,  
 

= BU UD  
 
and we see that U is composed of columns whose elements are the normalized eigenfunctions 
of B:  
 

1 2 p= [ , , ..., ]U e e e  
 
so that  
 

*
1
*
2

1 2

*

[ , ,..., ]p

p

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e
e

UU e e e 1

e

, 

 
and the eigenvectors are orthonormal:  
 
                                                             *

i j ij
ij

e e δ=∑ . 

 
The eigenvectors of a normal matrix are orthogonal. 

 
If B is Hermitian, + = B B , then the eigenvalues are real. All real symmetric matrices 

are Hermitian. 
 

A3.2.2. General Matrices 
 



☼Any p by q matrix A can be decomposed by a singular value decomposition: 
 

+ = A UΣV                                                              (A3.5) 
 
where: 
 

U is a p by p unitary matrix, 
 

V is a q by q unitary matrix and,  
 

Σ is a p by q “diagonal” matrix in the sense that the “diagonal” elements are  
 

Σij = σi δij 
 
and the σi are real and σi ≥ 0.  
 

Because U and V are unitary, 
 

+ + = A A VDV      or + +=D V A AV                                 (A3.6a) 
 

where  = +D Σ Σ is a q by q diagonal matrix whose elements are σi
2.  

 
Similarly,  

 
+ + + = AA UD U                                                (A3.6b) 

 
where + += D ΣΣ is a p by p diagonal matrix with elements σi

2 . When p>q, the additional 
matrix elements are zero. 
 

It is easy to verify that both +AA and +A A are normal even when A is not. We can 
then use the Theorem to recognize that Eqs. A3.6a and A3.6b are unitary transformations. 
We can identify the columns of U with the  eigenvectors of +AA (these are called the left 
singular vectors) and eigenvalues σi

2 and the columns of V with the  eigenvectors of 
+  A A (these are called the right singular vectors) with eigenvalues σi

2. [Note that if A is 
square and =U V , then A is normal]. 
 
We use the notation  
 

1 2 q= [ , , ..., ]V r r r , 
and 
 

1 2 p= [ , , ..., ]U l l l . 
 
By Eq. A3.5, 



 
= AV UΣ  

 
so that 
 

i i i=  σAr l                                                      (A3.7) 
 
and we see that the matrix A takes the right singular vector into the left singular vector 
multiplied by a singular value. Recall that + 2

i i=  iσA Ar r . 
 
Similarly, by Eq. A3.5,  
 

+ + = A U VΣ  
 
so that 
 

+
i i i= *σA l r                                                    (A3.8) 

 
so that the adjoint of A takes the left singular vector into the right singular vector multiplied 
by the complex conjugate of the singular value. Recall that + 2

i i i = σAA l l . 
 

For any matrix B with an eigenfunction u corresponding to eigenvalue λ, and for  the 
adjoint matrix with an eigenfunction v corresponding to eigenvalue 'λ , we can see that 

+< , > = < , > = < , > = ' < , >λ λv Bu v u B v u v u  so that if 'λ λ≠ , then < , > = 0u v : Any 
eigenfunction of a matrix B is orthogonal to all eigenfunctions of the adjoint B+  that does not 
correspond to the same eigenvalue. The eigenfunctions of B are said to be bi-orthogonal to 
the eigenfunctions of B+ . The eigenfunctions of B are not themselves orthogonal. Further, all 
eigenvalues of B are also eigenvalues of B+ (☼ The proof is surprisingly hard: See Friedman, 
1956.) Note that if B is self adjoint (Hermitian), the eigenfunctions are orthogonal. 

 
Since +AA and +A A are adjoints of each other, the left and right singular vectors are 

bi-orthogonal.  
 

 

A3.2.3. System Evolution 
 

The solution to the normal problem ( A3.1) can always be written in terms of 
eigenvectors as: 
 

                           ( ) exp[ ]i i i
i

t i tα σ= −∑x e                                    (A3.9) 

where 
 



j j j= -i  σAe e  
 
and αi  are the elements of the matrix -1= (t=0)α E x  and E is the matrix whose columns are 
the eigenvectors. The eigenvalue with the largest imaginary part will eventually dominate the 
solution: at any finite time the solution is given by (A3.9).  

 
We can use the biorthogonality relation to illustrate the profound difference between 

normal and non-normal systems. Suppose we have an initial disturbance x(t0) : we can 
expand this disturbance in the eigenvectors of A (which are complete but not orthogonal). 
The coefficients are given by the biorthogonality relation as proportional to: 
 

0, ( )
,

i
i

i i

tα < >
=

< >
f x

f e
                                                    (A3.10) 

 
so that the projection onto a given mode depends on the inner product with the adjoint mode, 
not the mode itself. 
 

If we want the final state at long time to be the most rapidly growing eigenvector of A 
which will dominate the series, e1, then it is clear that x(t0) must be taken proportional to the 
eigenvector of A+ , f1, rather than the final state, the eigenvector of A, e1. For any mode, the 
largest final mode will be obtained if the initial structure is the adjoint. The adjoint then 
evolves by changing its structure into the mode,  contrary to the growing invariant structure 
that is characteristic of normal evolution. The final state in the mode is larger than if the same 
initial amplitude was put into the mode.  
 

An alternate way of looking at the solutions to (A3.1) is at a finite time t = τ. 
According to (A3.2), 
 

0 0 0 0 0(t + ) = (t , t + ) (t ) = exp [ ] (t )τ τ τx R x A x . 
 
The ratio of the amplitude at time t0+ τ to that at the initial time t0 is  
 

1
2

0 0 0
1

0 2
0 0

( ) ( ), ( )
( ) ( ), ( )

t t t
t t t

τ τ τγ
+ < + + >

= =
< >

x x x
x x x

, 

 
where we take the norm measuring the square amplitude to simply be + < , >=x x x x , i.e. the 
usual L2 norm. 
 

1 1
2 2

0 0 0 0 0 0 0 0
1 1
2 2

0 0 0 0

( , ) ( ), ( , ) ( ) ( ), ( )

( ), ( ) ( ), ( )

t t t t t t t t

t t t t

τ τγ
+< + + > < >

= =
< > < >

R x R x x R R x

x x x x
. 

 



Since by the singular vector decomposition of R: + + +=R R VΣ ΣV and since the right 
singular vectors of R are the eigenvectors of +R R  (all evaluated at the time τ) it is clear that 
the largest value γ  at time τ will be attained when x(t0) is chosen as the right singular vector 
r1 corresponding to the largest singular value σ1

2. When x(t0) is so chosen,  
1

12 2
21 1 1 2

1 1 11
2

1 1

,

,

σγ σ σ< >
= =< > =

< >

r r

r r
 

 
The initial state r1 is taken into the left singular vector by (A3.7): 
 

0 0 1 1 1(t , t + )  =  τ σR r l . 
 

We see that for a specific value of τ, we can find the initial state (the right singular 
vector of R(t0, t0+ τ)) that gives the largest final state (the left singular vector of R(t0, t0+ τ).) 
The amplification factor is σ1 so that the initial disturbance grows only when there is a largest 
singular value larger than 1. We should note that this method gives the largest value of the 
amplitude that the system can grow to at time τ, recognizing that this value may not be the 
largest the system can grow to at some other time.  
 
 

A3.3. A Simple Example 
 

Note that all calculations in this section were easily performed by MATLAB.  

A3.3.1. Symmetric Matrix 
 

Let us consider the symmetric matrix 
 

1.12 .025
.025 .027
− ⎞⎛

= ⎟⎜ −⎝ ⎠
A . 

 
The eigenvalues of this matrix are -.0264 and -1.1206 with corresponding normalized 
eigenvectors: 
 

 1

.9997
,

.0229
− ⎞⎛

= ⎟⎜+⎝ ⎠
e and 2

.0229

.9997
− ⎞⎛

= ⎟⎜−⎝ ⎠
e . 

 
It is clear that the eigenvectors are orthogonal so that any initial vector  x(t=0) can be 
expressed as: 
 

1 1 2 2( 0)t a a= = +x e e  
where 



 1 1 ( 0)a t+= =e x and 2 2 ( 0)a t+= =e x  
 
And the solution to the evolution equation Eq. A3.1 is given by: 
 

1 1 1 2 2 2( ) exp[ ] exp[ ]t a t a tλ λ= +x e e . 
 

Since the eigenvalues are negative, any initial conditions will decay. Since 2λ is far 
more negative than 1λ , the second term will decays rapidly leaving the relatively slow decay 
of the first term. Note that there are no initial conditions that will do anything but decay. 
 

A3.3.2. Asymmetric matrix 
 

We take an asymmetric matrix very close to the one used in the previous section: 
 

1.12 .500
.025 .027
− ⎞⎛

= ⎟⎜ −⎝ ⎠
B . 

 
(This matrix was the basis of a simple model of mid-latitude atmosphere-ocean interactions 
in Bretherton and Battisti, 2000. Similar 2x2 examples of non-normal evolution were given 
by Lacara and Talagrand, 1988; Blumenthal, 1991; and  Ioannou and Farrell, 2006.) 

 
The eigenvalues of matrix B are again both negative: λ1= -1.1313 and λ2 = -.0157  so 

that, again in this case, the asymptotic long term behavior will always give decay—the 
system is clearly stable. 

 
The normalized eigenvectors of B are: 

 

1 2

.9997 .4127
and 

.0226 .9110
− −⎞ ⎞⎛ ⎛

= =⎟ ⎟⎜ ⎜+ −⎝ ⎝⎠ ⎠
e e  

 
which are clearly not orthogonal. The eigenvalues of the adjoint matrix +B  are the same as 
those for B but the corresponding normalized eigenvectors are: 
 

1

.9110 .0226
and

.4127 .9997
− −⎞ ⎞⎛ ⎛

= =⎟ ⎟⎜ ⎜+ −⎝ ⎝⎠ ⎠
2f f . 

 
We see immediately that 1 0=+

2f e  and 1 2 0=+f e .  
 

The fact that the eigenvectors are not orthogonal allows there to be initial conditions 
that will transiently grow despite the fact that asymptotically all disturbances decay. Let us 
ask that for the linear evolution equation  
 



d
dt

=
x Bx                                                              (A3.10) 

 
we find initial conditions to give maximum growth at t=2. We perform a singular value 
decomposition on the propagator at time t=2 (again matrix exponentials are easily calculated 
in MATLAB): 
 

.1129 .3877
( 2) exp[ ( 2)]

.0194 .9602
t t

⎞⎛
= = = = ⎟⎜

⎝ ⎠
R B , 

 
with singular value decomposition: 
 

.3794 0.9252 1.0374 0 .0586 .9983
( 2)

.92520 .3794 0 .0972 .9983 .0586
t

⎞ ⎞ ⎞⎛ ⎛ ⎛
= = ⎟ ⎟ ⎟⎜ ⎜ ⎜− −⎝ ⎝ ⎝⎠ ⎠ ⎠

R . 

 
Since the singular value is 1.0374 and therefore greater than one, we can expect the value of 
as measured by the square value in the regular L2 norm, to be greater than 1. So we start with 

the right singular vector 
.0586

( 0)
.9983

t
⎞⎛

= = ⎟⎜
⎝ ⎠

x and plot the square size of the amplitude of the 

solution ( )t ( ) (0)t=x R x : 
 

 
Fig. A.1: Evolution of squared size of solution starting from the first right singular vector.  
 

The size does indeed maximize at =2 and reaches the value of the square of the first 
singular value 1.076. The initial condition, the first right singular vector of ( 2)t =R  is fairly 
close to that of the first adjoint eigenfunction 1f so that the maximum at t=2 is close to the 
maximum that x(t) reaches overall.  
 

We can see more precisely what is going on by expanding in terms of the non 
orthogonal eigenfunctions using the projections of the optimal initial condition x(0) given in 
Eq. A3.10: 
 



1 1 2 2( ) exp[ 1.1313 ] exp[ 0.0157]t tα α= − + −x e e  
 
where 1α = 0.3895 and 2α = -1.0862. It can easily be checked that  
 

1 1 2 2

.0586
(0)

.9983
α α

⎞⎛
= + = ⎟⎜

⎝ ⎠
x e e .                                  (A3.11) 

 
This modal decomposition allows us to see precisely what is happening in terms of 

the modes. (Note that we could have plotted the square size of the solution A3.11 and gotten 
precisely the same as Fig. A1.) The initial state is the sum of the two non-orthogonal modes 
that add up to something relatively small as in Fig. A2. The smallest sum of initial modes is 
at right angles to 1e  and is simply the adjoint mode 2f . 

 

 
 

Fig. A2: Schematic of construction of initial state x(0) according to Eq. A3.11. The unit 
sphere is shown dotted. 
 
 

As times goes on, the more rapidly decaying mode 1e get smaller while the slowly 
decaying mode hardly changes which allows the solution ( )tx to get larger (Fig. A3). 
Eventually the most rapidly decaying mode is mostly gone and the solution then simply 
decays as the less rapidly decaying mode 2e .  
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Fig. A3: Schematic of evolution of state x(t) at time t.   
 
 While we have concentrated on non-modal growth in stable systems, non-normal 
unstable systems can also support non-modal growth—this growth may be greater than the 
growth rate of the unstable modes. One important property of non-normal systems, whether 
unstable or stable, is that the level of variance supported under random forcing is larger than 
that of a normal system under the same forcing (Ioannou, 1995).  
 

A3.4 Error Evolution  
 

In predicting the future state of a coupled system from a given initial state (Chapter 
8),  there are two types of errors that can grow to contaminate the forecast. The first is the 
errors growing from initial errors in the specification of the initial state. We know that 
deterministic chaotic systems exhibit sensitive dependence on initial conditions (Lorenz, 
1963) and require arbitrarily small errors in the initial state to grow. Non-normal systems 
also exhibit sensitive dependence on initial conditions (at least for a finite time). Starting 
from a isotropic distribution of error, Fig. A4 shows the evolution of the error in a stable non-
normal system: the initial error ball decays in the more rapidly decaying mode and grows in 
the less rapidly decaying mode.  
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α2e2 exp(λ2t) 
 

α1e1exp(λ1t) 
 



 
 

Fig. A4. Evolution of initial error ball as a function of time in a stable non-normal system. 
(From Blumenthal, 1991). 

 
Although the figure doesn’t show it, it is relatively clear that if the initial error is 

carefully shaped and the size of the originally errors changed, the error along the final (least 
decaying) mode can be controlled. The final error can therefore be arbitrary. This goes a long 
way to explaining the different results in the literature: unstable coupled models tend to have 
the initial error dominate the stochastic error induced during the transient growth (Karspeck, 
Kaplan and Cane, 2006; Stan and Kirtman, 2008) while stable coupled models forced by 
stochastic noise during transient growth tends to have the effects of the initial error smaller 
than the effects of the continuing stochastic noise (Kleeman and Moore, 1997). It is clear that 
the actual distribution of error in the initial state projected onto the various modes and the 
actual stochastic noise as the system evolves needs to be known in order to be able to gauge 
their relative importance on the predictability of the system. 


