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Atmospheric Numerical Weather Prediction and Climate Models
Atmospheric Components of Coupled Models

(1) Dynamics. 2 choices:
- Primitive equations: hydrostatic relationship dp/dz = - pg
- Non-hydrostatic equations

(2) Horizontal domain usually global, with spherical geometry. 2 choices:

- Variables represented at grid points for both dynamical and physical
processes

- Variables represented in spectral coefficients (spherical harmonics) for
dynamics, and in grid point space for physical processes

(3) Vertical domain includes troposphere and stratosphere

(4) Some physical processes explicitly represented
- Latent heat release due to resolved (large-scale) moist saturation
- Gravity waves that are resolved (large-scale)

(5) Parameterizations for many physical processes not explicitly resolved
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Primitive Equations
(1) Filtered version of the fundamental equations of fluid dynamics

(2) Assumption made that vertical domain is much smaller than horizontal domain, so
that the vertical velocity is much smaller than the horizontal velocity

(3) Assumption (2) is consistent with the hydrostatic equation, which relates the
mass to the vertical derivative of pressure. This filters out sound waves from the set
of equations.

(4) Often solved with the use of pressure (or a related quantity) as the vertical
coordinate.
In these “pressure” coordinates, the fundamental dynamical equations consist of:

Momentum equations for horizontal flow - Newton’s Second Law in a rotating
frame of reference. (F = ma = m dv/dt)

Thermodynamic equation (T dS/dt = Q) where S=entropy, Q=heating
Conservation of mass

Conservation of water (vapor + liquid + ice)
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The fundamental dynamical non-linear nature follows from the
distinction between the Lagrangian derivative, which is the rate of
change of a parcel or air, that is the rate of change “following the
flow” and the Fulerian derivative, which is the rate of change at a
fixed position (x,y,p, ).

As an example, consider the thermodynamic equation:

S
% (1)
where S is the entropy per unit mass, and () the rate of thermody-
namic heating.
The entropy is given (for an ideal gas) by

S=C,In(0) =C,n (T (p(]) ) (2)

p

where pg = 1000 hPa, C), is the specific heat at constant pressure,
and k = R/C),, where R is the ideal gas constant in the atmospheric
equation of state p = pRT'.



Using equation 1 in equation 2 we get:

T\ dO
Op(@)E_Q

do po\ 1
—=Q(~) & (3)
dt p) C,
The derivative % is the Lagrangian derivative, and is written in
the Eulerian framework as:
de 00 00 00 00 "1
= +— +E—+w—:Q Doy = (4)
dt Ot acos(¢) 0N  ado dp p) C,

Here (u,v) is the horizontal velocity at constant pressure, w =

% is the Lagrangian change in pressure, (A, @) are longitude and

latitude, and a is the earth’s radius.




Important Physical Processes
Explicitly Resolved Parameterized

Solar Radiation - both incoming and reflected
Thermal radiation upward from the ground

Thermal radiation, both upward and downward, from gases in the
troposphere, and from clouds.

Latent heat release from condensation of water vapor due to resolved
motions.

Latent heat release and motion due to motions not resolved - convection
(includes both deep convection and shallow convection).

Planetary Boundary Layer diffusion and turbulence.

These processes can be very non-linear, in fact not even analytic!
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A bulk mass flux scheme:

What needs to be considered

Type of convection shallow/deep

Cloud base mass flux - Clnsure
Downdraughts - Generation and
fallout of
recipitation |

Where does convection occur
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Challenges in Representing Fields at Discrete Points on the Sphere

http://en.wikipedia.org/wiki/File:Triangles_(spherical_geometry).jpg
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1 Spectral Models: How Fields are Represented

1.1 Longitude Variation: Zonal Harmonics

Any field F' at a fixed latitude, fixed pressure level, and fixed time,
is a periodic function of longitude A. It can be represented as a sum
of harmonic functions as:

F = Fy+ Z (O cos(mA) + S, sin(mA)) (1)
m=1
m=»M

= Fy+ Z (Ccos(mA) + S, sin(mA)) (2)
m=1

where Fj is just the zonal mean, or average over all longitudes.
Equation 1 is always a valid way to write any field, no matter how
rapid the variation in longitude.

On the other hand, equation 2 is truncated, representing only
larger scales, that is, wavelengths corresponding to A\ = 27 /M or
longer.



The coefficients C),, and S, are real. The functions cos(mA) and
sin(mA\) are called basis functions. The integers m are referred to
as the zonal wave numbers.

1.2 Latitude and Longitude Variations: Spherical Harmonics

One way to address the challenges in representing a continuous field
G(A, ¢) as a function of longitude A and latitude ¢ on the sphere
is to use basis functions which are already defined for the sphere.
These are called spherical harmonacs.

Any field G(), ¢) can always be written, in truncated form, as:

n=N m=N
G(A? Cb) - Z Z Fom Pam (M) i (3)
n=1 m——f\
n=N m=N
- Z Z ]D” m QF;{‘)m coq(m)\) o 2F7{’m qm(m)\))
n=1 m=0

e Here we have a product of harmonic functions in longitude (cos(mA)
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and sin(mA)) and polynomials in the variable p = cos(¢), the
Legendre polynomials P, (1)

e The index m is just the zonal wavenumber as before. The index
n is called the total wave number.

e The Legendre polynomial P, (1) depends on both n and m.
e The magnitude of m can not exceed that of n.

e The coefficients Fj,,, are complex, and can be written in terms

: . _ _ R I
of real and imaginary parts as: I, ,, = I}, + F;

While the zonal wave number m is familiar from before, it is the
em total wave number n that gives the “scale” of the wave. To see
this, remember that in ordinary wave theory, the function e*7 is an

eignfunction of the operator V? with eigenvalue —k?:
erk-f _ _k2€k-.’f (4)

which identifies k£ as the dimensional wave number, and 27 /k as the
physical wavelength.



mA (

In a similar way, the function P, ,,(u)e also called a spherical

harmonic is an eigenfunction of V?:
n(n+1)

VQRM??,(M)B“R/\ — (1,2 Pﬂ,m(ﬂj e'?:m/\ (5)

where a is the radius of the sphere (the earth). The associated
physical wavelength is given by:

)= QW\/ (azn (n1+ 1)) (6)

Spectral models represent the scalar variables (temperature, vortic-
ity, divergence and at all levels, and surface pressure) as a sum over
spherical harmonics as in equation 3. It is the complex coefficients
F, » that change in time as the fields evolve.

A mode truncation identified as TN (for example, T85), means

.
/

2 Spectral Models
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that N = 85 is the upper limit for total wave number n in the sum
of equation 3.
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What is the physical resolution of a spectral model with Triangular truncation?

Definition |: The wavelength A of the smallest wave retained in the spherical
harmonic basis set: A= 27/k = 2w a /[ N(N+1) ]2 (N is highest total
wavenumber in truncated basis set, k is the wavenumber).

Definition 2: The size d of a very sharply defined local feature (delta function) when
expressed in terms of the spherical harmonic basis set.

N 21 42 63 106 213
A 1859 942 628 377 188 km
d 2979 1507 1009 601 300 km

J. Lander and B. J. Hoskins, 1997
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‘&? 1. The importance of spatial resolution for representing mountains

A high spatial resolution is needed to achieve an accurate representation of the
system physical processes. Similarly, the representation of the orography
becomes more realistic with increased horizontal resolution.

Representation of the orography at T159 resolution

Representation of the orography at T639 resolution

—
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Atmospheric Forecast and Climate Models

Variables which predicted by explicit evolution equations (“prognostic”):

At every model vertical level:

(1) Horizontal flow (zonal and meridional winds)
(2) Temperature

(3) Water Vapor

(4) Liquid and Solid water (clouds)

Surface Fields:
(1) surface pressure

Weather forecasting AGCM resolution: T 799 (ECMWF); T 382 (NCEP)
Climate change coupled model simulation resolution: T85 (NCAR CCSM)
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