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Structure of errors

(Legras, B., and R. Vautard, 1996: A guide to Lyapunov vectors.  Proceedings of the ECMWF seminar 
on predictability. September 4-8, 1995, Reading, UK, Vol. 1, 143-156.)

Recall that the squared-amplitude of the error at time t2 is

.

The matrix ATA is symmetric positive-definite and possesses M real positive eigenvalues 

i
2 and orthogonal eigenvectors v

i
.  Both the eigenvalues and eigenvectors depend on the 

time interval (t1,t2).

The structure of the evolving errors is provided by the eigenvectors of the matrix ATA.  

The eigenvectors v
i
describe the axes of inertia of the error growth.  If the errors are on a 

sphere of unit radius at time t1, then, at time t2, they lie on an ellipsoid whose axes are 

along the vectors A(t2,t1)vi
with lengths i.

Because of the continuous change in the orientation of the ellipsoid, the phase space 
direction corresponding to a particular eigenvalue varies in a complex manner.

The error growth is better described by the singular structure of the error matrix A.
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Singular vectors

Any matrix can be expressed in terms of two orthogonal matrices U and V by singular 

value decomposition (SVD):

A = USVT 

where U and V are M × M orthogonal matrices, S is a diagonal matrix containing the 

singular values of A,

UUT = I

VVT = I

��
�
�
�

�

�

��
�
�
�

�

�

=

Mσ

σ
σ

�

���

�

�

00

00

00

2

1

S



July 29, 2009 ICTP   SMR 2050        Predictability Theory 4        V. Krishnamurthy 4

AV = US    i.e., A(v1,…,vM) = ( 1u1,…, MuM)          

ATU = VS    i.e., AT(u1,…,uM) = ( 1v1,…, MvM)

where u
i
and v

i
are columns of U and V respectively.

Note that  

ATAV = VS2

V = (v1,…,vM) are the right singular vectors or forward singular vectors.

v1,…,v
M

are also orthogonal eigenvectors of ATA with eigenvalues 1
2,…., M

2 and, as 

discussed earlier, describe the evolution of a sphere of perturbations at time t1 to an 

ellipsoid at time t2. 

The errors lie on the ellipsoid whose axes are along the vectors A(t2,t1)vi
with lengths i.
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Also,

AATU = US2

u1,…,u
M

are also orthogonal eigenvectors of AAT with eigenvalues 1
2,…., M

2.

U = (u1,…,u
M

) are the left singular vectors or backward singular vectors.

To interpret the meaning of U, consider the error growth backward in time:

x(t1) = [A(t2,t1)]
−1 x(t2)

The squared-amplitude of the error at time t1 is

If the errors are on a sphere of radius at time t2, then

x(t1)
Tx(t1) = S−2 2

ie., the errors lie on an ellipsoid at time t1 along the axes ATui with lengths 1/ i.

)(]),(),([)()()( 2

1

1212211 tttttttt
TTT

xAAxxx
−=



July 29, 2009 ICTP   SMR 2050        Predictability Theory 4        V. Krishnamurthy 6

Asymptotic behavior

The asymptotic behavior of the eigenvalues and eigenvectors of ATA are governed by an 
important theorem in dynamical systems called the Oseledec theorem.

(1) For any vector e, there exists an exponent

which is finite and does not depend on t1.  There are M such exponents 1 > 2 > ··· > M

called the Lyapunov exponents.

(2) The limit operator 

exists.  

This limit operator depends on t1 or on the initial point X(t1).  

The eigenvectors v
i
(t1) of B�(t1) are called the Lyapunov vectors and are orthogonal.
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Lyapunov exponents and dimension

The error matrix A is multiplicative.  However, it does not mean that the singular values of 

A(t3,t1) are products of the singular values of A(t3,t2) and A(t2,t1).  It is even possible 

A(t3,t2) and A(t2,t1) may each possess a singular value greater than one, while A(t3,t1)
may not.  The growth of small errors along a trajectory in the attractor varies continuously.

The ultimate growth or decay of small errors, as opposed to temporary growth or decay, is 

investigated by considering the initial error in the zero limit along with the time interval 

approaching a large limit.

The limiting values

are called the Lyapunov numbers of the system, while their logarithms

are called the Lyapunov exponents.
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For an M-dimensional dynamical system, there are M Lyapunov exponents representing 

the average exponential rate of growth or decay of small errors (i.e., M axes of the error 

ellipsoid).

The positive exponents represent the axes that are expanding on the average, whereas the 

negative ones are related to the contracting axes.

Let  1 > 2 >….> M.

The signs of the Lyapunov exponents indicate the qualitative nature of the attractor.

If an attractor possesses one or more positive exponents, it is chaotic.  For an attractor to 

be chaotic, it is sufficient that 1 > 0.

For a periodic attractor, 1 = 0 and the rest are negative.

For a steady state attractor, all the exponents are negative.

Except for steady state attractors, at least one Lyapunov exponent is always zero and 

corresponds to the direction of the flow (principal axis tangent to the flow) where the 

perturbations stay at about the same level.

For many well behaved systems, the exponents are independent of initial time (Oseledec
theorem).
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The magnitudes of the Lyapunov exponents quantify the attractor’s dynamics.

The linear extent of the ellipsoid grows as exp( 1t), the area defined by the first two 

principal axes grows as exp[( 1 + 2)t], and so on.  

The sum of the first j exponents represent the long term exponential growth rate of a j-
volume element.

The sum of all the Lyapunov exponents is the time-averaged divergence of the phase 

space.  Recall the earlier discussion of the rate of change of volume of a phase space in 

terms of the dissipation parameter.  Any dissipative system will have at least one negative 
exponent and the sum of all exponents is negative.

Based on a conjecture by Kaplan and Yorke (1979), the fractional dimension of the 

attractor is expressed in terms of the Lyapunov spectrum.  The Lyapunov dimension d of 

an attractor is

where L is the number of all the largest exponents that can be added to yield a non-

negative sum.  The Lyapunov dimension is less than the phase-space dimension of the 

system.  The Lyapunov dimension of a chaotic attractor is greater than 2, and is typically 

not an integer.
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Lyapunov vectors

The Lyapunov vectors are the limits when t2 of the forward singular vectors vi(t2,t1)

while t1 is fixed.  These may also be referred to as the forward Lyapunov vectors.

Similarly, from the time symmetry, we can define backward Lyapunov vectors as the 

backward singular vectors u
i
(t2,t1) when t1 − while t2 is fixed and AAT is considered in 

the limit operator.

As t2 – t1 , any random perturbation e(t1) starting from time t1 will converge to u1(t2), 
the first backward Lyapunov vector.
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Ensemble forecasting

A single forecast can depart quite rapidly from the real atmosphere if the error in the 

analysis (i.e., observation) happens to project strongly on a leading singular vector.  

However, if the initial error does not project strongly, then a forecast could be reliable.  

Therefore, the quality of the forecast could vary wildly from day to day with no prior 

knowledge of which forecasts are likely to be good.  The approach taken to provide some 
information about the likely uncertainty in the forecast is called ensemble forecasting.

The control forecast (the one made starting from the analysis) is supplemented by a 

number (ensemble) of other forecasts starting from analysis plus a small perturbation.  The 

single trajectory of forecast is replaced by a “cloud” of trajectories.

If the cloud grows quickly with many possible outcomes (weather states) after a few days, 

there is a warning that any single forecast may be unreliable.  The deterministic forecast is 
replaced by a probabilistic one with more than one type of weather state.

It is also possible that the sampling of the state space near the analysis may include the 

correct initial state.

For a meaningful probabilistic forecast that includes proper upper bounds of uncertainty, 

the ensemble approach requires that the rapidly growing (leading) singular vectors are 

sampled reasonably.  Otherwise, the ensemble of forecast trajectories may stay close 

together, with all of them being wrong.
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Initial perturbations

The number of rapidly growing singular vectors is quite small compared to the dimension of 

the system.  Some care must be taken to choose the initial perturbations to include the 

rapidly growing modes.  Adding a number of random errors may be easier, but may miss 

the growing directions completely.  There are two approaches to include rapidly growing 

directions in the initial ensemble: (1) singular vector and (2) bred vector.

Singular vectors

In this approach, the perturbations are projected onto the fastest growing directions over a 

finite period of time.  The singular vectors are computed by linearizing the equations about 

the initial state (analysis) and integrating the linearized equations over finite forward time 

(optimization time).  These forward singular vectors are used to add a cloud of small 

perturbations to the analysis.  These perturbed states are expected to evolve along most 

rapidly growing directions.  In the large time limit, the forward singular vectors are the 

forward Lyapunov vectors.  The singular vector approach for ensemble forecasting was 
used by

Buizza, R., and Palmer, T., 1995: The singular vector structure of the atmospheric general circulation. J. 
Atmos. Sci., 52, 1434-1456, 

Buizza, R., Tribbia, J., Molteni, F., and Palmer, T., 1993: Computation of optimal unstable structures for 
a numerical weather prediction model. Tellus, 45A, 388-407.
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Bred vectors

In this method, with an initial small random perturbation (random seed), the nonlinear 

model is integrated a long time before the target time of the forecast.  The perturbations are 

rescaled over short cycles and grown again.  At the end of this “breeding” process, all 

perturbations are scaled to desired amplitude. 

With an evolving flow (e.g., a long model run), start a breeding cycle by introducing a 

random initial perturbation of a certain size (usually not small).  This random seed is 
introduced only once.

The same nonlinear model is integrated from the control (unperturbed) initial condition and 
from the perturbed initial condition.

(Kalnay, E., 2003: Atmospheric modeling, data assimilation and predictability)
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At fixed time intervals (say every 6 hours), the control forecast is subtracted from the 

perturbed forecast.  The difference (evolved error) is scaled down so that it has the same 

amplitude as the initial perturbation and the scaled error is added to the new analysis or 

model state.

The procedure is repeated for several cycles and the perturbations generated in these 

breeding cycles are called bred vectors.  The bred vectors supposedly acquire large 
growth rates.

Since the initial errors are of finite size, this method is considered a nonlinear 

generalization of the method used to construct Lyapunov vectors.  Since the bred vectors 

are generated after integrating the model for a long time before the target time of forecast, 
they are considered somewhat similar to backward Lyapunov vectors.

However, because of the large size of the initial perturbations, this method assumes the 

saturation of small-scale modes such as convective modes.  The similarity of the bred 
vectors to backward Lyapunov vectors may be in large spatial scales.
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Error Growth in low-order systems

Computation of local error growth

When a sphere of small initial errors evolves into an ellipsoid, the problem of determining 

the growth or decay of errors in terms of the lengths of the semi-axes of the ellipsoid 

reduces to finding the singular values of the error matrix A or the eigenvalues of the matrix 

AAT.

Consider the M-dimensional dynamical system

and the solution of the linear tangent equation
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To evaluate A(t2,t1), first choose the initial basic state X(t1) and numerically integrate 

dynamical equation from t1 to t2 and obtain the basic state X(t2).

Next, by choosing a new state X (t1) at time t1 which differs from the basic solution X(t1) in 

only one component, say

xi(t1) = ik ,

where is small, we obtain

xi(t2) = aik(t2,t1).

When the basic solution is subtracted from the perturbed solution at time t2, the result is 

times the kth column of A(t2,t1).  By repeating this process for M times for different values 

of k, the matrix A(t2,t1) is evaluated.

Once A(t2,t1) has been computed, the length of the semi-axes of the ellipsoid, 1,…., M , 

can be determined by a singular value decomposition of A(t2,t1) or by an eigenanalysis of  

A(t2,t1) A
T(t2,t1).
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Lorenz’s 3-variable model

= 10,   b = 8/3 = 2.67, r = 28

A sphere of errors, introduced at the beginning of each time interval, evolves into an 

ellipsoid. The value of 1 varies considerably and is sometimes less than one.  The longest 

axis is growing most of the time.

Time           1           2            3
5000-5010      1.0094    0.7698    0.3281
5010-5020      1.3513    0.7688    0.2454
5020-5030      1.7128    0.7697    0.1934
5030-5040      2.0157    0.7759    0.1630
5040-5050      2.1206    0.8013    0.1501
5050-5060      1.7324    0.8737    0.1684
5060-5070      1.0740    0.8867    0.2677
5070-5080      0.9324    0.7728    0.3539
5080-5090      1.2117    0.7662    0.2746
5090-5100      1.5855    0.7659    0.2099
5100-5110      1.9545    0.7659    0.1703
5110-5120      2.2851    0.7659    0.1457
5120-5130      2.5660    0.7659    0.1297
5130-5140      2.7970    0.7660    0.1190
5140-5150      2.9812    0.7663    0.1116
5150-5160      3.1091    0.7685    0.1067
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Lorenz’s 3-variable model

= 10,   b = 8/3 = 2.67, r = 28

A sphere of errors evolving into an ellipsoid for combined time intervals.

Time           1                             2                            3

5000-5020      1.3363    0.5850    0.0832
5020-5040      3.3802    0.6062    0.0317
5040-5060      3.0535    0.7949    0.0268
5060-5080      0.9824    0.6329    0.1045
5080-5100      1.9081    0.5863    0.0581
5100-5120      4.4041    0.5866    0.0252
5120-5140      6.8485    0.5867    0.0162
5140-5160      8.6159    0.5900    0.0128

Time           1                             2                            3

5000-5040      4.4056    0.3606    0.0027
5040-5080      1.7418    0.7155    0.0034
5080-5120      8.3917    0.3439    0.0015
5120-5160     54.9143    0.3465    0.0002

Some of the eigenvalues of become much larger than others.  The ellipsoid becomes 
extremely elongated in a few directions.
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Lorenz’s 28-variable model
Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321-333.

Lorenz studied the growth of small errors in a 28-variable model derived from the two-layer 

quasi-geostrophic model. For suitable values of the parameters of the model, the attractor 

is chaotic.  A sphere in the model’s phase space becomes a 28-dimensional ellipsoid.  

There are several growing principal axes, and there is considerable variation from one four-

day period to another.
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Computation of Lyapunov exponents
(Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vatsano, 1985: Determining Lyapunov exponents from a 
time series. Physica D, 16, 285-317.)

Lyapunov exponents are the long-term averages of the semi-axes of the error ellipsoid.  If 

the ellipsoid evolves for a long time, the magnitudes of the principal axes diverge, and also, 

the axes tend to fall along the local direction of most rapid growth making it difficult to 

distinguish them.  These problems are solved by repeated use of Gram-Schmidt 

reorthonormalization (GSR) on the vector frame.

Choose an initial set of orthonormal vectors and let it evolve according to the linear tangent 

equation to become the set (w1,….,wM). Then an application of GSR results in the 

orthonormal set (w

�

1,….,w

�

M) given by

where < , > denotes an inner product.
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The GSR is applied at frequent intervals such that the magnitudes and directions of the 

vectors do not diverge.  The GSR preserves the orientation of the vectors.

The first vector, which is unaffected by the GSR, tends to fall along the most rapidly 
growing direction in the tangent space.

The second vector is normalized after its component along the direction of the first vector is 
removed.

The vectors w1

�

and w2 

�

span the same two-dimensional subspace as w1 and w2, and 

represent the two-dimensional space that is most rapidly growing.

The length of the vector w1 is proportional to exp( 1t) while the area defined by w1 and w2 is 

proportional to exp[( 1+ 2)t].

The volume defined by M vectors evolve as exp[( 1+…+ M)t].

The long-term averages of the norms of w1

�

, … , wM

�

provide the values of the Lyapunov

exponents 1, … , M.
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Lorenz’s 3-variable Model

Lyapunov Exponents and Lyapunov dimension

= 10,   b = 8/3 = 2.67

r 1                      2                    3                    1+ 2+ 3 −( +b+1)          d
Steady

0.5    -0.48   -2.67  -10.52    -13.67    -13.67 0.00
10.0    -0.60   -0.60 -12.48    -13.67    -13.67 0.00

Periodic

100.5     0.00   -1.74  -11.93    -13.67    -13.67 1.00
150.0     0.00   -0.66  -13.01    -13.67    -13.67 1.00
320.0     0.00   -0.13  -13.55    -13.68    -13.67    1.00

Chaotic

28.0     0.90    0.00  -14.57    -13.67    -13.67 2.06
45.0     1.22    0.00  -14.88    -13.67    -13.67 2.08
90.0     1.37    0.00  -15.03    -13.67    -13.67 2.09
120.0     1.55    0.00  -15.22    -13.67    -13.67 2.10
200.0     1.46    0.00  -15.13    -13.67    -13.67 2.10
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Lorenz’s 28-variable model
(Krishnamurthy, V., 1993: A predictability study of Lorenz’s 28-variable model as a dynamical system. J. 
Atmos. Sci., 50, 2215-2229)

Lyapunov exponents for chaotic attractors at various values of forcing 0
* shows that the 

number of positive exponents and the value of the largest exponent increase as the forcing 

increases.  The Lyapunov dimension also increases with the forcing indicating that the 

degree of chaos and the measure of predictability vary.


