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Growth of an ensemble of initial errors
Error growth in Quadratic Map

The examples of error growth in the quadratic map showed that the growth rate of the error 

X
n

− X
n

depends on the true state X
n
.  To obtain the behavior of the average error growth 

of the system, the evolution of a large ensemble of initial errors must be considered.  The 

ensemble mean of the errors will provide estimates of average rate of error growth and the 

time taken to reach saturation.

When the initial errors are introduced at many different points in the basic solution, the 

ensemble average error provides the global error growth of the system.

When the initial errors are introduced at a single point in the basic solution, the local error 
growth is obtained.

Local growth

Introduce 10000 initial errors at one point and study the evolution of the ensemble mean 

error.

Global growth

Introduce one initial error at 10000 points and study the evolution of the ensemble mean 

error.

The error is expressed as the root mean square (rms) error, a commonly used measure of 

error. The ensemble mean error gives the average growth of error.
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Local Growth

At one particular time step in the basic 

solution, 10000 initial errors are introduced. 

The subsequent evolutions of the basic 

solution and the perturbed solutions are 

computed to obtain the time series of an 

ensemble of errors.

The ensemble mean error is plotted as a 

function of time step, starting with the initial 

mean error equal to 0.001.

The error growth reflects the local 

character with fluctuations.  The error 

reaches saturation at about time step 20.  

The saturated error also shows 

considerable fluctuation.
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Global Growth

At 10000 different time steps in the basic 

solution,  an error of 0.001 is added to use 

as initial conditions for perturbed solutions.   

The subsequent evolution of the basic state 

and the perturbed states are computed to 

obtain the time series of an ensemble of 

errors.

The ensemble mean error is plotted as a 

function of time step, starting with the initial 

mean error equal to 0.001.

The error growth is smoother because of 

averaging over many local errors. 

The growth is almost perfectly exponential 

at first with an amplification factor of about 

1.5 per time step.  The error nearly ceases 

to grow at about step 35 and reaches 

saturation.
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Growth of random errors in 28-variable Lorenz model
(Krishnamurthy, V., 1993: A predictability study of Lorenz’s 28-variable model as a dynamical system. J. 
Atmos. Sci., 50, 2215-2229)

Model

The model represents a two-layer quasi-
geostrophic mid-latitude atmosphere forced

by Newtonian heating with dissipation 

occurring  through frictional drags at the 

surfaces.  The model is transformed into 

spectral form by expanding the dependent 

variables in a set of orthonormal functions.    

The low-order spectral truncation results in 

a 28-variable model (i.e., 28 ordinary 
differential equations).

This model’s attractors are chaotic for a 

range of values of the forcing (heating) 
parameter.

The error growth will be discussed for the 
chaotic attractor at 

�

0
*=0.1.
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28-variable Lorenz model: Local growth of individual errors

Five different random errors are introduced at one point in the attractor (left) and errors are 

introduced at five different points in the attractor (right).  The errors grow exponentially for a 
while and slow down before reaching saturation.
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28-variable Lorenz model: Ensemble-averaged local growth

Four ensembles, each with 500 initial random errors, were allowed to evolve from a 

particular state in the attractor. The initial size of the ensemble mean error is different.  It 

takes about 10 days for the error with the largest initial size to reach saturation while it 
takes about 70 days for the error with the smallest initial size.

All four error curves show parallel 

growth indicating the local nature 

of the error growth.
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28-variable Lorenz model: Global growth of errors

Ensemble mean of growth of random errors introduced at 1000 different states in the 

attractor shows smooth growth.  The geometric mean error (solid) is smoother than the 

arithmetic mean error (dashed).  The growth is exponential during much of the growth 

phase before saturation.
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The geometric mean of random errors (dashed) is shown along with exponential growth 

according the first four Lyapunov exponents i.e., (a) exp( 1t), (b) exp( 2t), (c) exp( 3t) and 

(d) exp( 4t).  

It is evident that the mean error grows exponentially according to 1 for about 50 days.  For 

such growth, the doubling time of errors is td = (ln2)/ 1.

With 1= 0.03, the doubling time for 

small errors is about 2.9 days, 

comparable to Lorenz’s estimate of 

2.4 days for the doubling time in the 

ECMWF model.

When the random error growth starts

to deviate from the exponential growth,

the magnitude of the mean error is

nearly 10−2, and the subsequent 

growth rate decreases steadily before

reaching saturation.  During this phase, 

the error growth is nonlinear.
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Growth of errors in chaotic systems

First, small errors grow quasi-exponentially with a certain growth rate during the linear 

phase of growth.  The growth  rate is often determined by the largest Lyapunov exponent.

Next, the errors go through a nonlinear phase of growth at a slower growth rate.

Ultimately, the magnitude of the errors approaches or oscillates about a value no larger 

than the difference between randomly selected states of the system.  When the errors 

reach saturation, the limit of predictability has been reached and the predictions become 

unreliable.

The time taken to reach the limit of predictability depends on the size of the initial error.
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Lorenz’s empirical formula for error growth

If E is the mean error, the exponential growth is given by the equation

The doubling time of the errors is td = (ln2)/ 1.

The errors do not grow forever.  The processes limiting the error growth must be 

represented by nonlinearities in the governing equations which were omitted in the linear 

tangent equation.  

A simple assumption that such nonlinear processes are quadratic in E provides a good 

approximation.  The modified error equation is

where s is so chosen that E
s
= 1/s is the saturation value of E.

E
dt

dE

1λ=

2

1 sEE
dt

dE −= λ
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If E0 is the error at time t0, the error E at a later time t is given by

or
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Empirical fit to error growth in Lorenz’s 28-variable model

The ensemble mean growth of random errors is well approximated by Lorenz’s empirical 

relation with 1=0.03 and E
s
= 0.086 for the error growth in the 28-variable model.
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Predictability in higher dimensional dynamical systems

Higher dimensional model

The atmospheric system is quite complex, and the general circulation models (GCMs) are 

too large to be studied as dynamical systems.   Here, an idealized spectral model of the 

atmosphere that includes many scales of motion is studied to understand the nature of the 

chaotic attractors, their dimensions and predictability.    The model is large enough to be 

studied as a dynamical system with extensive precise computations but not as 
unmanageable as a GCM.

The model represents a two-layer quasi-geostrophic mid-latitude atmosphere forced by 

Newtonian heating with dissipation occurring  through frictional drags at the surfaces.  The 

model is transformed into spectral form by expanding the dependent variables in a set of 

orthonormal functions.    The spectral truncation determines the smallest scale feature 

included in the model.  The model is studied in a hierarchy of truncation, and the results of 

four such models, identified as (5X,5Y), (10X,10Y), (15X,15Y) and (20X,20Y), are 

presented.  The (20X,20Y) model, for example, consists of 20 wavenumbers each in zonal 

(X) and meridional (Y) directions.  The number of variables in the model ranges from 110 to 
1640.
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Chaos in higher dimensional models

All four models undergo similar sequence of bifurcations for a range of forcing parameter.  

Smaller scale components, however, shift the bifurcation points as the model becomes 

more complex.  The attractors for lower forcing values are characterized by Hadley and 

Rossby circulations.  Chaotic attractors are obtained after successive Hopf bifurcations.

Time series of  temperature in                       Time series of  temperature in

the largest spatial scale                         the smallest spatial scale



July 30, 2009 ICTP   SMR 2050         Predictability Theory 5         V. Krishnamurthy 16

Dimensions of chaotic attractors in higher dimensional models

It may appear from the time series that the chaotic nature of the attractors has converged,  

but the degree of chaos, in fact, increases with the order of model truncation.  The number 

of positive Lyapunov exponents and the Lyapunov dimension of the chaotic attractor 

increase as the model becomes larger (Table).  For the (20X,20Y) model, the dimension is 

more than 368, much larger than the very small values often reported for climate time 

series.
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Error growth in higher dimensional models

The local evolution of an initial sphere of error 

into an ellipsoid also shows that number of 

growing axes increases with the model 

truncation (Table).  The amplification of the 

longest axis in one day also increases.  The 

local nature of the error growth is seen for all 

the models in the evolution of an ensemble of 

initial errors at a particular point in the attractor 

(Fig. a).  The linear growth of errors in the 

early part of the evolution is described by the 

amplification of all the axes (both growing and 

decaying) of the ellipsoid (Fig b).
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Error growth in higher dimensional models

The predictability of the models is found by 

examining the evolution of an ensemble of 

small initial errors introduced at various points 

in the attractor (Fig. a).  The (5X,5Y) model 

shows a faster growth rate of errors compared 

to the other three models.  This feature is also 

reflected in the largest Lyapunov exponent of 

the models.  The limit of predictability  is 

reached in about 80-100 days.  

For most part of the linear error growth 

(except for the initial part), the evolution of the 

errors can be represented by an empirical 

formula using the largest Lyapunov exponent 

only (Fig. b).
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Amplification in Local Growth of Errors

The local growth of an ensemble of initially small errors was studied for different time 

segments of the attractor.  The error growth was evaluated by a logarithmic measure 

�

(t1-t0) of the ratio of the error at a verifying time t1 to that at an initial time t0.
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Amplification in Local Growth of Errors

The contours of 

�

(t1-t0) in a plot with t0 and t1 as coordinates for different time segments 

of the hierarchy of the model.  The contours would be parallel to the main diagonal if 

�

(t1-t0) depended only on (t1-t0).  However, (1X,1Y) model shows contours lined along 

horizontal and vertical directions.  Rows with low (high) values represent states that are 

more (less) predictable than others.  Columns with low (high) values imply that those 

states are more (less) predictive (i.e., better or worse predictors).  The (2X,2Y) model 

also shows similar behavior but with more regular structure.  It also shows time segments 

where the contours are parallel to the diagonal.

For models such as (5X,5Y) and (10X,10Y) that include several scales of motion, the 

contours are mostly diagonal (Fig. 5).  This implies that 

�

 (t1-t0) depends only on (t1-t0) as 

the model becomes more complex and representative of GCMs.  Similar results have 

been obtained for different values of forcing in the model.


