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Predictability Theory

1. Predictability and chaos (July 27)

2. Nonlinear dynamical systems (July 28)

3. Linear stability analysis (July 28)

4. Structure of errors (July 29)

5. Growth of random errors (July 30)
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Lecture Notes

George Mason University Course on Predictability

ICTP SMR 2050 Lectures on Predictability Theory (Krishnamurthy)

are based on the course “Predictability of Weather and Climate” (CLIM 751) taught at the 

Department of Climate Dynamics, George Mason University, VA, USA.

More detailed notes of the George Mason course can be found at

http://mason.gmu.edu/~vkrishna/CLIM751.htm
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Prediction and Predictability

Lorenz, E. N., 1963: The predictability of hydrodynamic flows. Trans. New York Acad. Sci., Ser II, 25, 409-423. 

Lorenz, E. N., 1984: Some aspects of atmospheric predictability, Problems and prospects in long and medium range 

weather forecasting, D. M. Burridge and E. Kallen, Eds., Springer-Verlag, 1-20.

Predicting the future state of the system consisting of atmosphere, ocean, land, etc. is 

the main goal of the field of weather and climate.  

For both weather and climate, distinguished by their time scale, the present knowledge of 

this subject is based not only on studies of complex models of atmosphere, ocean, land 

etc. but also on studies of simple mathematical models.

It is also quite common knowledge that there is a lack of perfection in predicting weather 

and climate even with the use of complex models and high speed computers.  

How predictable is the system?

The main concern of this course will be the predictability of weather and climate systems.

The predictability of a system refers to the degree of accuracy with which it is possible to 

predict the future state of the system.

What is meant by prediction?
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Prediction

The state of the atmosphere and its surroundings (weather and climate system) is 

continually evolving in accordance with a set of physical laws. There are two methods of 

prediction.

In dynamical prediction, the process of predicting future states of the atmosphere consists 

of extrapolating forward from the present state according to these laws.

Alternately, in statistical prediction, the rules for extrapolation are established empirically, 

based on a sequence of past states

No system of prediction regularly produces perfect forecasts.  The reasons are

• Imperfect knowledge of the state of the atmosphere from which one extrapolates

• Inadequacy of the methods by which one extrapolates because of incomplete 

knowledge of the  physical laws and imperfect numerical prediction schemes.
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Prediction and its accuracy

Consider the following predictions:

1. Tomorrow will be warm (i.e., warmer than normal).

2. Tomorrow will be very warm.

3. Tomorrow’s maximum temperature will be 27°C.

4. The probability that tomorrow will be warm is 80%.

Predictions 1 and 2 will be either right or wrong.  However, for prediction 2, how warm is 

“very warm” must be agreed on.  Prediction 2 is right less often than prediction 1, if made 

by forecasters of equal but less than perfect skill.  The measure of skill takes into account 

the way in which the prediction is worded.

Prediction 3 can also be right or wrong.  Yet, when the observed temperature is 26°C, a 

forecaster who predicts 27°C has made a better forecast than the forecaster who 

predicts 21°C or 31°C.  A measure of accuracy is the magnitude of error.

Although the above forecasts have varying levels of precise characterization of the 

tomorrow’s weather, all the forecasts may be expressed in numerical terms.  
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Prediction and its accuracy

A measure of the accuracy of the forecast can be devised.  

For example, root-mean-square error of a sequence of numerically expressed forecasts 

can serve as a measure of the accuracy.

Prediction 1 can also be made numerical by letting 1 denote “warmer than normal” while 

0 denoting “cooler than normal”.  The mean-square error is the fraction of the time the 

forecast is wrong.  However, a smaller mean-square error can be obtained by predicting 

a fraction, even though the outcome must be 1 or 0.  This kind of prediction leads to 

prediction 4, i.e., probability of warmer weather.

As far as predictability is concerned, the forecast must be expressed in numerical terms.  

The square of the difference between the predicted number and the outcome will serve 

as a measure of the accuracy of a given forecast.
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Predictability of a system

Predictability is the degree of accuracy with which it is possible to predict the state of the 

system in the future.

For physical systems, the predictions are based on imperfect knowledge of the system’s 

past and present states.  

For example, the instruments may not be capable of measuring to the desired accuracy.  

The network of measurements may not resolve the structure of the physical and dynamical 

features.

How well can one predict the state of the atmosphere, or some aspect of it, at a given time 

range, using a given system of observations and a given procedure for extrapolation? 

(Compare with reality.)

How well can one predict if the observations and the extrapolation are brought arbitrarily 

close to perfection? (It depends on determinism.)

For a quantitative answer, we require a measure of the goodness of a prediction, or of a 

prediction procedure.

For quantitative study of predictability, the concepts of time series, processes, determinism 

and randomness need to be introduced.
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Determinism and randomness

Time series is a function of continuous or discrete time.
Range: −� to � , or truncated

e.g., sequence of weather elements in whose predictability we are interested 

A process is an ensemble of time series.

Each series is a realization of the process.

Separate members of the ensemble are realizations. Global weather is a single realization.

A process is deterministic if the present state of a realization completely determines the

state at any specified future time.

i.e., if two realizations of a process are identical at one time, they must be identical at all 

future times.

A process is random or stochastic if the present state of a realization merely determines 

the probability distribution of states at a specified future time.

i.e., two realizations of the process may be identical in the past, but different at a future 

time.

A process is completely random if both past and future realizations are different.  The 

knowledge of the present state tells us nothing about the future.
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Determinism and randomness …

It may appear that realizations of a deterministic process is perfectly predictable whereas 

those of a random process is less predictable.  

Is weather a realization of a random process or a deterministic process since its behavior 

depends to some extent on human activity?

Most mathematical models of the atmosphere are deterministic.  However, the present 

state of the realization is imperfect.

The predictability study will be confined to deterministic systems.
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Statistical prediction

Statistical prediction is based on empirical formulas derived from the observed past states 

of the atmosphere.

Sample of observations of the past behavior is finite in size.

An infinite number of formulas which the sample of data fits can be found, provided the 

formulas are allowed to become complicated enough.

The sample itself provides no basis for selection among these formulas.

There is no “best” formula from the point of view of a single sample.

The simplest and most widely used method is the linear formula.
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Linear regression

Predictand:   

Predictors: 

Prediction formula:

Predicted value:                                           error

Choose                         to minimize 

A sample of data consisting of N values of     and corresponding values of 

are chosen to establish the required formula.

Linear procedures have been used extensively for predicting various weather elements at 

various time ranges.

e.g., India uses 8-10 parameter formulas for the prediction of seasonal monsoon rainfall.
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Deterministic Chaos

Lorenz, E. N., 1962: The statistical prediction of solutions of dynamic equations. Proc. Internat. Symp. 
Numerical Weather Prediction, Tokyo, Japan, November 1960, 629-635. 

Statistical prediction of solutions of dynamic equations

Linear regression methods are not successful in yielding nearly perfect weather forecasts. 

These statistical predictions are better than guess but are not considered satisfactory by 

the average forecaster.  

Dynamical methods also did not provide satisfactory forecasts.

What are the reasons for failure?

- Is weather basically unpredictable from the available initial data?

- Are linear regression methods inadequate?

If Wiener’s theorem on statistical prediction is correctly interpreted, the linear formula may 

require an infinite amount of past data and many terms may be needed for a good 

approximation.
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To test whether linear regression methods are adequate for weather prediction:

1. Generate data by obtaining numerical solutions to a set of deterministic  equations

2. Apply linear regression method to investigate the predictability

i.e., determine whether a hydrodynamical flow which is intrinsically predictable by means of 

its own governing equations is also predictable by linear statistical means.

To obtain the most suitable equations for such a test:

• The deterministic equations must be nonlinear.

• Exclude equations whose solutions do not vary with time (stationary) or vary in

a regular manner.

• Statistics of the solutions should be independent of the initial conditions

(i.e., exclude conservative systems that have invariant energy integral).

• Representative weather prediction model providing the appropriate nonlinearity
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Lorenz’s two-layer model: Nonperiodic solutions

Two-layer quasi-geostrophic model was selected for generating data from a set of

deterministic nonlinear equations.  The model is one of the simplest systems to represent 

the baroclinic flow in the atmosphere.

Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12, 364-373.
Lorenz, E. N., 1963: The Mechanics of vacillation, J. Atmos. Sci., 20, 448-464.

For the nondivergent part of the horizontal flow:

Stream functions in lower and upper layers:  − , +
(Potential) Temperature in lower and upper layers: − , +

For the irrotational part of the horizontal flow:

Velocity potential in lower and upper layers: �, −�

0mb  ---------------------
250mb - - - - - - - - - - - - + ,  + ,  −�
500mb --------------------- , 
750mb  - - - - - - - - - - - - − ,   − , �

1000mb  ---------------------

Let f and static stability be constant.
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A is a constant that depends on the properties of the fluid.

The forcing and dissipation are thermal and mechanical in nature.

Friction at the lower surface is proportional to the flow in the lower layer, and the friction at 

the surface separating the two layers is proportional to the vertical shear.  The coefficients 

of friction are h and h��.

The forcing is in the form of heating which is proportional to the difference between the 

existing temperature field and a standard temperature field *.  The coefficient of heating is 

hN.
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Vorticity and Temperature equations:
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Most Important features of the model

• Nonlinearity

• Forcing

• Dissipation

Simplification of the model

Restrict the flow to an infinite strip bounded by y = 0 and y = �/l (channel).

Expand and using a truncated set of orthogonal functions that are appropriate for the 

geometry and boundary conditions of the flow.

Orthogonal functions:

cos mly

√2 sin mly cos nkx

√2 sin mly sin nkx

for integer values of m and n
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Truncated spectral expansion:

=   A cos ly + C cos 2ly

+ √2( K sin ly + M sin 2ly) cos kx

+ √2( L sin ly + N sin 2ly) sin kx

Similar expansion for 

Only the largest scale motion has been retained.

Substitute these expansion in the model equations and obtain 12 ordinary differential 

equations in 12 variables

A, K, L, C, M, N

A, K, L, C, M, N

Denote these variables by X1, X2, … , X12

Simplified spectral form of the equations (12 ODEs):

Deterministic forced dissipative nonlinear system

(for spectral expansion, see Lorenz, 1963: Mechanics of Vacillation. J. Atmos. Sci., 20, 448-464)
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12-variable Lorenz Model

Assign proper values for all the constants.

Integrate the model with some initial conditions.

The values of frictional coefficients, heating coefficient and the static stability were fixed. 

The model’s behavior was studied by varying the forcing term:

* = A
* cos y + C

* cos 2y + √2 M
* sin 2y cos 2x

The model exhibits weather features such as cyclones and anticyclones.

Model’s behavior:

A
* = 0.1,    C

* = 0.0,   M
* = 0.0 ;

A
* = 0.1,    C

* = −0.018 to −0.026,   M
* = 0.0

Vacillation (regular behavior with quasi-periodic variation)

Statistical prediction is trivial for these regular variations.
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Irregular behavior

A
* = 0.1,    C

* = −0.025,    M
* = −0.025

Integrations of more than 20 years showed no repetition of previous states.

(From Lorenz, E. N., 1962: The statistical prediction of solutions of dynamic equations. Proc. Internat. 
Symp. Numerical Weather Prediction, Tokyo, Japan, November 1960, 629-635)

The time series seems to have randomness, but actually is nonperiodic.

The spectrum of the time series is continuous rather than a line spectrum, and resembles 

spectra of actual atmospheric variables except for the absence of variance in higher 

frequencies.

This result marks the discovery of nonperiodic behavior in a deterministic system.
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Chaos

The variation of two variables of Lorenz’s 12-variable model for a ten-month period shows a 

succession of “episodes” consisting of values rising abruptly, remaining high for about a 

month or so and then decreasing equally abruptly.  The episodes are not identical and are 

not equal in duration.  The behavior is definitely nonperiodic. Such variation is now 

commonly called chaos.

Lorenz, E. N., 1993: Essence of Chaos, University of Washington Press

Lorenz’s original printout of symbols representing two variables of the twelve-variable model for a ten-
month period.  A solid curve has been drawn through the symbols for one variable, while a dotted curve 
(faintly visible) has been drawn for the other.
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Linear statistical prediction

Predict one variable from the present and past of all twelve variables.

Reduction of total variance in linear

prediction of twelve variables, with

indicated times of predictors and

predictands are shown in the table

(from Lorenz 1962).

Prediction one day in advance is nearly

perfect when the predictors occur at one-

day intervals.  

Predictions two days ahead are good 

but not perfect. 

Predictions four days in advance fall

far short of perfection.

Solutions of deterministic dynamic equations cannot in general be reproduced by linear 

formulas.

In predicting the atmosphere as much as 24 hours ahead, better results should eventually 

be obtained by some nonlinear statistical procedure, or by the methods of dynamical 

weather prediction.
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Discussion

Lorenz, E. N., 1962: The statistical prediction of solutions of dynamic equations. Proc. Internat. Symp. 
Numerical Weather Prediction, Tokyo, Japan, November 1960, 629-635.
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Sensitive dependence on initial conditions

Two solutions starting from nearly identical states (differing only in third decimal place) in 

Lorenz’s numerical integration soon begin to diverge.  The differences steadily double in 

size every four days or so until the two solutions lose resemblance to one another 

somewhere during the second month.

Such sensitive dependence on initial conditions is characteristic of chaos in all systems.  

If the real atmosphere behaves like the simple Lorenz model, it would be impossible to 

make long-range weather forecasting.

From Gleick, J, 1987: Chaos, Penguin Books
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The Butterfly Effect

Lorenz (1963): “… one flap of a sea gull’s wings would be enough to alter the course of 

the weather forever.”

Lorenz (1972): “Predictability: Does the flap of a butterfly’s wings in Brazil set off a 

tornado in Texas?”
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The Butterfly Effect

If a single flap of a butterfly’s wings can be instrumental in generating a tornado, so also 

can all the previous and subsequent flaps of its wings, as can flaps of the wings of 

millions of other butterflies.

If the flap of a butterfly’s wings can be instrumental in generating a tornado, it can equally 

well be instrumental in preventing a tornado.

Over the years miniscule disturbances neither increase nor decrease the frequency of 

occurrence of various weather events such as tornados; the most that they may do is to 

modify the sequence in which these events occur.

Can two particular weather situations differing by as little as the immediate influence of a 

single butterfly will generally after sufficient time evolve into two situations differing by as 

much as the presence of a tornado?

Is the behavior of the atmosphere unstable with respect to perturbations of small 

amplitude? 
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The Ubiquitous Chaos and Butterfly
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Nonperiodic behavior in a simple model: Quadratic map
(Lorenz, E. N., 1964: The problem of deducing the climate from the governing equations. Tellus, 16, 1-
11)

Discrete deterministic nonlinear system

This system is called Quadratic map or Quadratic difference equation and can be 

considered as a very simple climate model.  e.g., Xn is the maximum temperature at Trieste 

on day n.

(Also called Logistic map in other fields)

Using a linear transformation 

we obtain an alternate form of the quadratic map:

For specified values of c and X0, we get a sequence

X0, X1, X2, X3, X4,….. at times t0, t1, t2, t3, t4,…..

)1(

)(

1

1

nnn

nn

XrXX

XfX

−=
=

+

+

cXX nn −=+
2

1

,24cand    21 2 rrrXY nn −=+−=
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Quadratic Map

cXcthen

cXcandcIf

n ≤≤−
≤≤−≤≤ ,20 0
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n                 Xn Xn

�

Xn − Xn

0     0.50000     0.50100     0.0010000
1    -1.55000    -1.54900     0.0010010
2     0.60250     0.59940    -0.0031021
3    -1.43699    -1.44072    -0.0037284
4     0.26495     0.27568     0.0107293
5    -1.72980    -1.72400     0.0058006
6     1.19221     1.17218    -0.0200341
7    -0.37863    -0.42600    -0.0473684
8    -1.65664    -1.61852     0.0381141
9     0.94445     0.81962    -0.1248300

10    -0.90802    -1.12823    -0.2202084
11    -0.97550    -0.52711     0.4483977
12    -0.84839    -1.52216    -0.6737677
13    -1.08023     0.51697     1.5971992
14    -0.63310    -1.53275    -0.8996509
15    -1.39919     0.54931     1.9485018
16     0.15773    -1.49826    -1.6559891
17    -1.77512     0.44477     2.2198931
18     1.35105    -1.60218    -2.9532298
19     0.02534     0.76697     0.7416291
20    -1.79936    -1.21175     0.5876038
.
.

Chaos in Quadratic Map

c = 1.8

Xn= basic (“true”) solution

X0

�

= “observed”

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

The error grows irregularly, 

gaining an order of magnitude 

in about five time steps and 

becomes comparable to Xn

itself.

, 2
1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

.

.
81     0.25407     1.09554     0.8414776
82    -1.73545    -0.59978     1.1356682
83     1.21179    -1.44026    -2.6520482
84    -0.33157     0.27435     0.6059283
85    -1.69006    -1.72473    -0.0346710
86     1.05630     1.17469     0.1183943
87    -0.68423    -0.42010     0.2641366
88    -1.33182    -1.62352    -0.2916942
89    -0.02624     0.83581     0.8620564
90    -1.79931    -1.10142     0.6978925
91     1.43752    -0.58688    -2.0243978
92     0.26647    -1.45558    -1.7220418
93    -1.72900     0.31870     2.0476958
94     1.18943    -1.69843    -2.8878565
95    -0.38527     1.08467     1.4699306
96    -1.65157    -0.62350     1.0280698
97     0.92769    -1.41125    -2.3389325
98    -0.93940     0.19162     1.1310159
99    -0.91753    -1.76328    -0.8457533

100    -0.95814     1.30917     2.2673060

Chaos in Quadratic Map

c = 1.8

The error varies irregularly, but 

does not amplify forever 

because both Xn and Xn

�

are 

bounded.

When the error becomes 

comparable to Xn itself, the 

error has reached saturation.

At this point, the prediction Xn

�

has become worthless.

The nonperiodic solution is 
unstable.

, 2
1 cXX nn −=+




