

2050-10

Targeted Training Activity: Predictability of Weather and Climate: Theory and Applications to Intraseasonal Variability

27 July - 7 August, 2009

Predictability Theory

3. Linear Stability Analysis

V. Krishnamurthy

Center for Ocean-Land-Atmosphere Studies Institute of Global Environment and Society Calverton MD & Department of Atmospheric, Oceanic and Earth Sciences George Mason University Fairfax, VA USA

Predictability Theory

3. Linear Stability Analysis

V. Krishnamurthy

Center for Ocean-Land-Atmosphere Studies Institute of Global Environment and Society Calverton, MD 20705, USA and Department of Atmospheric, Oceanic and Earth Sciences George Mason University Fairfax, VA 22030, USA

SMR 2050 Targeted Training Activity Predictability of Weather and Climate: Theory and Application to Intraseasonal Variability The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy 27 July – 7 August 2009

July 28, 2009

Stability

The decay or growth of errors influences the accuracy of predictions.

A solution is *stable* if any other sufficiently close solution remains arbitrarily close (*a*).

Otherwise, the solution is *unstable* and the nearby solution diverges (b).

If the solution is *stable*, it is *periodic* because when an approximate repetition of a previous state occurs, future states must remain arbitrarily close to the previous history (c).

If the solution is *nonperiodic*, it is necessarily *unstable* (*d*).

The deciding factor in predictability is stability versus instability.

FIGURE 3. Schematic trajectories in phase space; (a) neighboring stable trajectories; (b) neighboring unstable trajectories; (c) stability implying periodicity (after the transient flow has died out); (d) nonperiodicity implying instability.

Lorenz, E. N., 1963: The predictability of hydrodynamic flows. *Trans. New York Acad. Sci.*, Ser II, **25**, 409-423.

Simple Predictability $X_n' - X_n$ X_{n}' X_n n **Experiments: Quadratic** 0 0.40000 0.40100 0.0010000 -0.34000 -0.33920 0.0008010 1 map 2 -0.38440 -0.38494 -0.0005440"Identical twin" experiment 3 -0.35224 -0.35182 0.0004186 4 -0.37593 -0.37622 -0.0002947Find the basic solutions with 5 -0.35868 -0.35846 0.0002216 certain initial condition. 6 -0.37135 -0.37151 -0.0001590 Introduce a small error in the 7 -0.36210 -0.36198 0.0001181 initial condition and find the 8 -0.36888 -0.36897 -0.0000855 perturbed solutions. Compare 9 -0.36392 -0.36386 0.0000631 the two solutions and study the 10 -0.36761 -0.0000459-0.36756 evolution of the error. 11 -0.36490 -0.36487 0.0000338 12 -0.36685 -0.36687 -0.0000246Example 1 13 -0.36542 -0.36540 0.0000181 14 -0.36647 -0.36648 -0.000132 $X_{n+1} = X_n^2 - c$, c = 0.515 -0.36570 -0.36569 0.000097

 X_n = basic ("true") solution X_0' = "observed" value X_n' = perturbed ("predicted") solution X_0' - X_0 = "observed error" X_n' - X_n = error at time n

July 28, 2009

16

17

18

19

20

-0.36626

-0.36585

-0.36615

-0.36593

-0.36609

-0.36627

-0.36585

-0.36616

-0.36593

-0.36610

-0.0000071

-0.000038

-0.0000020

0.000052

0.000028

Simple Predictability	п	X_n	X_n'	$X_n' - X_n$
Experiments	•			
	•			
Example 1 (contd.)	81	-0.36603	-0.36603	0.000000
,	82	-0.36603	-0.36603	0.000000
$X = X^2 - c$ $c = 0.5$	83	-0.36603	-0.36603	0.000000
$\mathbf{M}_{n+1} = \mathbf{M}_n$ c, c = C .	84	-0.36603	-0.36603	0.000000
The enver steedily deereese	85	-0.36603	-0.36603	0.000000
The error steadily decreases	86	-0.36603	-0.36603	0.000000
and decays to zero. The	87	-0.36603	-0.36603	0.000000
steady state solution is stable.	88	-0.36603	-0.36603	0.000000
	89	-0.36603	-0.36603	0.000000
	90	-0.36603	-0.36603	0.000000
	91	-0.36603	-0.36603	0.000000
	92	-0.36603	-0.36603	0.000000
	93	-0.36603	-0.36603	0.000000
	94	-0.36603	-0.36603	0.000000
Lorenz, E. N., 1985: The growth of	95	-0.36603	-0.36603	0.000000
errors in prediction. <i>Turbulence and</i>	96	-0.36603	-0.36603	0.000000
predictability in geophysical fluid	97	-0.36603	-0.36603	0.000000
Ghil and B Benzi Eds IXXXVIII	98	-0.36603	-0.36603	0.000000
Corso Soc. Itiliana di Fisica.	99	-0.36603	-0.36603	0.000000
Bologna, Italy, 243-265.	100	-0.36603	-0.36603	0.000000

Simple Predictability	n	X_n	X_n'	$X_n' - X_n$
Experiments	0	0.50000	0.50100	0.0010000
	1	-0.95000	-0.94900	0.0010010
Example 2	2	-0.29750	-0.29940	-0.0019009
- 1	3	-1.11149	-1.11036	0.0011346
$X = X^2 - c$ $c = 1 2$	4	0.03542	0.03290	-0.0025210
$\sum_{n+1} \sum_{n} \sum_{n} \sum_{i=1}^{n} \sum_{i=1}^$	5	-1.19875	-1.19892	-0.0001722
V Z ' /(4) '!\ .'	6	0.23699	0.23740	0.0004129
X_n = basic ("true") solution	7	-1.14384	-1.14364	0.0001959
$X_0' = \text{``observed''}$	8	0.10836	0.10791	-0.0004481
$X_n' = \text{perturbed}$ ("predicted")	9	-1.18826	-1.18836	-0.0000969
solution	10	0.21196	0.21219	0.0002303
$X_0' - X_0 =$ "observed error"	11	-1.15507	-1.15498	0.0000977
$X_n' - X_n =$ error at time <i>n</i>	12	0.13420	0.13397	-0.0002257
<i>n n</i>	13	-1.18199	-1.18205	-0.0000605
The error amplifies during the	14	0.19710	0.19725	0.0001431
first few time steps and then	15	-1.16115	-1.16109	0.0000564
undergoes damped	16	0.14827	0.14814	-0.0001310
oscillations.	17	-1.17802	-1.17806	-0.0000388
	18	0.18772	0.18781	0.0000915
	19	-1.16476	-1.16473	0.0000344
	20	0.15667	0.15659	-0.0000800

•

Simple Predictability	п	X_n	X_{n}	$X_n' - X_n$
Experiments	•	11	11	10 10
	•			
Example 2 (contd.)	81	-1.17083	-1.17083	0.000000
	82	0.17083	0.17083	0.000001
$X = X^2 - c$ $c = 1.2$	83	-1.17082	-1.17082	0.000000
n_{n+1} n_n c , c – $-$	84	0.17081	0.17081	-0.000001
By about time stap 00, the two	85	-1.17082	-1.17082	0.000000
by about time step 90, the two	86	0.17083	0.17083	0.000000
five desired places. The error	87	-1.17082	-1.17082	0.000000
hee deepved. The periodic	88	0.17081	0.17081	0.000000
nas decayed. The periodic	89	-1.17082	-1.17082	0.000000
solution is stable.	90	0.17083	0.17083	0.000000
	91	-1.17082	-1.17082	0.000000
	92	0.17082	0.17082	0.000000
	93	-1.17082	-1.17082	0.000000
	94	0.17082	0.17082	0.000000
	95	-1.17082	-1.17082	0.000000
	96	0.17082	0.17082	0.000000
	97	-1.17082	-1.17082	0.000000
	98	0.17082	0.17082	0.000000
	99	-1.17082	-1.17082	0.000000
	100	0.17082	0.17082	0.000000

Simple Predictability	n	X_n	X_{n}	$X_n' - X_n$
Experiments	0	0.50000	0.50100	0.0010000
	1	-1.55000	-1.54900	0.0010010
Example 3	2	0.60250	0.59940	-0.0031021
	3	-1.43699	-1.44072	-0.0037284
$X = X^2 - c$, $c = 1.8$	4	0.26495	0.27568	0.0107293
n+1 n	5	-1.72980	-1.72400	0.0058006
T Z ' /(() !!) .'	6	1.19221	1.17218	-0.0200341
X_n = basic ("true") solution	7	-0.37863	-0.42600	-0.0473684
$X_0' =$ "observed"	8	-1.65664	-1.61852	0.0381141
$X_n' = \text{perturbed}$ ("predicted")	9	0.94445	0.81962	-0.1248300
solution	10	-0.90802	-1.12823	-0.2202084
$X_0' - X_0 =$ "observed error"	11	-0.97550	-0.52711	0.4483977
$X_n' - X_n =$ error at time n	12	-0.84839	-1.52216	-0.6737677
	13	-1.08023	0.51697	1.5971992
The error grows irregularly.	14	-0.63310	-1.53275	-0.8996509
gaining an order of magnitude	15	-1.39919	0.54931	1.9485018
in about five time steps and	16	0.15773	-1.49826	-1.6559891
becomes comparable to X	17	-1.77512	0.44477	2.2198931
itself	18	1.35105	-1.60218	-2.9532298
	19	0.02534	0.76697	0.7416291
	20	-1.79936	-1.21175	0.5876038

Simple Predictability	n	X_n	X_{n}^{\prime}	$X_n' - X_n$
Experiments	•	11	11	
-	•			
Example 3 (contd.)	81	0.25407	1.09554	0.8414776
	82	-1.73545	-0.59978	1.1356682
$X = X^2 - c$ $c = 1.8$	83	1.21179	-1.44026	-2.6520482
n_{n+1} n_n c , c $-c$	84	-0.33157	0.27435	0.6059283
The error veries irregularly, but	85	-1.69006	-1.72473	-0.0346710
deee not emplify forever	86	1.05630	1.17469	0.1183943
does not amplify forever	87	-0.68423	-0.42010	0.2641366
because both X_n and X_n are	88	-1.33182	-1.62352	-0.2916942
bounded.	89	-0.02624	0.83581	0.8620564
	90	-1.79931	-1.10142	0.6978925
When the error becomes	91	1.43752	-0.58688	-2.0243978
comparable to X_n itself, the	92	0.26647	-1.45558	-1.7220418
error has reached saturation.	93	-1.72900	0.31870	2.0476958
At this point, the prediction X_n	94	1.18943	-1.69843	-2.8878565
has become worthless.	95	-0.38527	1.08467	1.4699306
	96	-1.65157	-0.62350	1.0280698
The nonperiodic solution is	97	0.92769	-1.41125	-2.3389325
unstable.	98	-0.93940	0.19162	1.1310159
	99	-0.91753	-1.76328	-0.8457533
	100	-0.95814	1.30917	2.2673060

Error Growth in Quadratic Map

Absolute value of $(X_n' - X_n)$ is plotted as error.

Steady State: The error decays to zero and the system is stable.

Periodic:

The error decays to zero and the system is stable.

Nonperiodic:

The error grows and becomes as large as the difference between two randomly selected states of the system. The system is unstable.

Lorenz model: "Identical twin" experiment

A new integration with a small perturbation added to the original solution at time 5000 is carried out. The two solutions stay close for a while and then diverge. The difference between the two solutions become as large as the variables themselves by step 6000. The nonperiodic solution at r = 28 is unstable.

Projection of "identical twin" trajectories

The evolutions of the unperturbed and perturbed trajectories are shown as projections on two-dimensional space.

The projections of unperturbed and perturbed trajectories are shown in different colors for different segments of time and the divergence of trajectories is clearly evident.

Lorenz model Predictability experiment

An ensemble of 10000 nearby points at an initial t = 0 around a basic state is allowed to evolve.

Blue points are from unperturbed integration.

Red points show the evolution of the perturbed initial states.

"As each point moves according to Lorenz equations, the blob is stretched into a thin filament... Ultimately, the points spread over ... showing that the final state could be almost anywhere, even though the initial conditions were almost identical."

From Strogatz, S. H., 1994: *Nonlinear dynamics and chaos*, Westview Press

Stability and Instability

An orbit is called <u>stable</u> at a point $X(t_0)$ if any other orbit passing sufficiently close to $X(t_0)$ at time t_0 remains close to X(t) as $t \rightarrow \infty$.

An orbit X(t) is <u>stable</u> at $t = t_0$ if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|Y(t_0) - X(t_0)| < \delta$ and $t > t_0$, $|Y(t) - X(t)| < \varepsilon$.

This is called *Lyapunov stable*: "start near stay near"

Otherwise, X(t) is <u>unstable</u>.

If X(t) is stable at $t = t_0$, it is stable for all $t > t_0$ (and also at $t < t_0$ if the system is defined by differential equations).

If X(t) is Lyapunov stable and if $|Y(t) - X(t)| \rightarrow 0$ as $t \rightarrow \infty$ (i.e., attracting), then X(t) is *asymptotically stable*.

Periodicity

Since each point lies on a unique orbit, any orbit passing through a point through which it has previously passed must continue to repeat its past behavior and must be *periodic*.

An orbit X(t) is <u>quasi-periodic</u> if for some arbitrary large time interval τ , $X(t + \tau)$ ultimately remains arbitrarily close to X(t).

X(*t*) is *quasi-periodic* at if, for any $\varepsilon > 0$ and τ_0 , there exists a $\tau > \tau_0$ such that $|X(t+\tau) - X(t)| < \varepsilon$ if $t > t_0$.

Periodic orbits are special cases of quasi-periodic orbits.

An orbit with a stable limiting orbit is quasi-periodic (includes periodic orbits). These orbits are the periodic or quasi-periodic attractors.

Nonperiodic orbits

An orbit that is not quasi-periodic is called *nonperiodic*.

If X(t) is nonperiodic, $X(t_1 + \tau)$ may be arbitrarily close to $X(t_1)$ for some time t_1 and some arbitrarily large time interval τ , but if this is so, $X(t_1 + \tau)$ cannot remain arbitrarily close to X(t) as $t \rightarrow \infty$.

A nonperiodic orbit is *unstable*. It implies that two states differing by imperceptible amounts may eventually evolve into two considerably different states.

If there is any error in observing the present state, an acceptable prediction in the distant future may well be impossible.

Instability places a limit on the predictability of the system if the observations are less than perfect. The deciding factor in predictability is stability versus instability.

Attractors and Stability

Steady state attractors (fixed points) are stable. Unstable steady states are not attractors.

Periodic attractors (limit cycles) are stable. Unstable periodic solutions are not attractors.

Nonperiodic (chaotic) attractors consist of points that are only unstable.

Linear Stability Analysis

Study the stability of solutions with respect to small perturbations (or errors). Consider a dynamical system

$$\frac{dX_i}{dt} = F_i(X_1, \cdots, X_M), \quad i = 1, \cdots, M$$

In compact notation,

$$\frac{d\mathbf{X}}{dt} = \mathbf{F}(\mathbf{X}$$

where
$$\mathbf{X} = (X_1, \dots, X_M)$$
 and $\mathbf{F} = (F_1, \dots, F_M)$

Consider two solutions **X** and **X**+**x**, where $\mathbf{x} = (x_1, \dots, x_M)$ is small.

$$\frac{d}{dt}(\mathbf{X} + \mathbf{x}) = \mathbf{F}(\mathbf{X} + \mathbf{x})$$

July 28, 2009

Expand F(X+x) in Taylor series around X.

$$\mathbf{F}(\mathbf{X} + \mathbf{x}) = \mathbf{F}(\mathbf{X}) + \frac{\partial \mathbf{F}(\mathbf{X})}{\partial \mathbf{X}}\mathbf{x} + \cdots$$
 higher order terms

Neglecting higher order terms (because x is small), we obtain a linear equation for x.

$$\frac{d\mathbf{x}}{dt} = \frac{\partial \mathbf{F}}{\partial \mathbf{X}} \mathbf{x}$$

or

$$\frac{dx_1}{dt} = \frac{\partial F_1}{\partial X_1} x_1 + \frac{\partial F_1}{\partial X_2} x_2 + \dots + \frac{\partial F_1}{\partial X_M} x_M$$

$$\vdots$$

$$\frac{dx_M}{dt} = \frac{\partial F_M}{\partial X_1} x_1 + \frac{\partial F_M}{\partial X_2} x_2 + \dots + \frac{\partial F_M}{\partial X_M} x_M$$

Write in compact matrix notation.

Error equation:
$$\frac{d\mathbf{x}}{dt} = \mathbf{H}\mathbf{x}$$

where

$$\mathbf{H} = \begin{pmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_M} \\ \vdots & & \vdots \\ \frac{\partial F_M}{\partial X_1} & \cdots & \frac{\partial F_M}{\partial X_M} \end{pmatrix}$$

If X is a steady state, H is constant,

If \mathbf{X} is periodic or chaotic, \mathbf{H} is time-dependent.

Because **H** is linear, the error equation can be integrated from time t_0 to t_1 to obtain

$$x_i(t_1) = \sum a_{ij}(t_1, t_0) x_j(t_0), \qquad i = 1, \dots, M$$

$$\mathbf{x}(t_1) = \mathbf{A}(t_1, t_0) \ \mathbf{x}(t_0)$$

A is a square matrix which depends on the behavior of X between t_0 and t_1 .

July 28, 2009

A is multiplicative:

If $t_0 < t_1 < t_2$, $\mathbf{x}(t_2) = \mathbf{A}(t_2, t_0) \mathbf{x}(t_0)$ $\mathbf{x}(t_2) = \mathbf{A}(t_2, t_1) \mathbf{x}(t_1) = \mathbf{A}(t_2, t_1) \mathbf{A}(t_1, t_0) \mathbf{x}(t_0)$

Equating the RHS of the two equations,

$$\mathbf{A}(t_2, t_0) = \mathbf{A}(t_2, t_1) \mathbf{A}(t_1, t_0)$$

Simple solution:

If M = 1 or if M > 1 and **H** is constant,

$$\mathbf{x}(t_1) = \mathbf{x}(t_0) \exp\left(\int_{t_0}^{t_1} \mathbf{H} dt\right)$$

July 28, 2009

Linear Stability Analysis of Lorenz Model

Lorenz model

$$\frac{dX}{dt} = -\sigma X + \sigma Y$$
$$\frac{dY}{dt} = -XZ + rX - Y$$
$$\frac{dZ}{dt} = XY - bZ$$

Let the state of the system at time *t* be (X, Y, Z) and let a state with a small perturbation be (X+x, Y+y, Z+z) where *x*, *y*, *z* are small.

The linear perturbation equation is

$$\frac{d\mathbf{x}}{dt} = \mathbf{H}\mathbf{x}$$

July 28, 2009

$$\frac{\partial F_1}{\partial X} = -\sigma, \qquad \frac{\partial F_1}{\partial Y} = \sigma, \qquad \frac{\partial F_1}{\partial Z} = 0$$
$$\frac{\partial F_2}{\partial X} = -Z + r, \qquad \frac{\partial F_2}{\partial Y} = -1, \qquad \frac{\partial F_2}{\partial Z} = -X$$
$$\frac{\partial F_3}{\partial X} = -Y, \qquad \frac{\partial F_3}{\partial Y} = X, \qquad \frac{\partial F_3}{\partial Z} = -b$$

The linear perturbation equation (or stability equation) for the Lorenz model becomes

$$\begin{pmatrix} dx/dt \\ dy/dt \\ dz/dt \end{pmatrix} = \begin{pmatrix} -\sigma & \sigma & 0 \\ r-Z & -1 & -X \\ Y & X & -b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

The stability equation is linear and should be integrated numerically when (X,Y,Z) is timedependent.

When (X,Y,Z) is time-independent, the stability equation can be solved by assuming some form of the solution for (x,y,z).

Stability of steady states

Denote the steady states by (X_0, Y_0, Z_0) . Lorenz model has three steady states O, C and C'. **H** is constant.

Solve the linear stability equation by assuming

 $x = x_0 \exp(\lambda t)$ $y = y_0 \exp(\lambda t)$ $z = z_0 \exp(\lambda t)$

Solve the characteristic equation

$$\begin{vmatrix} -\sigma - \lambda & \sigma & 0 \\ r - Z_0 & -1 - \lambda & -X_0 \\ Y_0 & X_0 & -b - \lambda \end{vmatrix} = 0$$

 $(\lambda + \sigma)[(\lambda + b)(\lambda + 1) + X_0^2] + \sigma[(Z_0 - r)(\lambda + b) + X_0Y_0] = 0$

July 28, 2009

Equivalently, perform an eigenanalysis of H for each steady state.

Solve

$Hv = \lambda v$

where **v** is an eigenvector with a corresponding eigenvalue λ .

For distinct eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ with eigenvectors $(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3})$, the general solution is

 $\mathbf{x}(t) = c_1 \exp(\lambda_1 t) \mathbf{v_1} + c_2 \exp(\lambda_2 t) \mathbf{v_2} + c_3 \exp(\lambda_3 t) \mathbf{v_3}$

where c_1 , c_2 and c_3 depend on the initial perturbation (x_0 , y_0 , z_0).

The stability of the steady state depends on λ .

Stability of O

 $X_0 = 0, Y_0 = 0, Z_0 = 0$

Solve $(\lambda+b)[\lambda^2 + (\sigma+1)\lambda + \sigma(1-r)] = 0$

When r > 0, the characteristic equation has three real roots.

$$\lambda = -b$$

$$\lambda = -\frac{1}{2}(\sigma + 1) \pm \frac{1}{2}[(\sigma + 1) - 4\sigma(1 - r)]^{1/2}$$

When 0 < r < 1, all three roots are negative. This means that the perturbation decays at an exponential rate. The steady state *O* is stable in this case.

When r > 1, one root is positive indicating that the perturbation grows at an exponential rate. The steady state O is now unstable.

Stability of C and C'

When r > 1, there are two more steady states

C:
$$X_0 = Y_0 = \sqrt{b(r-1)}$$
, $Z_0 = r-1$

$$C': \qquad X_0 = Y_0 = -\sqrt{b(r-1)} , \qquad Z_0 = r-1$$

For stability analysis, solve the characteristic equation:

$$\lambda^3 + (\sigma + b + 1)\lambda^2 + (r + \sigma)b\lambda + 2\sigma b(r - 1) = 0$$

When r > 1, the equation has one real root and two complex conjugate roots. The complex roots become pure imaginary if

$$r = r_c = \frac{\sigma(\sigma + b + 3)}{(\sigma - b - 1)}$$

i.e., if the complex root is $\lambda = \lambda_r + i\lambda_i$, $\lambda_r < 0$ for $1 < r < r_c$ and $\lambda_r > 0$ for $r > r_c$. This is the critical value for the instability of *C* and *C'*.

If $\sigma > b+1$, the steady states *C* and *C'* will become unstable for sufficiently high Rayleigh numbers.

For $\sigma = 10$ and b = 8/3, the instability occurs at the critical value of $r_c = 24.74$.

Stability of Steady States in Lorenz Model

 $\sigma = 10$ and b = 8/3

Stability of Periodic Solutions and Transition to Chaos

Floquet theory

Consider a periodic solution $\mathbf{X}(t+T) = \mathbf{X}(t)$, where T = period.

A periodic solution corresponds to a fixed point \mathbf{X}_0 on a Poincaré cross-section *S*. The stability of the periodic solution is the same as the stability of the fixed point on the Poincaré cross-section *S*.

Let $\delta \mathbf{X}$ be a small perturbation such that $\mathbf{X}_0 + \delta \mathbf{X}$ is in *S*.

Linearizing the flow about the periodic orbit, the initial condition $X_0 + \delta X$ is mapped to $X_0 + M \delta X$ at the end of the period *T*.

Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons

 ${\bf M}$ is a square matrix called the $\underline{\it Floquet\ matrix}$ and determines the stability of the periodic orbit.

 ${\bf M}$ can be computed by numerically integrating

$$\frac{d(\delta \mathbf{X})}{dt} = \mathbf{H}(\delta \mathbf{X})$$

for exactly one period on the Poincaré cross-section.

The stability of the periodic solution is determined by the eigenvalues λ_i of **M**. One of the eigenvalues will always be equal to one, corresponding to the direction of the flow.

If all other eigenvalues are located inside the unit circle complex plane, the periodic solution is *stable*.

i.e., the closed orbit is stable if $|\lambda_i| < 1$ all i = 1, ..., M-1.

If at least one of the eigenvalues is outside the unit circle, the periodic solution is *unstable*. i.e., the modulus of the eigenvalue is greater than one.

The λ_i are called the *Floquet multipliers*.

Instabilities of periodic solutions

There are three possibilities for an eigenvalue λ_i to cross the unit circle and cause instability.

(From Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons)

(a) $\lambda_i > 1$: δX for each cycle is amplified in the same direction. This is <u>saddle-node</u> bifurcation.

(b) $\lambda_i < -1$: δX is amplified in the opposite direction alternately after each cycle. This is <u>subharmonic</u> or <u>period-doubling</u> bifurcation.

(c) $\lambda_i = \alpha + i\beta$ with $|\lambda_i| > 1$: δX rotates by an angle γ after each cycle, while their lengths increase. This is <u>*Hopf*</u> bifurcation.

Evolution of small errors in chaotic systems

Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. *Tellus*, 17, 321-333.

Linear tangent equation

As discussed earlier, the evolution of small perturbations in an *M*-dimensional dynamical system represented by

$$\frac{d\mathbf{X}}{dt} = \mathbf{F}(\mathbf{X})$$

is given by the *linear tangent equation*

$$\frac{d\mathbf{x}}{dt} = \mathbf{H}\mathbf{x}$$

where \mathbf{X} and $\mathbf{X}+\mathbf{x}$ are basic and perturbed states of the system and

$$\mathbf{H} = \begin{pmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_M} \\ \vdots & & \vdots \\ \frac{\partial F_M}{\partial X_1} & \cdots & \frac{\partial F_M}{\partial X_M} \end{pmatrix}$$

July 28, 2009

When \mathbf{X} is a state of a chaotic attractor, \mathbf{H} is time-dependent.

Because **H** is linear, the tangent equation can be integrated from time t_1 to t_2 to obtain

 $\mathbf{x}(t_2) = \mathbf{A}(t_2, t_1) \ \mathbf{x}(t_1)$

$$x_i(t_2) = \sum a_{ij}(t_2, t_1) x_j(t_1), \qquad i = 1, \dots, M$$

A is an $M \times M$ square matrix which depends on the behavior of **X** between t_1 and t_2 . The matrix **A** controls the growth of small errors during the interval t_1 to t_2 , and is called the *error matrix*. It is also known as the *resolvent* or *propagator* of the tangent equation.

Note that

if $t_1 < t_2 < t_3$, $\mathbf{A}(t_3, t_1) = \mathbf{A}(t_3, t_2) \mathbf{A}(t_2, t_1)$ $\mathbf{A}(t_1, t_2) = \mathbf{A}(t_2, t_1)^{-1}$

July 28, 2009 ICTP SMR 2050 Predictability Theory 3 V. Krishnamurthy

Growth of errors

An individual set of errors \mathbf{x} can be treated as a point in the *M*-dimensional phase space. The amplitude of the error is defined as the distance of this point from the origin.

The squared-amplitude of the error at time t_1 is

$$\mathbf{x}(t_1)^T \mathbf{x}(t_1) = \sum_{i=1}^M x_i^2(t_1)$$

where the superscript *T* denotes the transpose of a matrix.

The squared-amplitude of the error at time t_2 is

$$\mathbf{x}(t_2)^T \mathbf{x}(t_2) = \left[\mathbf{A}(t_2, t_1) \mathbf{x}(t_1) \right]^T \left[\mathbf{A}(t_2, t_1) \mathbf{x}(t_1) \right]$$

$$\mathbf{x}(t_2)^T \mathbf{x}(t_2) = \mathbf{x}(t_1)^T \mathbf{A}(t_2, t_1)^T \mathbf{A}(t_2, t_1) \mathbf{x}(t_1)$$

The matrix $A^T A$ is symmetric positive-definite and possesses *M* real positive eigenvalues.

Growth of an initial sphere of errors

Consider an ensemble of random initial errors, each of amplitude ε at time t_1 , occupying the surface of an *M*-dimensional sphere

$$\sum_{i=1}^{M} x_i^2(t_1) = \varepsilon^2$$
$$\mathbf{x}(t_1)^T \mathbf{x}(t_1) = \varepsilon^2$$

where the superscript T denotes the transpose of a matrix.

If each error in the ensemble evolves according to the propagator of the tangent equation, the sphere will be deformed into an ellipsoid:

$$\mathbf{x}(t_1) = \mathbf{A}(t_2, t_1)^{-1} \mathbf{x}(t_2)$$

$$[\mathbf{A}(t_2,t_1)^{-1} \mathbf{x}(t_2)]^T [\mathbf{A}(t_2,t_1)^{-1} \mathbf{x}(t_2)] = \varepsilon^2$$
$$\mathbf{x}(t_2)^T [\mathbf{A}(t_2,t_1)^{-1}]^T [\mathbf{A}(t_2,t_1)^{-1}] \mathbf{x}(t_2) = \varepsilon^2$$

 $\mathbf{x}(t_2)^T [\mathbf{A}(t_2, \mathbf{t}_1) \mathbf{A}(t_2, \mathbf{t}_1)^T]^{-1} \mathbf{x}(t_2) = \varepsilon^2$

Any matrix can be expressed in terms of two orthogonal matrices U and V by singular value decomposition (SVD):

 $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$

where U and V are $M \times M$ orthogonal matrices, S is a diagonal matrix containing the singular values of A,

$\mathbf{S} = \begin{pmatrix} \boldsymbol{\sigma}_1 & 0 \\ 0 & \boldsymbol{\sigma}_2 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}$	$egin{array}{ccc} \cdots & 0 \ \cdots & 0 \ & dots \ \cdots & \sigma_{\scriptscriptstyle M} \end{array} ight)$	$\mathbf{S}^2 = \begin{pmatrix} \sigma_1^2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$	$egin{array}{c} 0 \ \sigma_2^2 \ dots \ 0 \ \end{array}$	····	$egin{array}{c} 0 \ 0 \ dots \ \sigma_{_M}^2 \end{array}$
$\mathbf{U}^T \mathbf{U} = \mathbf{I}$ $\mathbf{V}^T \mathbf{V} = \mathbf{I}$	$\mathbf{U}\mathbf{U}^T = \mathbf{I}$ $\mathbf{V}\mathbf{V}^T = \mathbf{I}$	$\mathbf{U}^T = \mathbf{U}^{-1}$ $\mathbf{V}^T = \mathbf{V}^{-1}$			
$\mathbf{A}^T = \mathbf{V}\mathbf{S}\mathbf{U}^T$ $\mathbf{A}^T\mathbf{A} = \mathbf{V}\mathbf{S}\mathbf{U}^T$	$^{T}\mathbf{USV}^{T} = \mathbf{VS}^{2}$	\mathbf{V}^{T}			
$\mathbf{A}^T \mathbf{A} \mathbf{V} = \mathbf{V} \mathbf{S}^T$ $\mathbf{A} \mathbf{A}^T = \mathbf{U} \mathbf{S} \mathbf{V}^T$	${}^{2}\mathbf{V}^{T}\mathbf{V} = \mathbf{V}\mathbf{S}^{2}$ ${}^{T}\mathbf{V}\mathbf{S}\mathbf{U}^{T} = \mathbf{U}\mathbf{S}^{2}$	\mathbf{U}^{T}			
$\mathbf{A}\mathbf{A}^{T}\mathbf{U} = \mathbf{U}\mathbf{S}^{T}$ $[\mathbf{A}\mathbf{A}^{T}]^{-1} = (\mathbf{U}^{T})^{-1}$	$^{2}\mathbf{U}^{T}\mathbf{U} = \mathbf{U}\mathbf{S}^{2}$ \mathbf{J}^{T}) ⁻¹ (\mathbf{S}^{2}) ⁻¹ \mathbf{U}^{-1}	$^{1} = \mathbf{U}(\mathbf{S}^{2})^{-1}\mathbf{U}$	T		

The matrices AA^T and A^TA are both symmetric positive-definite and possess the same M real positive eigenvalues. The matrix S^2 is diagonal with diagonal elements consisting of these M real positive eigenvalues.

$$\mathbf{x}(t_2)^T [\mathbf{A}(t_2, \mathbf{t}_1) \mathbf{A}(t_2, \mathbf{t}_1)^T]^{-1} \mathbf{x}(t_2) = \varepsilon^2$$
 becomes

 $\mathbf{x}(t_2)^T \, \mathbf{U}(\mathbf{S}^2)^{-1} \mathbf{U}^T \, \mathbf{x}(t_2) = \varepsilon^2$

$$[\mathbf{U}^T \mathbf{x}(t_2)]^T \ (\mathbf{S}^2)^{-1} \ [\mathbf{U}^T \mathbf{x}(t_2)] = \varepsilon^2$$

Let $\mathbf{y}(t_2) = \mathbf{U}^T \mathbf{x}(t_2)$

$$\mathbf{y}(t_2)^T \; (\mathbf{S}^2)^{-1} \; \mathbf{y}(t_2) = \varepsilon^2$$

$$\frac{y_{21}^2}{\sigma_1^2} + \frac{y_{22}^2}{\sigma_2^2} + \dots + \frac{y_{2M}^2}{\sigma_M^2} = \varepsilon^2$$

represents an ellipsoid. The sphere of initial errors has evolved into an ellipsoid.

 $\sigma_1^2, \ldots, \sigma_M^2$ are the the eigenvalues of $\mathbf{A}\mathbf{A}^T$

 $\varepsilon \sigma_1, \ldots, \varepsilon \sigma_M$ are the lengths of the semiaxes of the ellipsoid.

 $\sigma_1, \ldots, \sigma_M$ are the singular values of **A** and depend on t_1 and t_2 .

Let $\sigma_1 > \sigma_2 > \ldots > \sigma_M$.

Whether or not any small errors grow between t_1 and t_2 depends on whether any semiaxis of the ellipsoid is greater than the radius ε of the sphere. The error growth, therefore, depends on whether the singular value σ_1 , or the eigenvalue σ_1^2 is greater than one.