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Stability

The decay or growth of errors influences 

the accuracy of predictions. 

A solution is stable if any other sufficiently 

close solution remains arbitrarily close (a).

Otherwise, the solution is unstable and the 

nearby solution diverges (b).

If the solution is stable, it is periodic

because when an approximate repetition of 

a previous state occurs, future states must 

remain arbitrarily close to the previous 
history (c).

If the solution is nonperiodic, it is 

necessarily unstable (d).

The deciding factor in predictability is 

stability versus instability.
Lorenz, E. N., 1963: The predictability of 
hydrodynamic flows. Trans. New York 
Acad. Sci., Ser II, 25, 409-423.
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Simple Predictability 

Experiments: Quadratic 

map
“Identical twin” experiment

Find the basic solutions with 

certain initial condition.

Introduce a small error in the 

initial condition and find the 

perturbed solutions. Compare 

the two solutions and study the 
evolution of the error.

Example 1

c = 0.5

Xn= basic (“true”) solution

X0

�

= “observed” value

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

n                 Xn Xn

�

Xn − Xn

0     0.40000     0.40100     0.0010000
1    -0.34000    -0.33920     0.0008010
2    -0.38440    -0.38494    -0.0005440
3    -0.35224    -0.35182     0.0004186
4    -0.37593    -0.37622    -0.0002947
5    -0.35868    -0.35846     0.0002216
6    -0.37135    -0.37151    -0.0001590
7    -0.36210    -0.36198     0.0001181
8    -0.36888    -0.36897    -0.0000855
9    -0.36392    -0.36386     0.0000631

10    -0.36756    -0.36761    -0.0000459
11    -0.36490    -0.36487     0.0000338
12    -0.36685    -0.36687    -0.0000246
13    -0.36542    -0.36540     0.0000181
14    -0.36647    -0.36648    -0.0000132
15    -0.36570    -0.36569     0.0000097
16    -0.36626    -0.36627    -0.0000071
17    -0.36585    -0.36585 0.0000052
18    -0.36615    -0.36616    -0.0000038
19    -0.36593    -0.36593 0.0000028
20    -0.36609    -0.36610    -0.0000020
.
.

, 2

1 cXX nn −=+
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Simple Predictability 

Experiments

Example 1 (contd.)

c = 0.5

The error steadily decreases 

and decays to zero.  The 
steady state solution is stable.

Lorenz, E. N., 1985: The growth of 
errors in prediction. Turbulence and 
predictability in geophysical fluid 
dynamics and climate dynamics, M. 
Ghil and R. Benzi, Eds., LXXXVIII 
Corso Soc. Itiliana di Fisica, 
Bologna, Italy, 243-265.

n                 Xn Xn

�

Xn − Xn

.

.
81    -0.36603    -0.36603 0.0000000
82    -0.36603    -0.36603 0.0000000
83    -0.36603    -0.36603 0.0000000
84    -0.36603    -0.36603 0.0000000
85    -0.36603    -0.36603 0.0000000
86    -0.36603    -0.36603     0.0000000
87    -0.36603    -0.36603 0.0000000
88    -0.36603    -0.36603 0.0000000
89    -0.36603    -0.36603 0.0000000
90    -0.36603    -0.36603 0.0000000
91    -0.36603    -0.36603 0.0000000
92    -0.36603    -0.36603 0.0000000
93    -0.36603    -0.36603 0.0000000
94    -0.36603    -0.36603 0.0000000
95    -0.36603    -0.36603 0.0000000
96    -0.36603    -0.36603 0.0000000
97    -0.36603    -0.36603 0.0000000
98    -0.36603    -0.36603 0.0000000
99    -0.36603    -0.36603 0.0000000

100    -0.36603    -0.36603 0.0000000

, 2

1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

0     0.50000     0.50100     0.0010000
1    -0.95000    -0.94900     0.0010010
2    -0.29750    -0.29940    -0.0019009
3    -1.11149    -1.11036     0.0011346
4     0.03542     0.03290    -0.0025210
5    -1.19875    -1.19892    -0.0001722
6     0.23699     0.23740     0.0004129
7    -1.14384    -1.14364     0.0001959
8     0.10836     0.10791    -0.0004481
9    -1.18826    -1.18836    -0.0000969

10     0.21196     0.21219     0.0002303
11    -1.15507    -1.15498     0.0000977
12     0.13420     0.13397    -0.0002257
13    -1.18199    -1.18205    -0.0000605
14     0.19710     0.19725     0.0001431
15    -1.16115    -1.16109     0.0000564
16     0.14827     0.14814    -0.0001310
17    -1.17802    -1.17806    -0.0000388
18     0.18772     0.18781     0.0000915
19    -1.16476    -1.16473     0.0000344
20     0.15667     0.15659    -0.0000800
.
.

Simple Predictability 

Experiments

Example 2

c = 1.2

Xn= basic (“true”) solution

X0

�

= “observed”

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

The error amplifies during the 

first few time steps and then 

undergoes damped 
oscillations.

, 2

1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

.

.
81    -1.17083    -1.17083 0.0000000
82     0.17083     0.17083 0.0000001
83    -1.17082    -1.17082 0.0000000
84     0.17081     0.17081 -0.0000001
85    -1.17082    -1.17082 0.0000000
86     0.17083     0.17083 0.0000000
87    -1.17082    -1.17082 0.0000000
88     0.17081     0.17081 0.0000000
89    -1.17082    -1.17082 0.0000000
90     0.17083     0.17083 0.0000000
91    -1.17082    -1.17082 0.0000000
92     0.17082     0.17082 0.0000000
93    -1.17082    -1.17082 0.0000000
94     0.17082     0.17082 0.0000000
95    -1.17082    -1.17082 0.0000000
96     0.17082     0.17082 0.0000000
97    -1.17082    -1.17082 0.0000000
98     0.17082     0.17082 0.0000000
99    -1.17082    -1.17082 0.0000000

100     0.17082     0.17082 0.0000000

Simple Predictability 

Experiments

Example 2 (contd.)

c = 1.2

By about time step 90, the two 

solutions are identical up to 

five decimal places. The error 

has decayed.  The periodic 
solution is stable.

, 2

1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

0     0.50000     0.50100     0.0010000
1    -1.55000    -1.54900     0.0010010
2     0.60250     0.59940    -0.0031021
3    -1.43699    -1.44072    -0.0037284
4     0.26495     0.27568     0.0107293
5    -1.72980    -1.72400     0.0058006
6     1.19221     1.17218    -0.0200341
7    -0.37863    -0.42600    -0.0473684
8    -1.65664    -1.61852     0.0381141
9     0.94445     0.81962    -0.1248300

10    -0.90802    -1.12823    -0.2202084
11    -0.97550    -0.52711     0.4483977
12    -0.84839    -1.52216    -0.6737677
13    -1.08023     0.51697     1.5971992
14    -0.63310    -1.53275    -0.8996509
15    -1.39919     0.54931     1.9485018
16     0.15773    -1.49826    -1.6559891
17    -1.77512     0.44477     2.2198931
18     1.35105    -1.60218    -2.9532298
19     0.02534     0.76697     0.7416291
20    -1.79936    -1.21175     0.5876038
.
.

Simple Predictability 

Experiments

Example 3

c = 1.8

Xn= basic (“true”) solution

X0

�

= “observed”

Xn

�

= perturbed (“predicted”)

solution

X0 − X0 = “observed error”

Xn − Xn= error at time n

The error grows irregularly, 

gaining an order of magnitude 

in about five time steps and 

becomes comparable to Xn

itself.

, 2

1 cXX nn −=+
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n                 Xn Xn

�

Xn − Xn

.

.
81     0.25407     1.09554     0.8414776
82    -1.73545    -0.59978     1.1356682
83     1.21179    -1.44026    -2.6520482
84    -0.33157     0.27435     0.6059283
85    -1.69006    -1.72473    -0.0346710
86     1.05630     1.17469     0.1183943
87    -0.68423    -0.42010     0.2641366
88    -1.33182    -1.62352    -0.2916942
89    -0.02624     0.83581     0.8620564
90    -1.79931    -1.10142     0.6978925
91     1.43752    -0.58688    -2.0243978
92     0.26647    -1.45558    -1.7220418
93    -1.72900     0.31870     2.0476958
94     1.18943    -1.69843    -2.8878565
95    -0.38527     1.08467     1.4699306
96    -1.65157    -0.62350     1.0280698
97     0.92769    -1.41125    -2.3389325
98    -0.93940     0.19162     1.1310159
99    -0.91753    -1.76328    -0.8457533

100    -0.95814     1.30917     2.2673060

Simple Predictability 

Experiments

Example 3 (contd.)

c = 1.8

The error varies irregularly, but 

does not amplify forever 

because both Xn and Xn

�

are 

bounded.

When the error becomes 

comparable to Xn itself, the 

error has reached saturation.

At this point, the prediction Xn

�

has become worthless.

The nonperiodic solution is 

unstable.

, 2

1 cXX nn −=+
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Error Growth in Quadratic 

Map
Absolute value of  (Xn − Xn) is 

plotted as error.

Steady State:

The error decays to zero and 

the system is stable.

Periodic:

The error decays to zero and 

the system is stable.

Nonperiodic:

The error grows and becomes 

as large as the difference 

between two randomly 

selected states of the system.  

The system is unstable.
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Lorenz model: “Identical twin” experiment

A new integration with a small perturbation added to the original solution at time 5000 is 

carried out.  The two solutions stay close for a while and then diverge.  The difference 

between the two solutions become as large as the variables themselves by step 6000.  The 

nonperiodic solution at r = 28 is unstable.
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Projection of “identical twin” trajectories

The evolutions of the unperturbed and perturbed trajectories are shown as projections on 

two-dimensional space.

The projections of unperturbed and perturbed trajectories are shown in different colors for 

different segments of time and the divergence of trajectories is clearly evident.
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Lorenz model

Predictability experiment

An ensemble of 10000 nearby points 

at an initial t = 0 around a basic state 

is allowed to evolve.

Blue points are from unperturbed 

integration.

Red points show the evolution of the 
perturbed initial states.

“As each point moves according to 

Lorenz equations, the blob is 
stretched into a thin filament…

Ultimately, the points spread over …

showing that the final state could be 

almost anywhere, even though the 

initial conditions were almost 
identical.”

From Strogatz, S. H., 1994: Nonlinear 
dynamics and chaos, Westview Press

t=3

t=9

t=6

t=15
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Stability and Instability

An orbit is called stable at a point X(t0) if any other orbit passing sufficiently close to X(t0)

at time t0 remains close to X(t) as t � �

.

An orbit X(t) is stable at t = t0 if for any 

�

> 0 there exists 

�

> 0 such that if

|Y(t0) − X(t0) |< 

�

and t > t0 , |Y(t) − X(t)| < 

�

.

This is called Lyapunov stable: “start near stay near”

Otherwise, X(t) is unstable.

If X(t) is stable at t = t0, it is stable for all t > t0 (and also at t < t0 if the system is defined by 

differential equations).

If X(t) is Lyapunov stable and if |Y(t) − X(t)| 0 as t � �

(i.e., attracting), then X(t) is 

asymptotically stable.

t0

t
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Periodicity

Since each point lies on a unique orbit, any orbit passing through a point through which it 
has previously passed must continue to repeat its past behavior and must be periodic.

An orbit X(t) is quasi-periodic if for some arbitrary large time interval , X(t+ ) ultimately 

remains arbitrarily close to X(t).

X(t) is quasi-periodic at if, for any 

�

> 0 and �

0, there exists a > 0 such that

|X(t+ ) − X(t)| < 

�

if t > t0.

Periodic orbits are special cases of quasi-periodic orbits.

An orbit with a stable limiting orbit is quasi-periodic (includes periodic orbits).  These 
orbits are the periodic or quasi-periodic attractors.

t1 t0
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Nonperiodic orbits

An orbit that is not quasi-periodic is called nonperiodic.

If X(t) is nonperiodic, X(t1+ ) may be arbitrarily close to X(t1) for some time t1 and some 

arbitrarily large time interval �, but if this is so, X(t1+ ) cannot remain arbitrarily close to 

X(t) as t � �

.

A nonperiodic orbit is unstable.  It implies that two states differing by imperceptible 
amounts may eventually evolve into two considerably different states.  

If there is any error in observing the present state, an acceptable prediction in the distant 
future may well be impossible.

Instability places a limit on the predictability of the system if the observations are less 
than perfect.  The deciding factor in predictability is stability versus instability.
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Attractors and Stability

Steady state attractors (fixed points) are stable.

Unstable steady states are not attractors.

Periodic attractors (limit cycles) are stable.

Unstable periodic solutions are not attractors.

Nonperiodic (chaotic) attractors consist of points that are only unstable.
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Linear Stability Analysis

Study the stability of solutions with respect to small perturbations (or errors).

Consider a dynamical system

In compact notation,

where 

Consider two solutions X and X+x, where  x = (x1,…,xM) is small.

MiXXF
dt

dX
Mi

i ,,1),,,( 1 �� ==

)()( xXFxX +=+
dt

d

)(XF
X =

dt

d

),,(and  ),,( 11 MM FFXX �� == FX
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Expand F(X+x) in Taylor series around X.

Neglecting higher order terms (because x is small), we obtain a linear equation for x.

or

Write in compact matrix notation.

sorder termhigher 
)(

)()( �+
∂

∂+=+ x
X

XF
XFxXF

x
X

Fx
  

∂
∂=

dt

d

M

M

MMMM

M

M

x
X

F
x
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X

F

dt

dx
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F

dt

dx
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Error equation:

where

If X is a steady state, H is constant,

If X is periodic or chaotic, H is time-dependent.

Because H is linear, the error equation can be integrated from time t0 to t1 to obtain

xi(t1) = ∑ aij(t1,t0) xj(t0),        i = 1, …., M

x(t1) = A(t1,t0) x(t0)

A is a square matrix which depends on the behavior of X between t0 and t1.

Hx
x =

dt

d

 

1

1

1

1

�
�
�
�
�

�

�
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�
�
�

�

�

∂
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A is multiplicative:

If t0 < t 1< t2,

Equating the RHS of the two equations,

A(t2,t0) = A(t2,t1) A(t1,t0)

Simple solution:

If M = 1 or 

if M > 1 and H is constant,

 exp)()(
1

0

01 �
�
�

�
�
�
�

�
= �

t

t

dttt Hxx

)(),(),()(),()(

)(),()(

001121122

0022

ttttttttt

tttt

xAAxAx

xAx

==
=
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Linear Stability Analysis of Lorenz Model

Lorenz model

Let the state of the system at time t be (X, Y, Z) and 

let a state with a small perturbation be (X+x, Y+y, Z+z) where x, y, z are small.

The linear perturbation equation is

bZXY
dt

dZ

YrXXZ
dt

dY

YX
dt

dX

−=

−+−=

+−= σσ

Hx
x =

dt

d
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The linear perturbation equation (or stability equation) for the Lorenz model becomes

The stability equation is linear and should be integrated numerically when (X,Y,Z) is time-

dependent.

When (X,Y,Z) is time-independent, the stability equation can be solved by assuming 

some form of the solution for (x,y,z).

 1

0

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
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−−−

−
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�
�
�

�

�

�
�
�

�

�

z
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x

bXY
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dtdz

dtdy

dtdx σσ
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Stability of steady states

Denote the steady states by (X0,Y0,Z0).

Lorenz model has three steady states O, C and C .  H is constant.

Solve the linear stability equation by assuming 

x = x0 exp( t)    

y = y0 exp( t)

z = z0 exp( t) 

Solve the characteristic equation

01

0

00

00 =
−−

−−−−
−−

λ
λ

σλσ

bXY

XZr

0]))([(])1)()[(( 000

2

0 =++−+++++ YXbrZXb λσλλσλ
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Equivalently, perform an eigenanalysis of H for each steady state.

Solve 

Hv= v

where v is an eigenvector with a corresponding eigenvalue .

For distinct eigenvalues ( 1, 2, 3) with eigenvectors (v1,v2,v3), the general solution is

x(t) = c1exp( 1t)v1 + c2exp( 2t)v2 + c3exp( 3t)v3

where c1, c2 and c3 depend on the initial perturbation (x0,y0,z0).

The stability of the steady state depends on .
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Stability of O

X0 = 0,  Y0 = 0,   Z0 = 0

Solve ( +b)[ 2 + ( +1) + (1−r)] = 0

When r > 0, the characteristic equation has three real roots.

When 0 < r < 1, all three roots are negative.  This means that the perturbation decays at an 

exponential rate.  The steady state O is stable in this case.

When r > 1, one root is positive indicating that the perturbation grows at an exponential 

rate.  The steady state O is now unstable.

( ) ( ) ( )[ ] 2/1
141

2

1
1

2

1
r

b

−−+±+−=

−=

σσσλ

λ
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Stability of C and C

�

When r > 1, there are two more steady states

For stability analysis, solve the characteristic equation:

When r > 1, the equation has one real root and two complex conjugate roots.

The complex roots become pure imaginary if

i.e., if the complex root is = r+i i,       r< 0 for 1 < r < rc and r > 0 for r > rc.

This is the critical value for the instability of C and C .

If > b+1, the steady states C and C will become unstable for sufficiently high Rayleigh

numbers.

For = 10 and b = 8/3, the instability occurs at the critical value of rc = 24.74.

1     , )1(       :
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Stability of Steady States in Lorenz Model

= 10 and b = 8/3
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Stability of Periodic Solutions and 

Transition to Chaos

Floquet theory

Consider a periodic solution

X(t+T) = X(t), where T = period.

A periodic solution corresponds to a fixed 

point X0 on a Poincaré cross-section S.

The stability of the periodic solution is the 

same as the stability of the fixed point on the 

Poincaré cross-section S.

Let X be a small perturbation such that X0+ 

X is in S.

Linearizing the flow about the

periodic orbit, the initial condition

X0 + X is mapped to X
0

+ M

�

X at 

the end of the period T.

X(T) = M X(0)

Bergé, Pomeau and Vidal, 1984: Order 
within chaos, John Wiley & Sons
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M is a square matrix called the Floquet matrix and determines the stability of the periodic 

orbit.

M can be computed by numerically integrating

for exactly one period on the Poincaré cross-section.

The stability of the periodic solution is determined by the eigenvalues i of M.

One of the eigenvalues will always be equal to one, corresponding to the direction of the 
flow.

If all other eigenvalues are located inside the unit circle complex plane, the periodic solution 
is stable.

i.e., the closed orbit is stable if | i | < 1 all i = 1, …, M−1.

If at least one of the eigenvalues is outside the unit circle, the periodic solution is unstable. 
i.e., the modulus of the eigenvalue is greater than one.

The i are called the Floquet multipliers.

)(
)(

XH
X δδ =

dt

d
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Instabilities of periodic solutions

There are three possibilities for an eigenvalue i to cross the unit circle and cause 

instability.

(From Bergé, Pomeau and Vidal, 1984: Order within chaos, John Wiley & Sons)

(a) i > 1:  X for each cycle is amplified in the same direction.  This is saddle-node

bifurcation.

(b) i < −1:  X is amplified in the opposite direction alternately after each cycle.  This is 

subharmonic or period-doubling bifurcation.

(c) i = + i with | i | > 1: X rotates by an angle after each cycle, while their lengths 

increase. This is Hopf bifurcation.
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Evolution of small errors in chaotic systems
Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321-333.

Linear tangent equation

As discussed earlier, the evolution of small perturbations in an M-dimensional  dynamical 

system represented by

is given by the linear tangent equation

where X and X+x are basic and perturbed states of the system and

Hx
x =

dt

d
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∂
∂
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X =
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When X is a state of a chaotic attractor, H is time-dependent.

Because H is linear, the tangent equation can be integrated from time t1 to t2 to obtain

x(t2) = A(t2,t1) x(t1)

xi(t2) = ∑ aij(t2,t1) xj(t1),        i = 1, …., M

A is an M × M square matrix which depends on the behavior of X between t1 and t2.

The matrix A controls the growth of small errors during the interval t1 to t2, and is called the 

error matrix. It is also known as the resolvent or propagator of the tangent equation.

Note that 

if t1 < t 2< t3,     A(t3,t1) = A(t3,t2) A(t2,t1)

A(t1,t2) = A(t2,t1)
−1
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Growth of errors

An individual set of errors x can be treated as a point in the M-dimensional phase space.

The amplitude of the error is defined as the distance of this point from the origin.

The squared-amplitude of the error at time t1 is

where the superscript T denotes the transpose of a matrix.

The squared-amplitude of the error at time t2 is

The matrix ATA is symmetric positive-definite and possesses M real positive 

eigenvalues.
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Growth of an initial sphere of errors

Consider an ensemble of random initial errors, each of amplitude at time t1, occupying 

the surface of an M-dimensional sphere

x(t1)
Tx(t1) = 2

where the superscript T denotes the transpose of a matrix.

If each error in the ensemble evolves according to the propagator of the tangent 

equation, the sphere will be deformed into an ellipsoid:

x(t1) = A(t2,t1)
−1 x(t2)                            

[A(t2,t1)
−1 x(t2)]

T [A(t2,t1)
−1 x(t2)] = 2

x(t2)
T [A(t2,t1) 

−1]T [A(t2,t1)
−1]x(t2) = 2

x(t2)
T[A(t2,t1)A(t2,t1)

T]−1x(t2) = 2

2

1

1

2 )( ε=	
=

M

i

i tx
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Any matrix can be expressed in terms of two orthogonal matrices U and V by singular 

value decomposition (SVD):

A = USVT 

where U and V are M × M orthogonal matrices, S is a diagonal matrix containing the 

singular values of A,

UTU= I          UUT = I          UT = U−1

VTV = I VVT = I VT = V−1

AT = VSUT                                                               

ATA = VSUTUSVT = VS2VT                                   

ATAV = VS2VTV = VS2

AAT = USVTVSUT = US2UT

AATU = US2UTU = US2

[AAT] −1= (UT)−1 (S2)−1U−1 = U(S2)−1 UT
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The matrices AAT and ATA are both symmetric positive-definite and possess the same 

M real positive eigenvalues. The matrix S2 is diagonal with diagonal elements consisting 

of these M real positive eigenvalues.

x(t2)
T[A(t2,t1)A(t2,t1)

T]−1x(t2) = 2 becomes

x(t2)
T U(S2)−1UT x(t2) = 2

[UTx(t2)]
T (S2)−1  [UT x(t2)] = 2

Let y(t2) = UT x(t2)                                  

y(t2)
T (S2)−1  y(t2) = 2

represents an ellipsoid.  The sphere of initial errors has evolved into an ellipsoid.
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1
2,…., M

2 are the the eigenvalues of AAT

1,…., M are the lengths of the semiaxes of the ellipsoid.

1,…., M are the singular values of A and depend on t1 and t2.

Let  1 > 2 >….> M.

Whether or not any small errors grow between t1 and t2 depends on whether any semi-

axis of the ellipsoid is greater than the radius of the sphere. 

The error growth, therefore, depends on whether the singular value 1, or the eigenvalue 

1
2 is greater than one.

2
1




