

The Abdus Salam International Centre for Theoretical Physics

2051-1

Workshop on High Resolution Climate Modelling

10 - 14 August 2009

Projection of Changes in Weather Extremes Using MRI/JMA Super High-Resolution Atmospheric Models

> KITOH Akio Meteorological Research Institute Climate Research Department 1-1 Nagamine,Tsukuba Ibaraki 305-0052 JAPAN

Projection of Changes in Weather Extremes Using MRI/JMA Super High-Resolution Atmospheric Models

Akio KITOH

Meteorological Research Institute, Tsukuba, Japan

Needs for high resolution models for adaptation studies

 representation of topography depends on resolution (land-sea distribution, mountain height, snowrain threshold, ...)

 low resolution models often fail to reproduce precipitation systems such as tropical cyclones, stationary front systems and blocking

 high resolution models have better mean climate TL095 (190km)

MRI/JMA Atmospheric GCM

- JMA : Operational global NWP model from Nov 2007
- MRI : Next generation climate model
- Based on operational JMA-GSM
- Resolution: TL959(20km) with 60 layers
- Time integration: Semi-Lagrangian Scheme (Yoshimura, 2004)
- Physics
 - 'SW radiation: Shibata & Uchiyama (1992)
 - LW radiation: Shibata & Aoki (1989)
 - Cumulus convection: Prognostic Arakawa-Schubert (Randall and Pan, 1993)
 - Land hydrology: MJ-SiB: SiB with 4 soil-layers and 3 snow-layers
 - Clouds: large-scale condensation, Cumulus, stratocumulus
 - PBL: Mellor & Yamada (1974,1982) level-2 closure model
 - Gravity wave drag: Iwasaki et al. (1989) + Rayleigh friction

Kakushin Team-Extremes Time-Slice Experiments

- Present-day (1979-2003)
 - the observed sea surface temperature (SST) and seaice concentration
- Near Future (2015-2039) and Future (2075-2099)
 - the SST and sea-ice anomalies of the CMIP3 multi-model ensemble mean are added to the observations, retaining the present interannual variability

Use of one-member 20-km AGCM run and ensemble runs with 60-km AGCM

period	period SST		initial condition 1	initial condition 2		
Present: 1979-2003 observation		HP0A	HP0A_m01	HP0A_m02		
Future: 2075-2099	CMIP3 average	HF0A	HF0A_m01	HF0A_m02		
	MRI-CGCM2.3.2	HF0A_mri	HF0A_mri_m01	HF0A_mri_m02		
	MIROC_hires	HF0A_miroch	HF0A_miroch_m01	HF0A_miroch_m02		
	CSIRO	HF0A_csiro	HF0A_csiro_m01	HF0A_csiro_m02		

 20-km mesh model is expensive, hard to run many cases, and thus hard to say about uncertainty of the results

 60-km mesh model can be used to assess statistical significance of regional climate changes

Validation: Inter-annual variation of TC frequency

• Observation

20-km AGCM (AMIP run 1979-2003)

#:90% significance level

interannual variation associated with ENSO

Number of TC Generated in Each Latitude

TC intensity

Change in TC intensity and duration

Radial Profile Change around TC

•Large changes occur near inner-core region, 40-60% for precipitation and 15-20% for surface wind.

•A surface wind speed increase of more than 4% can be seen up to 500 km from storm center.

Interprete TC track changes

Future change in frequency of TC occurrence

Reason for track change

only a small difference in steering flows

Track changes are caused by alternation in TC genesis locations rather than in TC steering flows

The GPI can be used to determine which of the GPI elements contribute most to its future change

Influential factor to the change in GPI

308

25H -

20H -

15H ·

108

58-

decrease

0.4 0.2

0.1

-0.1

-0.3 -0,--0,f

-0.E -1 -1.5 -1.5

-1.6

+4 K,

dominant contribution to the increase in the GPI within the eastern North Atlantic, whereas the relative humidity and omega terms make the largest contribution to the decrease in the GPI within the western North Atlantic

Reason for TC genesis change

2.5

2

1.75

1.5

1.25

Change in Omega (Jul-Oct)

The reduction of genesis in the west North Atlantic is attributed to decreases in relative humidity and ascending motion caused by an enhanced large scale subsidence, whereas the increase of genesis in the southeast North Atlantic arises from increasing upward motion and convective available ^{2.75} potential energy due to 2.25 local ocean surface warming

Future change in frequency of TC occurrence

Frequency of TC landfall over Japan and Korea may decrease

Future change in tropical cyclone frequency with various resolutions and SST settings

Future change in TC frequency

The changes in tropical cyclone frequency as projected by 20km-mesh and 60-km-mesh global atmospheric model experiments. The changes are shown in terms of the ratio of future frequency to present frequency. Statistically significant increase (decrease) at 95% confidence level by two-sided t-test is indicated by red (blue) color.

Experi ments	Resolut ion	_ SST	Integra tioin	Ratio(%) of TC frequency Future/Present										
				Global	NH	SH	N Indian	NW Pacific	NE Pacific	N Atlantic	S Indian	S Pacific		
A0		MRI CGCM2.3	20yr	71	69	73	61	64	61	122	72	77	←	٦
A1		MRI CGCM2.3	20yr	75	75	75	71	71	70	123	75	73	←	┥
A2		MIROC-H	10yr	73	85	58	132	128	50	82	76	11		
A3		CMIP3	25yr	80	79	81	85	74	75	105	95	58	\leftarrow	┢
B1	TL319, 60km	MRI CGCM2.3	25yr	80	79	83	89	66	69	150	78	92	\leftarrow	J
B2		MIROC-H	25yr	94	100	84	179	164	58	106	110	31	Ł	
B3		CMIP3	25yr	79	81	76	133	86	67	104	79	64	<-	_
B4		CSIRO	25yr	78	71	89	93	113	51	63	78	110		
C3	TL159, 120km	CMIP3	25yr	71	79	54	99	75	78	75	62	38	←	

Commonly reduced regardless of difference in SST increase pattern. Mostly same changes are achieved by the same SST setting regardless of resolution difference.

Extratropical cyclones

Extratropical Cyclones

- When tracking extratropical cyclones..
 - Number of cyclones decreases
 - "Strong" cyclones increase

Same in high-resolution models but with different threshold for + or -

Frequency of cyclones as a function of threshold pressure

Mizuta et al. (2009)

MRI AGCM

Mizuta et al. (2009)

Mizuta et al. (2009)

Pattern correlation between the cyclone growth rate change and baroclinicity change (Pacific region)

Mizuta et al. (2009)

NH winter blockings

Matsueda et al. (2009) JGR

Uncertainty in future projections of blocking

Summary

- High resolution model is needed to better represent weather extremes and tropical cyclones
- Topography is better represented by high resolution model
- Large-scale features of model climate improve by increasing horizontal resolution
- Resolution of climate models becomes finer; now we can use 60-km or even 20-km mesh global climate models
- Resolution vs ensemble is an issue
- Study to interpret and connect high-resolution and lower-resolution results (e.g. scaling) is needed
- Caveats: model bias, air-sea coupling

Further steps

Improvement of TC and precipitation

New Cumulus + Ocean Skin

OBS(Besttrack+CMAP)

Current Model

Each component can be coupled with different resolutions