

2052-53

Summer College on Plasma Physics

10 - 28 August 2009

Wave breaking of electrostatic waves in warm plasma

Raoul Trines STFC Rutherford Appleton Laboratory and Lancaster University UK

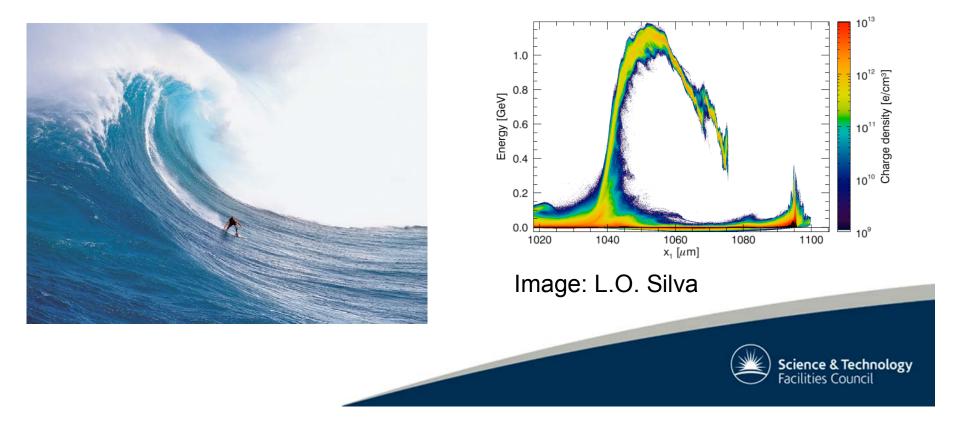
Wave breaking of electrostatic waves in warm plasma

Raoul Trines

STFC Rutherford Appleton Laboratory and Lancaster University

Acknowledgments: P. Norreys, D. Burton, A. Noble, ASTEC

Motivation

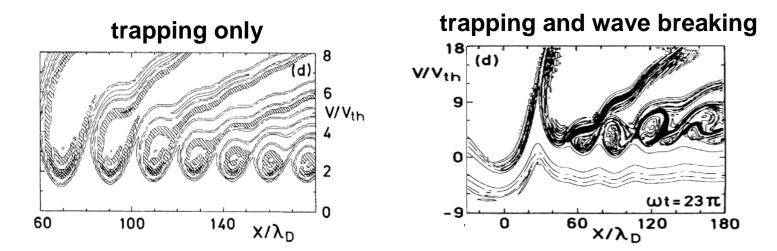

Wave breaking is a poorly understood phenomenon in plasma physics... but why?

- Too many conflicting definitions
- Too many models
- No effort to understand consequences of one's own model
- No effort to compare different models

Definition of wave breaking

"Wave breaking occurs when the forward fluid or plasma motion is larger than the wave phase speed"

Wave breaking in cold plasma


Wave breaking for an oscillation in cold plasma with wave number k and amplitude A, according to Dawson:

- Neighbouring plasma fluid elements "collide" during oscillations
- k*A = 1
- $v = \omega^* A = (\omega/k)^* k^* A = v_{\phi}$
- Plasma fluid elements overtake (and get trapped in) the wave

Wave breaking in warm plasma

There is always some trapping in a warm plasma Wave breaking implies heavy particle trapping

Definition: a wave breaks when it traps particles at the electron sound speed: $s_0^2 = 3k_BT/m_e$

A. Bergmann and P. Mulser, Phys. Rev. E **47**, 3585 (1993)

Wave breaking in practice

Most theoretical papers use the following approach:

- Derive warm-fluid model from Vlasov equation
- Push model until it breaks down
- Confuse model breakdown with wave breaking
- If model does not break down, wave breaking does not exist ???

Problem with standard approach

- Breakdown is a mathematical property of a model
- One must prove separately (e.g. by relating breakdown to particle trapping) that this corresponds to a physical phenomenon like wave breaking
- Few authors bother to do this
- Result: different models, different breakdown limits, different "wave breaking limits"

Case 1: quasi-static waves

Wave in a homogeneous plasma, only depends on coordinate $\zeta = z - v_{\phi}^{*t}$

Cold, non-relativistic: $E_{WB} = v_{\varphi}$ J.M. Dawson, Phys. Rev. 113, 383 (1959) Cold, relativistic: $E_{WB} = \sqrt{2(\gamma_{\varphi} - 1)}$ Akhiezer and Polovin, Sov. Phys. JETP 3, 696 (1956) Warm, non-relativistic:

$$E_{WB} = v_{\varphi} \left[1 - \frac{8}{3} \left(\frac{\beta}{v_{\varphi}^2} \right)^{1/4} \right]^{1/2}, \quad \beta = \frac{3k_B T}{(mc^2)}$$

T.P. Coffey, Phys. Fluids 14, 1402 (1971) Warm, relativistic: needs more attention

Case 1: warm, (ultra-)relativistic

Many models for this case, most are invalid. Relativistic waterbag: $E_{WB} \propto \sqrt{\ln(\gamma_{\phi}^2 \beta)} / \beta^{1/4}$

- Proper relativistic plasma pressure
- Good correspondence between model breakdown and particle trapping
- Particle trapping handled properly
 - Use of warm-plasma potential to study trapping in warm plasma
 - No separate plasma pressure term in particle Hamiltonian, as it should be
- $E_{WB} \rightarrow \infty$ for $\gamma_{\phi} \rightarrow \infty$, as it should be

Katsouleas and Mori, PRL 61, 90 (1988) Trines and Norreys, Phys. Plasmas 13, 123102 (2006)

Case 1: alternative models

Warm-plasma approximation: $E_{WB} \propto 1/\beta^{1/4}$ misbehaves for $\gamma_{\phi} \rightarrow \infty$ (E_{WB} fails to diverge) J.B. Rosenzweig, Phys. Rev. A **38**, 3634 (1988) Z.M. Sheng and J. Meyer-ter-Vehn, Phys. Plasmas **4**, 493 (1997) Schroeder, Esarey and Shadwick, PRE **72**, 055401(R) (2005)

Schroeder *et al.*, Phys. Plasmas **13**, 033103 (2006)

Esarey et al., Phys. Plasmas 14, 056707 (2006)

Three-fluid model: $E_{WB} \propto \sqrt{\gamma_{\varphi}/3}$ behaves too much like cold plasma

J.B. Rosenzweig, Phys. Rev. A 40, 5249 (1989)

Method of characteristics: $E_{WB} = \infty$ wave never breaks in this model

Aleshin *et al.,* Plasma Phys. Rep. **19**, 523 (1993) A. Khachatryan, Phys. Plasmas **5**, 112 (1998)

Case 2: non-quasi-static waves

Non-quasi-static plasma waves exhibit a spectrum of "weird" phenomena, such as:

- position-dependent frequency
- amplitude-dependent frequency
- secular behaviour
- wave number advection in thermal plasma
- curbing of wave breaking by thermal effects (unheard of for quasi-static waves)

Non-constant frequency

Relativistic cold-plasma oscillations according to Polovin:

$$\frac{\partial^2 p}{\partial \tau^2} + \frac{\omega_p^2(\underline{x})}{\sqrt{1+p^2}} p = 0$$

Position-dependent frequency can result from:

- non-constant density
- position-dependent amplitude

R.V. Polovin, Sov. Phys. JETP 4, 290 (1957)

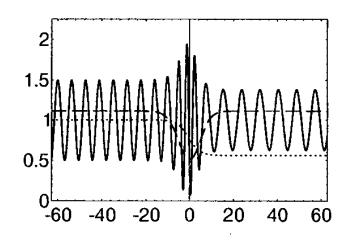
Secular behaviour

Consider the following plasma oscillation: $\delta = A \sin[\psi(\underline{x}, \tau)], \quad k \equiv \partial \psi / \partial \underline{x}, \quad \omega \equiv -\partial \psi / \partial \tau$

It follows (Whitham): $\frac{\partial k}{\partial \tau} + \frac{\partial \omega}{\partial \underline{x}} = 0$

If ω depends on x, then k depends on τ !
Example: k will grow linearly on a downward density ramp

Significant consequences for wave breaking J.M. Dawson, Phys. Rev. **113**, 383 (1959) J.F. Drake *et al.*, Phys. Rev. Lett. **36**, 196 (1976)



Secular behaviour II

Wave breaking condition (Dawson, Coffey):

$$kA = 1 - \left(\beta / v_{\varphi}^2\right)^{1/4}$$

If k grows, then v_{ϕ} will decrease (Bulanov) and wave breaking amplitude will decrease

Dotted: plasma density Solid: plasma oscillations Dashed: local phase speed

Bulanov et al., PRE 58, R5257 (1998)

Wave number advection

Add thermal effects (Bohm-Gross):

$$\omega^2 = \omega_p^2 + 3v_T^2 k^2$$

This leads to:

$$\frac{\partial k}{\partial \tau} + 3v_T^2 \frac{k}{\omega} \frac{\partial k}{\partial \underline{x}} = -\frac{\omega_p}{\omega} \frac{\partial \omega_p}{\partial \underline{x}}$$

Thermal effects make k advect away from the "hot spot" !

Which will win, secular behaviour or thermal effects?

R. Trines, PRE 79, 056406 (2009)

Curbing of wave breaking

Wave on density ramp, total density drop Δn :

- In cold plasma, k will grow indefinitely and wave will always break
- In warm plasma, growth of k is curbed by thermal effects
- For small amplitude, small ∆n and large plasma temperature, wave will not break
- Compare with quasi-static waves, where thermal effects facilitate wave breaking

R. Trines, PRE 79, 056406 (2009)

Case 3: driven waves (resonance absorption)

- Related to previous case (density ramp), but waves are driven by long laser beam
- Found 4 different models for warm plasma:
 - Ginzburg, Propagation of EM waves in plasma (1960)
 - Kruer, Phys. Fluids 22, 1111 (1979)
 - Bezzerides and Gitomer, Phys. Fluids 26, 1359 (1983)
 - Bergmann and Mulser, PRE 47, 3585 (1993)
- Will have to pull all these together to solve this problem: not easy

Conclusions

- Wave breaking: an important phenomenon, often misunderstood because of bad definitions
- With good definitions and careful analysis, one can make significant headway
- Thermal effects and secular behaviour together lead to fascinating behaviour
- Resonance absorption will be next
- Always some other aspect to explore, e.g. using more than 1 dimension!