

2052-46

Summer College on Plasma Physics

10 - 28 August 2009

Dust Crystals Interaction with Plasma Jets

Catalin M. Ticos

National Institute for Lasers, Plasmas and Radiation Physics Romania

Dust Crystals Interaction with Plasma Jets

Catalin M. Ticos

National Institute for Lasers, Plasmas and Radiation Physics, Bucharest, Romania

Collaborators:

C.P. Lungu, P. Chiru, I. Jepu, V. Zaroschi

- 1. Dust in low ionized gases: plasma crystals in ion flows
- 2. Dust in highly ionized plasma jets: dust acceleration to hypervelocity
- 3. Dust crystal in plasma jets
- 4. Conlusions

Dust is ubiquitous in nature

Dust is present in noctilucent clouds, comet tails, planetary rings, etc.

G.S. Selwyn *et. al.* Appl. Phys. Lett. **57** 1876 (1990)

R. L. Merlino and J. A. Goree, Phys. Today 57, 32 (2004)

•Dust is also present in laboratory plasmas: reactors, fusion devices, dusty plasmas

Charge on a dust grain in typical lab. plasmas is ~10³-10⁵ e

Dust is considered a spherical capacitor ($r_d << \lambda_D$): $Q_d = C_d V_d = 4\pi \varepsilon_0 r_d V_d$ Solve numerically $I_e = I_i$ in OML (orbital motion limited)

Directions in experimental dusty plasma

	Dust crystals in rf, dc plasmas, Q machines, etc	Dust in fusion (including dense plasma jets)	Dust crystals & Plasma Jets
Dust/plasma:	r _d << λ _D (~100 μm)	r _d ≥λ _D (~0.1-1 μm)	r _d ~110 μm λ _D ~10100 μm
Some features:	 strongly coupled → crystals ion wakes in rf sheath → 	 Dusts screened by plasma 	 transition from strongly to weakly coupled
	vertical alignment,	highly accelerated dustdust ablation	
	oscillations & instabilities		

Directions in experimental dusty plasma (cont.)

	Dust crystals in rf, dc plasmas, Q machines, etc	Dust in fusion (including dense plasma flows)	Dust crystals & Plasma Jets
Dominant forces:	 electrostatic friction with neutrals plasma drag (impact and Coulomb)-in certain parameter ranges and small dust 	 plasma drag: impact -<i>dominant</i> Coulomb electrostatic (near the edge of fusion devices) 	 electrostatic friction with neutrals plasma drag (impact)
Dust dynamics:	•equilibrium •v _d ~0-0.01 m/s, •a _d ~1-10 cm/s ²	•v _d ~0-5000 m/s, •a _d ~10 ³⁻ 10 ⁷ m/s ²	•v _d ~0-0.1 m/s, •a _d ~1 ⁻ 10 ² m/s ²

Crystals in RF plasma sheath

- RF frequency f=13.56 Mhz (self-bias~ -10...-100 V) (p-p ~50-200 V) $V_{electrode} = V_{dc} + V_{rf} sin(2\pi f t)$
- Dust has inertia \rightarrow in equilibrium $Q_d E_{sh} = m_d g$ (E_{sh} is time averaged sheath field)

Effect of ion flow on small dust clusters

•Ion focusing in RF sheath creates attractive potential well

•For specific pressures and at constant RF power, spontaneous low-frequency oscillations of the lower grain are observed.

CM Ticos, P.W. Smith, PK Shukla, PLA 2003

Effect of ion flow on dust crystals

Stable crystal: P=0.198 Torr

Propagating waves: P=0.185 Torr

 $1 + \frac{1}{k_B^2 \lambda_{De}^2} - \frac{\omega_{pd}^2}{\omega(\omega + i\nu_d)} - \frac{\omega_{pi}^2}{(ku + \omega)(ku + \omega - i\nu_i)} = 0$ $u || k, \quad u \cong u_B \gg v_{Ti}, \quad ku, kv_{Te} \gg \omega \gg kv_{Td}, T_e \gg T_i$ Solve numerically $\omega(k)$ where $\omega = \omega_r + i\gamma$: $\gamma < 0, \quad P = 0.3 \text{ Torr (green)}$ $\gamma = 0, \quad P_C \approx 0.275 \text{ Torr (blue)}$ $\gamma > 0, \quad P = 0.23 \text{ Torr (red)}$

CM Ticos, A. Dyson, P.W. Smith, PK Shukla, PPCF 2004

Plasmadynamic dust accelerator using dense plasma jets

Gas puff Dust reservoir and dispenser Gas puff Isolation value Hot electrode Grounded electrode

Plasmadynamic dust accelerator

•uses deuterium puffed at ~150 psi•coaxial S.S. electrodes

Power & diagnostic systems

Control system

• capacitor bank =1 mF

- charged up to 10 kV
- current and voltage probes
 energy ~ 50 kJ

 Field Point modules running real-time LabView

CM Ticos , Z Wang, L Dorf, G Wurden, RSI 2006

Experimental set-up

- DICAMPRO (ICCD, gating ns to µs)
- Plasma imaging: Fish eye lens 16 mm f/4 (Nikon)
- Dust detection: Telephoto lens 500 mm f/4 (Sigma)

Coaxial gun for plasma flow generation

- center electrode $\emptyset \sim 1.9$ cm, coax electrode $\emptyset_i \sim 3.2$ cm
- coax gap length ~ 21 cm
- 12 coax cables RG-217 (~peak 20 kA /each)
- 10-30 torr L/shot deuterium

Speed and temperature of supersonic plasma jet

CM Ticos, Z Wang, G Wurden, LA Dorf, JL Kline, DS Montgomery, PK Shukla, PRL 2008

Imaging of hypervelocity graphite dust

- Graphite/diamond dust: 1 to 60μm (imaged grains >10 μm)
- •Self-illuminated dusts→ trajectory looks like tracer
- •Exposure 4-16µs

CM Ticos, Z. Wang, GA Wurden PoP 2008& IEEE Trans PI Sc 2008

Plasma jet parameters

Plasma density: spectrometer & streak camerafiber@ 0.25 m gun muzzleFWHM of Dα (Stark broadening)

Voltage (kV)	v_f (km/s)	$n_i(\times 10^{22} \text{ m}^{-3})$	T_i (eV)
6	26 ± 0.5	$0.2 - 1.5 \pm 0.1$	1.3 ± 0.3
8	38 ± 1	$0.5 - 2.2 \pm 0.1$	1.7 ± 0.4
10	56 ± 2	$0.5 - 3.1 \pm 0.2$	2.8 ± 0.7

Dust speed distribution

Summer College on Plasma Physics, ICTP, August 24-28, 2009

Dust dynamics in highly ionized plasma flows dominated by ion drag

 Dust dynamics is dominated by plasma (ion)-drag in the Flowing Magnetized Plasma (FMP) Experiment at Los Alamos

 $n_e = n_i \sim 10^{19} \text{ m}^{-3}$, T_i , $T_e \sim 10 \text{ eV}$, $U \sim 10-15 \text{ km/s}$ (plasma flow speed) Ion-drag (direct impact): $\mathbf{F}_{pf} = 2\pi r_d^2 k_B T_i n_i \xi \mathbf{w}$

$$\mathbf{w} \equiv \mathbf{U}/\sqrt{2k_B T_i/m_i} \quad \xi = 1.1 \sim 1.5$$

Z. Wang, C.M. Ticos, G. Wurden, PoP 2007

Summer College on Plasma Physics, ICTP, August 24-28, 2009

Moving dust in fusion devices

http://nstx.pppl.gov/index.html

D.L. Rudakov et al., "Dust in Fusion Plasmas"-DFP/EPS 2007 34th EPS, July 8-10, 2007, Poland

Dust is mostly peeled from the walls:

- ne, ni ~10¹⁹ m-3 (edge)....10²¹ m⁻³ (core),
- •Te, Ti ~10 eV (edge) ... 10³ eV (core)
- Dust size ~0.1-100 µm
- Dust speed in NSTX and DIIID: ~10-200 m/s
- It appears that dust motion is determined by plasma flow

Dust crystal & plasma jet experiment

Experiment for studying the interaction between a dust crystal and an incident plasma jet (funded by the National University Research Council, Romania)

- Dust crystal in sheath of rf plasma (ne ≈10¹⁵m-3) with ions (≈ 0.025 eV) and Te~1eV
- Plasma jet: higher density (ne > 10^{16} m³) and flowing at ~km/s.

- RF plasma used to levitate the crystal
- Plasma jet produced in a minicoaxial gun (inner Φ=15 mm)

Goals of Dust Crystal & Plasma Jet Experiment

- Monitor at microscopic level the interaction of plasma jet with dust particles and dust crystals
- Track the changes induced by the plasma flow in the dust-dust interactions and in the structure of the crystal;
- To study the interaction of a plasma-dragged dust cloud colliding with a plasma crystal
- To identify and measure dust instabilities and dust waves induced by the plasma flow within the crystal
- To measure accurately the drag force of the plasma wind

Jet from minicoaxial plasma gun

- Capacitor bank of 12 µF
- Charged up to 1000 V (low energy~10 J)
- Diagnostics:, current and voltage probes,

fast imaging (Photron 1024-PCI Camera up to 105 000 fps, but at only 128x16 pixels)

125 fps;

shutter 8ms

lower limit of

Dust crystal interaction with plasma jet: preliminary results

Dust crystal interaction with plasma flow: preliminary results

Experimental Observations:

- Dust is flying upward due to ion drag
 (direction of plasma flow) at a speed ~1-10 cm/s
- When plasma jet dissipates dust falls back into the sheath → parabolic trajectory

More work will be done in order to analyze the trajectories of dust particles and to diagnose the plasma

Conclusions

•Plasma crystals:

-study interaction forces in crystalline structures at convenient spatial and temporal scales (of the order of mm and only ms)→interesting physics -dynamics deduced by fast imaging of dust trajectories

•Dust in dense plasma flows: -accelerated to hypervelocities, heated to high temperatures -ion drag is dominant by far

•Plasma crystals in plasma jets:

-novel experiment useful for testing theories of dust-flow and dust-dust interactions, electrostatic coupling between dusts, plasma flow drag

Thank You!