
2052-31

Advanced Workshop on Evaluating, Monitoring and Communicating
Volcanic and Seismic Hazards in East Africa

Jose Tito Mendonça

17 - 28 August 2009

IPFN and CFIF, Instituto Superior Tecnico
Lisboa

Portugal

Ultra-cold and Rydberg plasmas



J. T. Mendonça
IPFN and CFIF, Instituto Superior Tecnico, Lisboa

Collaborators: H. Terças, J. Loureiro (IST), R. Kaiser (U. Nice)
G. Robb (U. Strathclyde), A. Serbeto (U. Rio), R. Bingham (RAL)

P. Shukla (U. Bochum). 



Plasma effects in 
ultra-cold matter

Neutral gas in 
a MOT

T ~ µK

Rydberg plasmas

Ti ~ mK, Te ~ K

Bose-Einsten 
Condensates

T ~  nK 

Equivalent to 
a non-neutral 
plasma

Electron-ion 
“neutral” plasma

Plasma-like 
processes



Outline:

A - Plasma effects with neutral atoms
•  Laser cooling forces;
•  Hybrid mode: sound waves with a cut-off;
•  Tonks-Dattner resonances;
•  Density correlations.
B - Rydberg plasmas
•  New dispersion relations;
•  Magnetic field generation.
C - Bose Einstein Condensates
•  Landau damping of Bogoliubov oscillations;
•  Wakefield excitation;
•  Two-stream instabilities.



Laser cooling force

Momentum picture

Taken from W.D. Phillips, RMP (1998)
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ωL < (Eb − Ea )

Absorption 
allowed by 
Doppler shift

Spontaneous 
emission

Energy picture

The atom looses kinetic energy at each 
absorption-emission cycle

1) Induced light pressure force [Ashkin, PRL (1970)]



Magneto-optical traps (MOTs)

Helmotz coils, for magnetic 
confinement

3 pairs of laser beams, 
for cooling 

Rubidium, the most 
popular cold gas



Laser Iinc 

Atom 1

Atom 2

Basic principle of the repulsive force

Iscatt

Atomic repulsion results from 
radiation pressure of the 
scattered radiation (Iscatt ~1 / r2 )

3) Shadow effect or absorption force 
[Dalibard, Opt.Commun. (1988)]

2) Repulsive effect or radiation trapping 
force [Sesko et al., JOSA B (1990)] 



Collective forces in cold atom gas 

Wave kinetic equation in the quasi-classical limit
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Collective (shadow - repulsive) force
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F = Qn( r ,t) ≡Q W ( v )d v ∫

Coulomb-like atom-atom interaction
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Q = (σR −σ L )σ LI /c

Competing effect: repulsive force dominates over shadow effect



Equilibrium   
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Linearized evolution equations
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F = Q ˜ W ( v )d v ∫

Dispersion relation for cold atom gas 
(infinite geometry)
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Mono-kinetic distribution
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For v0 = 0, cold atom oscillations 
similar to plasma oscillations
(compare with ωpe)
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M

Effective atomic charge
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qeff = ε0Q
Typical experimental 
value, qeff = 10-6 e

Dispersion relation similar to that of 
electrostatic waves in a plasma
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Hybrid mode: sound wave with a cut-off

λD = us/ωP

Fluid equations for the cold gas
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Atomic Landau damping

Non dissipative wave damping
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Diffusion in velocity space

Quasi-linear theory for a 
broad spectrum of fluctuations   
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Fluctuations: an additional obstacle to atom cooling



Tonks-Dattner resonances
Internal oscillations in a 
Nonuniform cold gas
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b) Cylindrical geometry (plasma) Parker, Nickel and Gould, PoP (1964)

c) Spherical geometry 
(neutral cold atom gas)

Mendonça et al., PRA (2008).



Centre of mass oscillations

Centre of mass position
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Similar to an electron-ion plasma
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Constant density 
profile, n(r) = n0
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Neutral gas confined in a MOT

Dipole frequency for a single atom 

€ 

ωD = K
M ≡ Qn0 /M =ωP



Experimental evidence of Tonks-Dattner 
resonances (to be confirmed)



Nonlinear coupling between dipole and 
plasma (or TD) oscillations

Terças, Mendonça and Kaiser, PRA (sub 2009)
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Mathieu-type of equation

Variables and parameters

Stability range



Spectrum of density fluctuations

Similar to that of a 
non-neutral plasma

Laser scattering

Mendonça + Terças, PRA (sub 2009)

E0
Es

A possible (and practical) 
diagnostic technique



Rydberg Plasmas

b. Spontaneous evolution of a Rydberg cold Xe gas, into a 
plasma [M.P. Robinson et al., PRL (2000)]

[T. Pohl et al. PRA (2003)]

Creation of ultra-cold plasmas
(an apparent contradiction)

Ti ~ 100 mK, Te < K

a. Creation of ultra-cold plasmas by photoionization of 
laser cooled Xe atoms [T.C. Killian et al., PRL (1999)]



Modified dispersion relation 
in a Rydberg plasma

Mendonça, Loureiro and Terças, JPP (2009)

Atomic susceptibility



Magnetic field generation in a Rydberg plasma

Mendonça, N. Shukla and P. Shukla, JPP (2009)

Ponderomotive force

Quasi-static magnetic field 

Enhancement around 
atomic resonance



Bogoliubov oscillations in a BE condensate

Exact kinetic dispersion relation

Mono-energetic BEC beam

Dispersion relation for a cold beam

Bogoliubov sound speed

Mendonça, Serbeto and Shukla, PLA (2008)



Landau damping of 
Bogoliubov oscillations

Exact quantum result, where 
atom recoil is included

Quasi-classical limit

Damping by resonant neutral atoms

 

k’s=mcs/h



Wakefield solutions

Solution in the quasi-static approximation (no 
time variations in the moving frame)
• First term: local perturbation of the background
• Second term:wake oscillation

Wake frequency in the lab frame

BEC moving in a non-condensed gas 
Unperturbed BE condensate beam N0:

Sound velocity in the 
background gas, us

Mendonça, Shukla and Bingham, PLA (2005)



Two counter-streaming BECs

Dispersion relation
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K = qv0 /ω0, H = ω0 /mv0
2

H. Terças, JT. Mendonça and G. Robb, PRA (2009)



Conclusions

•  Neutral ultra-cold gas in a MOT behaves like a plasma;  

•  Collective effects are due to shadow-repulsive forces;

•  New hybrid modes (sound waves with a cut-off) were identified;

•  Mie and Tonks-Dattner resonances: experimental evidence;

•  Rydberg plasmas: modified dispersion relations, and B excitation;

•  Bose Einstein Condensates (BECs) show plasma type of behavior;

•  Quantum Landau damping of Bogoliubov oscillations; 

• Two-stream instability of counter-streaming BECs.


