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Plasma effects in 
ultra-cold matter


Neutral gas in 
a MOT


T ~ µK


Rydberg plasmas


Ti ~ mK, Te ~ K


Bose-Einsten 
Condensates


T ~  nK 


Equivalent to 
a non-neutral 
plasma


Electron-ion 
“neutral” plasma


Plasma-like 
processes




Outline:


A - Plasma effects with neutral atoms

•  Laser cooling forces;

•  Hybrid mode: sound waves with a cut-off;

•  Tonks-Dattner resonances;

•  Density correlations.


B - Rydberg plasmas

•  New dispersion relations;

•  Magnetic field generation.

C - Bose Einstein Condensates

•  Landau damping of Bogoliubov oscillations;

•  Wakefield excitation;

•  Two-stream instabilities.




Laser cooling force


Momentum picture


Taken from W.D. Phillips, RMP (1998)
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ωL < (Eb − Ea )

Absorption 
allowed by 
Doppler shift


Spontaneous 
emission


Energy picture


The atom looses kinetic energy at each 
absorption-emission cycle


1) Induced light pressure force [Ashkin, PRL (1970)]




Magneto-optical traps (MOTs)


Helmotz coils, for magnetic 
confinement


3 pairs of laser beams, 
for cooling 


Rubidium, the most 
popular cold gas




Laser Iinc 


Atom 1


Atom 2


Basic principle of the repulsive force


Iscatt


Atomic repulsion results from 
radiation pressure of the 
scattered radiation (Iscatt ~1 / r2 )


3) Shadow effect or absorption force 
[Dalibard, Opt.Commun. (1988)]


2) Repulsive effect or radiation trapping 
force [Sesko et al., JOSA B (1990)] 




Collective forces in cold atom gas 


Wave kinetic equation in the quasi-classical limit
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Collective (shadow - repulsive) force
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∇ ⋅
 
F = Qn( r ,t) ≡Q W ( v )d v ∫

Coulomb-like atom-atom interaction
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Q = (σR −σ L )σ LI /c

Competing effect: repulsive force dominates over shadow effect




Equilibrium
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Linearized evolution equations
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Dispersion relation for cold atom gas 
(infinite geometry)
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Mono-kinetic distribution
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For v0 = 0, cold atom oscillations 
similar to plasma oscillations

(compare with ωpe)
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Effective atomic charge
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qeff = ε0Q
Typical experimental 
value, qeff = 10-6 e


Dispersion relation similar to that of 
electrostatic waves in a plasma


  

€ 

1+ χ(ω,
 
k ) = 0



Hybrid mode: sound wave with a cut-off


λD = us/ωP


Fluid equations for the cold gas
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Atomic Landau damping


Non dissipative wave damping
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Diffusion in velocity space


Quasi-linear theory for a 
broad spectrum of fluctuations
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Fluctuations: an additional obstacle to atom cooling




Tonks-Dattner resonances

Internal oscillations in a 
Nonuniform cold gas
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b) Cylindrical geometry (plasma)
 Parker, Nickel and Gould, PoP (1964)


c) Spherical geometry 

(neutral cold atom gas)


Mendonça et al., PRA (2008).




Centre of mass oscillations


Centre of mass position
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Similar to an electron-ion plasma
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Constant density 
profile, n(r) = n0
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Neutral gas confined in a MOT


Dipole frequency for a single atom 


€ 

ωD = K
M ≡ Qn0 /M =ωP



Experimental evidence of Tonks-Dattner 
resonances (to be confirmed)




Nonlinear coupling between dipole and 
plasma (or TD) oscillations


Terças, Mendonça and Kaiser, PRA (sub 2009)
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Mathieu-type of equation


Variables and parameters


Stability range




Spectrum of density fluctuations


Similar to that of a 
non-neutral plasma


Laser scattering


Mendonça + Terças, PRA (sub 2009)


E0

Es


A possible (and practical) 
diagnostic technique




Rydberg Plasmas


b. Spontaneous evolution of a Rydberg cold Xe gas, into a 
plasma [M.P. Robinson et al., PRL (2000)]


[T. Pohl et al. PRA (2003)]


Creation of ultra-cold plasmas

(an apparent contradiction)


Ti ~ 100 mK, Te < K


a. Creation of ultra-cold plasmas by photoionization of 
laser cooled Xe atoms [T.C. Killian et al., PRL (1999)]




Modified dispersion relation 
in a Rydberg plasma


Mendonça, Loureiro and Terças, JPP (2009)


Atomic susceptibility




Magnetic field generation in a Rydberg plasma


Mendonça, N. Shukla and P. Shukla, JPP (2009)


Ponderomotive force


Quasi-static magnetic field 


Enhancement around 
atomic resonance




Bogoliubov oscillations in a BE condensate


Exact kinetic dispersion relation


Mono-energetic BEC beam


Dispersion relation for a cold beam


Bogoliubov sound speed


Mendonça, Serbeto and Shukla, PLA (2008)




Landau damping of 
Bogoliubov oscillations


Exact quantum result, where 
atom recoil is included


Quasi-classical limit


Damping by resonant neutral atoms


 

k’s=mcs/h




Wakefield solutions


Solution in the quasi-static approximation (no 
time variations in the moving frame)

• First term: local perturbation of the background

• Second term:wake oscillation


Wake frequency in the lab frame


BEC moving in a non-condensed gas 

Unperturbed BE condensate beam N0:


Sound velocity in the 
background gas, us


Mendonça, Shukla and Bingham, PLA (2005)




Two counter-streaming BECs


Dispersion relation
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H. Terças, JT. Mendonça and G. Robb, PRA (2009)




Conclusions


•  Neutral ultra-cold gas in a MOT behaves like a plasma;  


•  Collective effects are due to shadow-repulsive forces;


•  New hybrid modes (sound waves with a cut-off) were identified;


•  Mie and Tonks-Dattner resonances: experimental evidence;


•  Rydberg plasmas: modified dispersion relations, and B excitation;


•  Bose Einstein Condensates (BECs) show plasma type of behavior;


•  Quantum Landau damping of Bogoliubov oscillations; 


• Two-stream instability of counter-streaming BECs.



