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Structures observed in
the terrestrial magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

1. Satellite observations

Soucek, Lucek & Dandouras JGR 113, A04203 (2008)

Structures observed in the Jovian magnetosheath

Joy et al.  J. Geophys. Res. 111, A12212 (2006)

Magnetic structures (humps or holes) 
that are quasi-stationary in the plasma frame,
with no or little change in the magnetic field
direction are commonly observed in the
solar wind and the planetary magnetosheaths.

Usually viewed as nonlinear mirror modes



• Structures are quasi-static in the plasma frame (propagating drift mirror modes exist in density gradients)

• Small change in the magnetic field direction 

• Observed in regions displaying: ion temperature anisotropy                
β of a few units

(conditions met under the effect of plasma compression in front of  the magnetopause).
Not always in a mirror unstable regime.

• Magnetic fluctuations mostly affect the parallel component.

• Cigar-like structures, quasi-parallel to the ambient field, with a transverse scale of a few Larmor radii.

• Density is anticorrelated with magnetic field amplitude.

Origin of these  structures  is still not fully understood.

Usually  viewed as nonlinearly saturated states of the mirror instability,
or possibly, in particular  in the solar wind, remnants of mirror structures
created upstream of the point of observation (Winterhalter et al. 1995).

Other recent interpretations:
• trains of slow-mode magnetosonic solitons (Stasiewicz 2004)
• mirror instability is the trigger, generating high amplitude fluctuations that evolve 

such as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgärtel, Sauer & Dubinin 2005) 

Main properties of observed structures:

ii TT >⊥



Linear instability

Instability condition:

Linear growth rate
(near threshold):

For a bi-Maxwellian distribution:

Venedov and Sagdeev (1958), Chandrasekhar et al. (1958), Hasegawa (1969), 

Hall (1979), Gary (1992), McKean et al. (1992,1994), Southwood and Kivelson (1993), 

Pantellini & Schwartz 1995, Pokhotelov et al. (2005 and references therein), Hellinger (2007).

Instability condition:

cold electrons,

(Shapiro & Shevchenko 1964)  

(     : ion Larmor radius)Lρ

k

Growth rate:

=



Soucek, Lucek & Dandouras, JGR 113, A04203 (2008)

Solid blue line: theoretical
(bi-Maxwellian) mirror threshold

Dashed-dotted blue line: empirical
marginal stability

Black dashed line: fitted boundary
between peaks and dips

Solar wind: “Although the plasma surrounding the holes was generally 
stable against the mirror instability, there are indications that the holes 
may have been remnants of mirror mode structures created upstream 
of the points of observation” (Winterhalter et al. 1995).

“Peaks are typically observed in an unstable plasma, while mirror structures 
observed deep within the stable region appear almost exclusively as dips”.



Magnetic holes: mostly in subcritical regime Magnetic humps: in supercritical regime

Génot et al., Ann. Geophys. 27, 601 (2009).

CM <1 : subcritical
CM >1 : supercritical
(for bi-Maxwellian equilibrium)

Skewness
<0

>0

CM<1 CM>1



With a PIC code in a large domain:
Domain size= 2048 c/ωpi
Growth rate: 0.005 Ωp
1024 cells with 500 000 particles/cell

A large number of modes are excited.
Humps form and undergo coarsening.

2. Numerical simulations of the Vlasov-Maxwell equations

Mirror unstable regime near threshold in a large domain
(most unstable direction)

Shed light on the time evolution and on the origin of the structures.

Color plot of the fluctuations of the magnetic field
component Bη perpendicular to the direction ζ of 
spatial variation, as a function of ζ and t.

1D simulation:



First mechanism suggested for saturation: based on quasi-linear theory (Shapiro  & Shevchenko 1963) 

• Assumes space homogeneity  (thus absence of coherent structures); can thus be valid at early times only.

• Requires many modes in interaction, thus an extended domain.

• Mainly associated with a diffusion process in velocity space (dominantly along the ambient field).

linear growth rate Hellinger & al., GRL, 36, L06103, (2009)



Perturbation of the space-averaged distribution function ∆f = f – f(0)

QL theory PIC simulationt= 1.4 105 t=2 103

Integrated over
flattening

t=0

negative values

positive values

∆



Instantaneous distance to threshold reaches negative values, 
a signature that quasi-linear theory ceases to apply when 
coherent structures begin to form.

The instability continues to take place while Γ< 0, due to 
hydrodynamic-type nonlinear effects.

Positive skewness: magnetic humps.

Bi-Maxwellian distance 
to threshold:

Instantaneous distance 
to threshold:

Gray scale plot of the magnetic
fluctuations as a function of 
space and time. 

Magnetic energy fluctuationsPIC simulation in an extended domain near threshold

No relaxation to marginal stability regime



At large scales, kinetic effects (Landau damping and finite Larmor radius 
corrections) are weak and contribute only linearly in the  weakly nonlinear 
regime supposed to develop near threshold.

This argument is validated by a systematic reductive perturbative analysis 
performed on the Vlasov-Maxwell system (Califano et al. JGR 113, A08212, 2008).

For the sake of simplicity, assume cold electrons with negligible inertia.

3. Modeling the structure formation

Close to threshold, the linearly unstable mirror modes are confined to large scales.

Nonlinear dynamics amenable to a reductive perturbative expansion that isolates
mirror modes  (Kuznetsov, Passot & Sulem, PRL, 98, 235003 ,2007).

A.  Asymptotic expansion (near a bi-Maxwellian equilibrium)



Equation governing the proton velocity (derived from Vlasov equation)

with 

with 

Scalings of the space and time variables are suggested by the linear instability growth rate near threshold

Assuming cold electrons with no inertia:

(     : ion Larmor radius)Lρ



the ion-velocity equation reduces to a pressure balance equation

The perpendicular pressure and the gyroviscous force are to be calculated from Vlasov equation 

The vanishing of the contribution of zeroth order reproduces the instability threshold.

In this near-threshold asymptotics,
• time derivative originates  from   

Landau damping
• Landau damping and  finite Larmor

radius effects arise only linearly

Lr : ion Larmor radius

In particular
E.B =0

One shows that . By the divergenceless condition:

cold electrons 
without inertia

For a biMaxwellian equlibrium:

Dynamical equation obtained at the next order.



Dynamical equation (assuming a bi-Maxwellian equilibrium):

After simple rescaling 

When the spatial variation are limited to a direction making a fixed angle with the ambient field

whose Fourier transform is



Integration above threshold (σ>1), with
as initial conditions a sine function
involving several wavelengths.

After an initial phase of  linear instability, 
formation of  a dominant magnetic hole. 
After a while, solution blows up
with a self-similar behavior.

Solution profile near collapse

Finite time blowup of the solution

At the level of Vlasov-Maxwell  eqs,
the singularity is the signature of the 

formation of finite-amplitude structures,
through a subcritical bifurcation that cannot be 
captured perturbatively.

When  spatial variations are limited to a direction 
making a fixed angle with the ambient field: Wave-particle resonance  provides the 

trigger mechanism leading to the linear 
instability.

Hydrodynamic nonlinearities reinforce the
instability, leading to collapse.

Linear FLR effects arrest the linear 
instability at small scales but cannot cope 
with hydrodynamic nonlinearities.

Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007);
JETP Letters, 86, 637, 2007)

Magnetic holes and not humps are obtained !

Below threshold, this equation
has the same stationary solutions
as the KdV equation, but they are 
linearly unstable.



Reductive perturbative expansion 
performed near bi-Maxwelian equilibrium,
retaining only linear kinetic effects,

predicts that the nonlinear development of the mirror instability 
leads to the formation of magnetic holes.



The reductive perturbative expansion near threshold can be extended to any (frozen) smooth
equilibrium distribution function                       provided

(normalized parallel
magnetic perturbation)

with
For a bi-Maxwellian distribution                                ,  thus Λ >0 and
the model predicts formation of magnetic holes, while humps are 
observed in the simulations. 

B. Extension of the reductive perturbative expansion:

neglecting the contribution of resonant particles
to Λ in the case of a smooth distribution fonction

This suggests that the early-time QL  dynamics affects the forthcoming formation of the structures.

We are thus led to modify eq.(▲) by assuming that the coefficients are not frozen at their initial 
values but are evaluated from the instantaneous distribution function given by the QL 
diffusion equation. 

For consistency, the contribution of resonant particles are to be retained in the estimate of the nonlinear 
coupling constant.

(▲)

(▲▲)



Results of the simulation of eq.
in 1D  (in the most unstable direction)

(▲▲)

Formation of magnetic humps

QL theory

-min(b)

Blowup ?

nonlinear coupling

QL saturation

resonance coefficient

change of sign
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Starting from a quasi-singular distribution function resulting from the QL evolution, 
a systematic expansion leads to a 1D equation which, after rescaling, reads:

where σ=+1 (supercritical) or -1 (subcritical)
s=+1 (near a Maxwellian distribution)

or    s=-1 (due to QL flattening of distribution function)
The parameters α and µ are taken positive

The denominator is reminiscent (in a small amplitude expansion) of the
arctan trapping correction suggested by Pokhotelov et al. (JGR 2008). 
Note however that the physical mechanism is here different.

The denominator can arrest the collapse (for α and µ large enough) in the form of:
- magnetic hole solitons for s=+1
- magnetic hump solitons for s=-1

C.  Properties and simulations of the model equation



The numerical integration of the model equation (with µ=0.01, σ=1, s=-1, α=1) 
starting from a sine wave of amplitude 0.01 in a domain of size 2π leads to a 
quasi-stationary hump solution with a negative value of b in the background. 

Saturated solutions in a supercritical regime

Note that the amplitude of the structures is prescribed by the strength of the 
early time QL resonance: larger amplitudes are obtained when these
effects are small.



Saturation mechanism:
this problem is numerically (and mathematically) difficult
and is still under investigation. Extremely small time steps are required.

Existence and stability of the soliton profile:
As the nonlinear solution grows in amplitude, <b>  gradually becomes negative;  
at a certain point, the coefficient of the growth term for the fluctuations about <b> 

becomes negative, putting the system in a situation similar to the subcritical regime.

The solution is then attracted to the negative of  the KdV soliton
with an amplitude bmax=1/α.
It is stable due to the presence of the denominator term.

For s=+1, hole solutions are obtained (change b into –b). They are physically relevant when
QL effects are subdominant, even in a supercritical regime.

When starting with random initial conditions, which lead to a large number 
of humps, a coarsening phenomenon is observed.



When σ=-1 with large initial data, no quasi-linear phase; the d.f. remains
Gaussian (s=+1). The denominator correction (with α small) needs to be
retained due to the large amplitudes.

Magnetic holes are thus obtained.

Subcritical solutions

σ=-1
s=+1
µ=0.05
α=0.8



Subcritical solutions (i.e. below threshold)

Vlasov simulation in a small domain

Large-amplitude magnetic holes
survive even far below and above threshold.

Magnetic humps do not survive

Formation of magnetic holes when starting with large initial perturbations

β║=6,  T┴/T║=1.2 and θ=1.463

Domain size: 15x 2π c/ωpi

Solution above threshold.



Simulation in a small computational domain

Oscillations of the magnetic energy 
fluctuations with a period consistent with 
the ion bounce time

Suggests that particle trapping
is at the origin of oscillations.

The previous theory does not strictly apply to 
this situation, but still humps are formed!

.

Using an Eulerian code
Domain size (15x 2π c/ωpi)

Magnetic hump (and density hole)
resulting from the mirror instability, 

starting from noise.

Amplitude oscillations, associated with particle trapping

Using a PIC code



Early understanding: saturation of mirror modes by relaxation to locally marginal stability
(Kivelson and Southwood 1996, Pantellini 1998).

Qualitative model where particles are divided in two groups
that respond differently to the changing field. 

Trapped particles with large pitch angle 
Passing particles with small pitch angle

In the rising field regions, trapped particles are excluded by the mirror
force, leading to a decrease of the particle pressure (reduction of β┴)
and evolution to marginal stability (with not important change in the
particle energy).

In the well regions, no particle can be excluded.
Some trapped particles are cooled by loosing perpendicular energy
(reduction of the temperature anisotropy).
Large reductions in the field are required in the wells in order to 
cool the trapped population enough to stabilize the system.

This model mostly predicts deep magnetic fields in conditions of marginal stability.

A recent quantitative model (Y. Istomin, O. Pokhotelov, M. Balikhin, PoP, 16, 062905 2009)
takes into account particle trapping and predicts the existence of soliton-like magnetic
holes and nonlinear oscillatory solutions in the form of cnoidal waves.

All these approaches fail to explain the formation of magnetic humps



• Numerical integrations in a large domain of VM equations demonstrate the existence, when the mirror
instability saturates, of  an early phase described by the quasi-linear theory, followed by a regime where
coherent structures form.

• In a small domain, no quasi-linear phase but significant oscillations due to particle trapping. 

• The structures resulting from the saturation of the mirror instabilty are magnetic humps, in small
and large domains.

• Stable solutions in the form of large-amplitude magnetic holes also exist both above and below threshold. 

• Reductive perturbative expansion  of  VM eqs near threshold leads, for a bi-Maxwellian (and probably
any smooth) equilibrium distribution function, to an equation with a finite-time singularity, signature of a
subcritical bifurcation. 

• An early quasi-linear phase introduces a boundary layer for the d.f. near v//=0. As a result, the 
asymptotic equation leads to magnetic humps whose amplitude saturates at a level that depends
on the strength of the quasi-linear resonance.

5. Summary

Refs: Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007); JETP Letters 86, 637 (2008)
Califano, Hellinger, Kuznetsov, Passot, Sulem & Travnicek, JGR 113, A08219 (2008).
Hellinger, Kuznetsov, Passot, Sulem & Travnicek,GRL, 36, L06103, 2009.
Génot, Budbik, Hellinger, Passot, Belmont, Travnicek, Sulem, Lucek & Dandouras, Ann. Geophys. 27, 601 (2009). 


