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1. Satellite observations
Magnetic structures (humps or holes)
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Figure 1. Each panel shows 3 hours of Galileo magnetometer field magnitude data (solid black line),
appropriate quartiles (dotted), and the median value (solid gray) computed using 20 min sliding windows
with single sample shifts. The panels show examples of “peaks™ (top), “dips” (middle), and “other™
(bottom) structures.

Joy etal. J. Geophys. Res. 111, A12212 (2006) Usually viewed as nonlinear mirror modes

Structures observed in the Jovian magnetosheath



Main properties of observed structures:

e Structures are quasi-static in the plasma frame (propagating drift mirror modes exist in density gradients)

« Small change in the magnetic field direction

* Observed in regions displaying: ion temperature anisotropy 15 > T. H
B of a few units
(conditions met under the effect of plasma compression in front of the magnetopause).
Not always in a mirror unstable regime.

* Magnetic fluctuations mostly affect the parallel component.
* Cigar-like structures, quasi-parallel to the ambient field, with a transverse scale of a few Larmor radii.

* Density is anticorrelated with magnetic field amplitude.

Origin of these structures is still not fully understood.

Usually viewed as nonlinearly saturated states of the mirror instability,
or possibly, in particular in the solar wind, remnants of mirror structures
created upstream of the point of observation (Winterhalter et al. 1995).

Other recent interpretations:

* trains of slow-mode magnetosonic solitons (Stasiewicz 2004)

» mirror instability is the trigger, generating high amplitude fluctuations that evolve
such as to become nonlinear solutions of isotropic or anisotropic plasma equations
(Baumgartel, Sauer & Dubinin 2005)
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Hall (1979), Gary (1992), McKean et al. (1992,1994), Southwood and Kivelson (1995),
Pantellini & Schwartz 1995, Pokhotelov et al. (2005 and references therein), Hellinger (2007).
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Figure 3. Distribution of mirror modes of different types T o _;3'(']-39

in the anisotropyv-beta plane. Red triangles denote peaks
with P > 0.3, green squares dips (P < —0.6) and the
remaining ambiguous mirror mode events are marked by
grey stars.

Soucek, Lucek & Dandouras, JGR 113, A04203 (2008)

“Peaks are typically observed in an unstable plasma, while mirror structures
observed deep within the stable region appear almost exclusively as dips”.

Solar wind: “Although the plasma surrounding the holes was generally
stable against the mirror instability, there are indications that the holes
may have been remnants of mirror mode structures created upstream

of the points of observation” (Winterhalter et al. 1995).
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2. Numerical simulations of the Vlasov-Maxwell equations
Shed light on the time evolution and on the origin of the structures.

Mirror unstable regime near threshold in alarge domain

1D simulation:  frp = 72.8° (most unstable direction)
With a PIC code in a large domain: ;Efp” =103, = 1.857 3. = 1072
Domain size= 2048 c/wpi
Growth rate: 0.005 Qp

1024 cells with 500 000 particles/cell £ = 200003 £ = 10000 €232
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Color plot of the fluctuations of the magnetic field kva/iy kva/

component B, perpendicular to the direction ¢ of

spatial variation, as a function of ¢ and t. A Iarge number of modes are excited

Humps form and undergo coarsening,.



First mechanism suggested for saturation: based on quasi-linear theory (Shapiro & Shevchenko 1963)

» Assumes space homogeneity (thus absence of coherent structures); can thus be valid at early times only.
* Requires many modes in interaction, thus an extended domain.

» Mainly associated with a diffusion process in velocity space (dominantly along the ambient field).

of 9 af 10 Of

a
Ul (DJ_H_ + DLL_f>

- — D 1
dt - Oy Il dvy vy dug | ov |
2
[)13|2 fYk:k7ﬁ ~
Dy = vt | = .
Il 1 g A kﬁ“ﬁ T ,\/i bk' OBz(k)/BO
Yl Ok _ ., b
Dyy=-2—D ~, — [kVE
1 [ ot
Dy, =] “k—|bk|2 '
Loy linear growth rate Hellinger & al., GRL, 36, L06103, (2009)
fluctuating magnetic energy  distance from threshold maximum growth rate
108 ; 0.08 T T T 1.2.10* T T T T T T
10°] I 1.0-104F
: 0.06
107 3 [ 8.0-10°}
N 107f ~ 0.04 j:_; 5.0-10°}
; - g
10'”;* I " 40410%)
0.02+ :
107k I 2.0-10°F
10'14-‘..|".|..‘|...\‘..|H.|..‘: U.GG-...\‘..|.‘.|..‘\...m..|.” [0 ] I T R AT AT T R
0 4.0-10* 8.0-10* 1.2-10° 0 4.0-10° 8.0-10* 1.2+10° 0 4.0-10* 8.0-10* 1.2-10°

02 £} 02



Perturbation of the space-averaged distribution function

QL theory
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PIC simulation in an extended domain near threshold Magnetic energy fluctuations
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a signature that quasi-linear theory ceases to apply when

coherent structures begin to form.

The instability continues to take place while '< 0, due to
hydrodynamic-type nonlinear effects.

Positive skewness: magnetic humps.

No relaxation to marginal stability regime



3. Modeling the structure formation
A. Asymptotic expansion (near a bi-Maxwellian equilibrium)

Close to threshold, the linearly unstable mirror modes are confined to large scales.

Nonlinear dynamics amenable to a reductive perturbative expansion that isolates
mirror modes (Kuznetsov, Passot & Sulem, PRL, 98, 235003 ,2007).

At large scales, kinetic effects (Landau damping and finite Larmor radius
corrections) are weak and contribute only linearly in the weakly nonlinear
regime supposed to develop near threshold.

This argument is validated by a systematic reductive perturbative analysis
performed on the Vlasov-Maxwell system (Califano et al. JGR 113, A08212, 2008).

For the sake of simplicity, assume cold electrons with negligible inertia.



Equation governing the proton velocity (derived from Vlasov equation)
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Assuming cold electrons with no inertia:
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In order to address the asymptotic regime, we rescale the independent variables in the
form X = /ex, Y = /ey, Z = ez, T = £°t, where ¢ measures the distance to threshold,

and expand any field ¢ in the form
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the ion-velocity equation reduces to a pressure balance equation
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The vanishing of the contribution of zeroth order reproduces the instability threshold.
Dynamical equation obtained at the next order.



Dynamical equation (assuming a bi-Maxwellian equilibrium):
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Here, 0 = £1, depending on the positive or negative sign of the
threshold parameter 3, /8 —1 —1/3,.

When the spatial variation are limited to a direction making a fixed angle with the ambient field
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where = 1s the coordinate along the direction of variation.




Finite time blowup of the solution

When spatial variations are limited to a direction

making a fixed angle with the ambient field: Wave-particle resonance provides the

o - )2 .
P Re Ka +— ) U— 3U3]

=2

Solution profile near collapse

Integration above threshold (0>1), with
as initial conditions a sine function
involving several wavelengths.

After an initial phase of linear instability,
formation of a dominant magnetic hole.
After a while, solution blows up

with a self-similar behavior.

trigger mechanism leading to the linear
instability.

Hydrodynamic nonlinearities reinforce the
instability, leading to collapse.

Linear FLR effects arrest the linear
instability at small scales but cannot cope
with hydrodynamic nonlineatrities.

At the level of Vlasov-Maxwell egs,

the singularity is the signature of the
formation of finite-amplitude structures,
through a subcritical bifurcation that cannot be
captured perturbatively.

Below threshold, this equation
has the same stationary solutions
as the KdV equation, but they are
linearly unstable.

Kuznetsov, Passot & Sulem, PRL 98, 235003 (2007);
JETP Letters, 86, 637, 2007)

Magnetic holes and not humps are obtained !



Reductive perturbative expansion
performed near bi-Maxwelian equilibrium,
retaining only linear kinetic effects,
predicts that the nonlinear development of the mirror instability
leads to the formation of magnetic holes.

At least one of the two assumptions (bi-Maxwelian
equilibrium,linear kinetic effects) is to be challenged.




B. Extension of the reductive perturbative expansion:

The reductive perturbative expansion near threshold can be extended to any (frozen) smooth
equilibrium distribution function f(vﬁ,zu) provided » > 0, o> 0, and v > 0).
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A L (normalized parallel
magnetic perturbation)

A 3 93 _ﬁL 1 neglecting the contribution of resonant particles
= Oa — 20r _2 + § to A in the case of a smooth distribution fonction
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R flf’i dzf . For a bi Maxwe_lllan dlstrlputlon B = 3/2@_ /5”., thus A >0 and

with 55 = - 8 O(02)? d”v  the model predicts formation of magnetic hol€s, while humps are
PB Y observed in the simulations.

This suggests that the early-time QL dynamics affects the forthcoming formation of the structures.

We are thus led to modify eq.(A) by assuming that the coefficients are not frozen at their initial
values but are evaluated from the instantaneous distribution function given by the QL
diffusion equation.

For consistency, the contribution of resonant particles are to be retained in the estimate of the nonlinear

coupling constant.
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C. Properties and simulations of the model equation

Starting from a quasi-singular distribution function resulting from the QL evolution,
a systematic expansion leads to a 1D equation which, after rescaling, reads:

_ 1 _adn?
ob=— Ha, )(ob+ 10 b - 3sb?)

where o=+1 (supercritical) or -1 (subcritical)
s=+1 (near a Maxwellian distribution)

or s=-1 (due to QL flattening of distribution function)
The parameters a and p are taken positive

The denominator is reminiscent (in a small amplitude expansion) of the
arctan trapping correction suggested by Pokhotelov et al. (JGR 2008).
Note however that the physical mechanism is here different.

The denominator can arrest the collapse (for a and p large enough) in the form of:
- magnetic hole solitons for s=+1
- magnetic hump solitons for s=-1



Saturated solutions in a supercritical regime

The numerical integration of the model equation (with y=0.01, 0=1, s=-1, a=1)
starting from a sine wave of amplitude 0.01 in a domain of size 21 leads to a
guasi-stationary hump solution with a negative value of b in the background.
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E e W 0 0 M e w0 I 1
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Note that the amplitude of the structures is prescribed by the strength of the
early time QL resonance: larger amplitudes are obtained when these
effects are small.



Saturation mechanism:
this problem is numerically (and mathematically) difficult
and is still under investigation. Extremely small time steps are required.

Existence and stability of the soliton profile:
As the nonlinear solution grows in amplitude, <b> gradually becomes negative;
at a certain point, the coefficient of the growth term for the fluctuations about <b>

becomes negative, putting the system in a situation similar to the subcritical regime.

The solution is then attracted to the negative of the KdV soliton
with an amplitude b,=1/a.
It is stable due to the presence of the denominator term.

For s=+1, hole solutions are obtained (change b into —b). They are physically relevant when
QL effects are subdominant, even in a supercritical regime.

When starting with random initial conditions, which lead to a large number
of humps, a coarsening phenomenon is observed.



Subcritical solutions

When o=-1 with large initial data, no quasi-linear phase; the d.f. remains
Gaussian (s=+1). The denominator correction (with a small) needs to be
retained due to the large amplitudes.

Magnetic holes are thus obtained.
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Formation of magnetic holes when starting with large initial perturbations

Vlasov simulation in a small domain Domain size: 15x 21 c/wy,

Subcritical solutions (i.e. below threshold)
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Simulation in a small computational domain

Using a PIC code
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Oscillations of the magnetic energy
fluctuations with a period consistent with
the ion bounce time

wiy = (1/2)vi, Kj(6B/ Bo)
Suggests that particle trapping

Is at the origin of oscillations.

The previous theory does not strictly apply to
this situation, but still humps are formed!

Using an Eulerian code
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Early understanding: saturation of mirror modes by relaxation to locally marginal stability
(Kivelson and Southwood 1996, Pantellini 1998).

Qualitative model where particles are divided in two groups
that respond differently to the changing field.

Trapped particles with large pitch angle

_ -1
Passing particles with small pitch angle & = tan (VL/VH)

AVi>0 AVy<O AVn>0
An,Ap,<O  4an,4p>0  An, 4p,<0

In the rising field regions, trapped particles are excluded by the mirror
force, leading to a decrease of the particle pressure (reduction of 3,)
and evolution to marginal stability (with not important change in the

particle energy). mﬁﬁ mmm
W
In the well regions, no particle can be excluded. 4p, An>0 4p,An<O 4p,an>0
Some trapped patrticles are cooled by loosing perpendicular energy Figre 1. A schematic illustration of the distinction between the
_ - orbits of untrapped (upper panel} and trapped (lower panel)
(reduction of _the temperature anlsotro_py)._ _ particles in a mirror geometry. Local velocity, density. and
Large reductions in the field are required in the wells in order to perpendicular pressure perturbations for adiabatic responses are

cool the trapped population enough to stabilize the system. sharacterized below each panel.

This model mostly predicts deep magnetic fields in conditions of marginal stability.

A recent quantitative model (Y. Istomin, O. Pokhotelov, M. Balikhin, PoP, 16, 062905 2009)
takes into account particle trapping and predicts the existence of soliton-like magnetic
holes and nonlinear oscillatory solutions in the form of cnoidal waves.

All these approaches fail to explain the formation of magnetic humps



5. Summary

* Numerical integrations in a large domain of VM equations demonstrate the existence, when the mirror
instability saturates, of an early phase described by the quasi-linear theory, followed by a regime where
coherent structures form.

* In a small domain, no quasi-linear phase but significant oscillations due to particle trapping.

* The structures resulting from the saturation of the mirror instabilty are magnetic humps, in small
and large domains.

« Stable solutions in the form of large-amplitude magnetic holes also exist both above and below threshold.

* Reductive perturbative expansion of VM egs near threshold leads, for a bi-Maxwellian (and probably
any smooth) equilibrium distribution function, to an equation with a finite-time singularity, signature of a
subcritical bifurcation.

« An early quasi-linear phase introduces a boundary layer for the d.f. near v,=0. As a result, the
asymptotic equation leads to magnetic humps whose amplitude saturates at a level that depends
on the strength of the quasi-linear resonance.
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