

2052-9

Summer College on Plasma Physics

10 - 28 August 2009

The Power of Plasmas

F. Wagner Max-Planck-Institut für Plasmaphysik

Germany

The Power of Plasmas

F. Wagner Max-Planck-Institut für Plasmaphysik EURATOM Association Greifswald, Germany

0.5 GW fusion power

The domain of plasmas

ICTP2009, Trieste

Temperature (eV)

Temperature (eV)

Plasmas are open systems and far from equilibrium:

Plasmas are strongly turbulent.

ICTP2009, Trieste

Transport in magnetically confined systems is mostly caused by turbulence, which can be driven by pressure gradients and which non-linearly evolves.

> S.J. Zweben *et al.,* Phys. Plasmas **9** (2002) 1981

Plasmas are open systems and far from equilibrium:

Plasmas are strongly turbulent.

Transport in magnetically confined systems is mostly caused by turbulence, which can be driven by pressure gradients and which non-linearly evolves.

> S.J. Zweben *et al.,* Phys. Plasmas **9** (2002) 1981 6

Self-organisation of Plasmas: spatial structures in low temperature plasmas

Simple arrangement for dielectric barrier discharge

The dielectric barrier prevents arc development

The discharge current does not organise itself with homogeneous current density

The planar gas-discharge systems self-organises in patterns; control parameter is the current. The non-linear element is the negative conductivity of the discharge

Research Group Purwins, UNI Münster, 2005

Universal behaviour in spatially self-organized systems

Spirals as examples for pattern formation in nonlinear dissipative systems

All cases can be described by complex Ginzburg-Landau equations; the homogeneous solution is unstable.

It transits by a Hopf-Turing bifurcation into an inhomogeneous state.

Self-organisation of toroidal confinement plasmas

The H-mode transition

Improved confinement regime develops spontaneously

Present understanding:

Plasma turbulence generates poloidal Flow structures (zonal flows) These flows are radially sheared.

In the sheared flow, turbulence is decorrelated and suppressed

Movie of H-mode transition of MAST (UK)

10

Movie of H-mode transition of MAST (UK)

11

Universal behaviour in dynamically self-organized systems

Formation of large-scale flows from turbulence via RS

- in laboratory experiments,
- the sonic wind in gases,
- meandering flows in oceans, Jet stream, in the ionosphere e.g. Rossby waves (Coriolis force instead of Lorentz force)
- in the sun

Application potential of plasmas

Topics and issues:

surface cleaning surface structuring and etching

surface depositions

chemistry with non-thermal electron distributions light emission

functional surfaces, bio-functional surfaces plasma de-contamination

Physics The plasma boundary

Perpendicularly impinging energetic ions

Low-temperature plasma applications

hydrophobic treated textiles (photo: fmt Wuppertal)

PVD coated gas turbine blade photo: RWTH Aachen

Coating of tools by plasma vapour deposition (photo: Metaplas Ionon)

 $1 \, \mu m$ Silicon etching

High-power light sources

Low power plasma screen

 A variety of atomic and molecular emitters are available (VUV ~ IR)
Array can be operated continuously at normal gas pressures at power loadings exceeding 100 kW/cm²

J. G. Eden, University of Illinois

hole plasma in a semiconductor

using nanotubes for small scales

-Microcavities of dimension λ_{D}

New trends: plasma techniques at the interface to medicine

plasma medicine

- tissue treatment
- wound healing
- skin disease treatment

plasma decontamination

- packaging materials
- medical devices
- powders, pharmaceutics

biofunctional surfaces

- bone implants (joints, teeth)
- tendons and ligaments
- vascular grafts
- stents
- heart valves

2. Topic: Strongly coupled plasmas

Production of high pressures (100 Mbar) with gas-guns or magnetic flyer plates

Pressure induced "cold" ionisation (r_{WS} < a₀; density >> solid-state density)

Determination of the equation of state (EOS) for extreme material conditions at high pressure

Transition of insulators into metallic state

Transition of metals into plasma state

Metallic and superconducting hydrogen

Electrical conductivity of hydrogen under strong pressure (V. Fortov)

Another strongly coupled system: Dusty plasmas

Topics and issues:

Dust particles, μm-size, suspended in a plasma

T_e∼ eV

 n_{e} ~ 10¹⁹ m⁻³

Dust charges up to 10⁴ e⁻

Physics:

Wigner crystal for Γ > few x 100 Lattice constant < mm

Experimental set-up

dust lattice at different occupation numbers

Rotation of crystals

Rigid rotation when occupation number fits

00

0

104 T (eV)

sheared rotation when occupation number does not fit

A.Melzer, EMAU, Greifswald

Rotation of crystals

Rigid rotation when occupation number fits

00

0

104 T (eV)

sheared rotation when occupation number does not fit

A.Melzer, EMAU, Greifswald

No direct fusion potential: Rayleigh-Taylor instabilities easily develop because the heavy fluid (plasma) is accelerated by the light fluid (field)

T W L Sanford, Sandia

ICTP2009, Trieste

InterpretendedInterpretendedImage: Complexity of the second sec

By the jxB force the plasma is compressed on axis (mm Ø)

Compression in 2 stages:

Ø 20-40 mm

(1) slow ablation of wire; radial density re-distribution

(2) rapid implosion (snow-plough)

wires

Shock energy into radiation

On stagnation, short, intense soft x-ray pulse of ~290 TW, 1.8MJ, in 4 ns from the Z-device at Sandia => strongest X-ray source

30 mm

Application as ICF driver

DD neutron pulse

World record neutron yield from D_2 capsule:

3.4x10¹⁰ thermonuclear neutrons

M.K. Matzen et al. PPCF 41, A175, 1999

Applications: SX source as driver for ICF Powerful radiation source for X-radiogrphy EOS studies at dense plasmas Laboratory astro-physics e.g. mimicking axial jets at high Mach numbers

Open issues Power balance: radiation power "too" large Equilibrium: The state is long-lived facing the balance of kinetic and magnetic pressure High ion temperatures: What is the heating mechanism (viscous heating due to m=0 turbulence ?)

4. Topic: Table top plasma accelerators

4. Topic: Table top plasma accelerators

Topic and issues:

Excitation of plasma wave => longitudinal E-field

- by charged particle beam (electrons, positrons)
- by intense laser (ponderomotive force: $F_p \sim e^2 \nabla E^2 / m_e \omega^2$)

Large electric field gradients develop which accelerate charged particles

Relativistic plasma wave: $v_{phase} \sim c \Rightarrow v_{particle}$

Physics of laser-plasma accelerators

Laser interaction with electrons: $a = eA/mc^2 = normalized laser amplitude; A=-cE)$

10⁴ 10⁴ 10⁵ 10⁶ 10⁶

Status of particle acceleration

Proton energy spectrum

Proton acceleration: beam onto foil => makes E-field gradient stationary => proton interaction

Applications:

production of neutrons, positrons, coherent, incoherent X-rays photo-nuclear physics, generation of isotopes, medical applications, injection for conventional accelerators,

Progress: optimisation via geometry

 $\begin{array}{ll} \Delta L_{\text{Laser}} \thicksim \lambda_{\text{plasma}}/2 & \text{focus} \thicksim \lambda_{\text{plasma}} \\ \text{More monoenergetic electrons, less thermal background} \\ \text{Strongly reduced secondary radiation} \end{array}$

5. Topic: Inertial confinement fusion (ICF)

T (eV)

1010

10⁶

10⁴

 10^{2}

10⁰

10-2

105

Topics and issues:

To compress and heat a small ($R_o \sim 2mm$) solid D –T pellet by lasers, beams, or X-rays from a Z-pinch such that they ignite and deliver fusion energy.

The physics of the conventional approach: Ignition via central hot-spot formation

10¹⁵

10²⁰

Hot-spot development pressure: 250 Gbar p_{therm}/p_{degen} ~ 5 Core heating by confined α -particles

n (m⁻³)

10³⁰

Burn wave propagates outward into shell of high n Indirect drive

target

NIF and LMJ facilities

Recent photos from NIF: amplifier section https://lasers.linl.gov/multimedia/photo_gallery

Copyright CEA 2008

NIF Target chamber

LMJ: 240 lasers 3rd harmonic of Nd-Yag 1.8 MJ -> 20 MJ thermonuclear yield 550 TW

self-focussing (via relativistically modified index of refraction)

$$n_R = (1 - \omega_{po}^2 / \gamma \omega_L^2)^{1/2}$$

 $\omega_L = \omega_D$

Laser intensity 10²⁰W/cm²; radiation pressure: 30 Gbar relativistic electrons 5 MeV, 100 MA/cm²₃₇ heat the core, creating a fusion burn wave.

Fast ignition: results

6. Topic: Fusion and magnetic confinement

Fusion reaction:

D + T → ⁴He + n + 17.6 MeV

0.08 g D und 0.2 g Li U. Samm, FZJ

Magnetic confinement

in toroidal systems

⊥ confinement: gyration II confinement: torus geometry

Tokamak

The basis of toroidal confinement

Toroidal geometry: no end losses BUT Vertical drift of particles in inhomogeneous field: B ~ 1/R Helical magnetic field line:

 B_{Φ} : toroidal field (external)

 B_{Θ} : poloidal field (external, internal)

Rough estimate of collisional transport in magnetised plasmas

 $D = \Delta x^2 / 2 \Delta t$ $\begin{array}{l} \parallel \mathsf{B}: \mathsf{D}_{\parallel} \thicksim \lambda^2 / \tau_{cb} \\ \bot \mathsf{B}: \mathsf{D}_{\perp} \thicksim \rho_{\mathsf{L}}^2 / \tau_{cb} \end{array}$ D_{||} ~ 10¹º D_⊥ $\tau_{\rm E} \sim a^2/D$ size or thermal insulation

Two toroidal confinement systems

1. Tokamak

I_p induced (by transformer)

The JET and ASDEX-Up tokamaks

ASDEX-Upgrade IPP Garching

ICTP2009, Trieste

IPP

The JET tokamak (inside)

10 ⁴ 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ³ 10 ⁴ 10 ⁴ 10 ⁴ 10 ⁴ 10 ² 10 ⁴ 10 ⁴ 10 ⁴ 10 ⁵ 10 ⁴ 10 ⁵ 10	ITER	ICTP2009, Trieste

A fusion plasma has to fulfil many physics requirements simultaneously: equilibrium, stability, "tamed" turbulence (H-mode operation), cleanliness, exhaust of helium, heating to 15 keV, steady-state operation...

ITER design elaborated by an international partnership:

Europe, Russia, Japan, Korea, China, USA, India

ITER will produce 500 MW of fusion power for 30 min; $Q \ge 10$

ITER will provide fusion technology:

 $Nb_{3}Ti$ -superconductivity, T-breeding, high-heatflux components,

heating technology...

ITER will clarify remaining open physics issues:

transport and stability with 3.5 MeV α -particles, He exhaust, burn control... ITER operation will start around 2018

The ITER site – as it once will be

Tyrrhenia

2. Stellarator

Tokamak and stellarator are complementary

- in the tokamak, the current flows in the plasma
- in the stellarator, it flows in the coils
- the tokamak is pulsed
- the stellarator is for steady-state operation
- the tokamak can develop detrimental instabilities
- the stellarator is not 2-dimensional

Concept improvement: the stellarator

Magnetic equilibrium by twisted magnetic field lines

Ampere's law Tokamak: **curl B** = $\mu_0 \mathbf{j}$ 2D sufficient confinement BUT: difficult to operate under steady-state (transformer) current driven instabilities Stellarator: curl B = 0🛑 3D steady-state operation quiescent nature BUT: no continuous symmetry no associated constant of motion 50

insufficient confinement

The Wendelstein 7-X stellarator

Optimisation of a 3D toroidal system: A manifestation of computational physics Goal: Improvement of particle and energy confinement (+ 6 other criteria) Method: Plasma description in magnetic coordinates (field lines appear straight) Recognition: The particle guiding centres depend on **|B|** only Discovery: **|B|** can be made 2D in 3D geometry -> quasi-symmetric systems

The freedom of 3-d

Presentation of desired field properties in combination of spatial Fourier coefficients B_{mn}

Improvement of confinement: $B_{01} \sim -(B_{10} + B_{11})$ No bootstrap current:

 $B_{10} = 0.5 B_{11}$

 B_{10} = toroidal-, B_{11} = helical-, B_{01} = mirror field component

Assembly status of W7-X

Achievements in magnetic confinement

The 16.1 MW DT discharge of JET

Low temperature plasmas:

G. Kroesen, Uni Eindhoven K.-D. Weltmann, INP, Greifswald H.G. Purwins, UNI Münster

Laser Plasmas:

J. Meyer-ter-Vehn, MPQ, Garching

V. Tikhonchuk, LMI, Bordeau

Strongly coupled plasmas:

A. Melzer, EMAU, Greifswald