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Outline 

•� Demonstrate Development of “Weak” 

Turbulence from Drift Waves & Onset of Zonal 

Flows 

•� Study Nonlinear dynamics of coupled DWT/ZF 

system in simple system 

•� Show evidence for a non-diffusive turbulent stress 

at plasma boundary acting to drive rotation 

•� Demonstrate Critical Gradient dynamics of the 

system 

� SIMPLE PLASMA SYSTEM EXHIBITS THREE KEY 

NONLINEAR DYNAMICAL PROCESSES THOUGHT 

TO OCCUR IN FUSION SYSTEMS 



CSDX�
Controlled Shear De-Correlation Experiment 

CSDX parameter                     Typical value   

Gas pressure                   0.5 - few mTorr    

Te              ~ 3 eV   

Ti                       ~ 0.7 eV   

ne                      1-10 x 1012 cm-3   

Source (Helicon 13.56 MHz)  1500W (typically) 

Magnetic Field   Up to ~ 1000 G   

Multi-tip Langmuir probe was inserted in this port 

m=0 Helicon Plasma Source  

RF  

source 

Exit 

Pump 

Ar gas injection 

~1m 
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Dimensionless Scales 
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CSDX�

DEVELOPMENT OF  

DRIFT WAVES 



CSDX�

Density Electron Temperature 

Source Width�

Equilibrium Profiles Evolve as B Field Increases in 
CSDX Helicon Plasma �

Source Width�

Burin et al, May 2005 PoP�
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Typical Result for B>Bcrit 

N0 and  N1 vs. radius 

N0 and N1 vs. B 
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Wave at Onset Consistent w/ Collisional Drift Wave 
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Linear Eigenmodes of DW w/ Flow Shear Match Observations 

Near Onset 

Burin et al, May 2005 PoP�
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Close to Onset Measured Dispersion Agrees with Linear Theory 

Burin Phys. Plasmas 2005 
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A Few Useful Tools from  

Digital Signal 

Processing 
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Correlation Functions & Power Spectra: 

Inter-relation Between Two Signals: coherence and crossphase 

Linear Signal Processing Gives Average Spatio-temporal Scales of TIME STATIONARY 

Turbulence 
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Example:  Collisional Drift Turbulence Model (Hasegawa-Wakatani 1983) 

Internal and Kinetic Energies Defined As 

Nonlinear Energy Transfer From Cross-Bispectrum: 

Nonlinear Energy Transfer Comes from 3rd Order Spectrum: 
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Rate and Direction of Energy Transfer Determined by 

BiSpectrum 

b̂2 �1,�2( ) =
B �1 + �2( )

X �1( ) X �2( )
2

X* �1 + �2( )
2

; 0 < b̂ < 1

B �1,�2( ) = X �1( ) X �2( ) X* �1 + �2( )

� �1,�2( ) � Tan�1
Im B �1,�2( )�� 	
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Energy Transfer Direction and Rate: 

BiPhase Determines Phase Delay Between Interacting Waves: 

Degree of Phase Coherence Determined by BiCoherence 

Bi-spectrum Defined As 
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DEVELOPMENT OF  

DRIFT TURBULENCE FROM 

LINEAR DRIFT WAVES 
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�nu
�t

+ ui�nu = RHS

Keep Convective Derivative in Eqn’s 

Origins of Nonlinear DW Dynamics 
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In Fourier Domain (I.e. waves) Introduces Convolution in (�,k), e.g.  
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Wave-Wave Coupling in Drift Wave Experiments 

Chu et al Phys. Fluids 1973 

3-Wave Resonance Criteria 

Was Satisfied: 

� = �1 ± �2

k = k1 ± k2
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DEVELOPMENT OF DRIFT TURBULENCE FROM 

LINEAR DRIFT WAVES 

•� Increase Free Energy Source  and/or 

•� Decrease Linear Damping 

•� Two Experiments: 

–�Klinger, 1997:  Increase Free Energy (J||) 

–�Burin, 2005:  Increase            , Decrease μii 

viscous damping 

Ln / �S
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Local k-spectra Are Constructed from 2-Point Measurements 

Find Phase Delay due 

to Propagation 

))()(Re(

))()(Im(

*

1

*

11

2

2

fXfX

fXfX
Tan

�=��

Local Wavenumber 
x

k
local �

��
� =

Build-up Local k-spectra from 

Multiple Realizations: 
Measure Fluctuations at 2 Points: 

Ref:  J.M. Beall et al, J. App. Phys. 1982 

Burin et al, May 2005 PoP�
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Evolution of (�f / kTe)
2   Power Spectrum with Increasing Magnetic Field 

•� Coherent Drift Waves 

Appear at ~400G 

•� Harmonics Develop 

As B Increases 

•� Coherent Modes at 

Intermediate B 

•� Broadband Spectra at 

1kG 

Burin et al, May 2005 PoP�
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3-wave Interaction Increases as Turbulence Develops 

Tynan, PoP 2004 Burin, PoP 2005 



CSDX�
Evolution of Energy Spectrum w/ Magnetic Field 

Low-k Region 

Fills In 

Spectral 

Index Region 
Develops 
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CSDX�
Real and Imaginary Frequencies of Linear 

Eigenmodes 

 



CSDX�
Free Energy Sources Are Known � Can Find Linearly Unstable Region 

•� Include grad-P, 

Vshear Free Energy 

Sources 

•� Include Neutral Flow 

Drag (Effective at high 

k), FLR Damping 

•� Find Stable & 

Unstable Regions 

Implies Energy MUST Be Transferred Into  

Low-k Region Via Nonlinear Processes 

Local Wavenumber 

Tynan et al Nov 2004 PoP�



J.H.Yu, et al., Journal of Nuclear Materials, V363-365, 728, 2007 

Radially Sheared Azimuthal Fluid & Fluctuation 

Propagation Occurs at High B-field 

0.1 Tesla 1.5kW 

3.0mTorr Argon 
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Fast Imaging of DWT Fluctuation Propagation 
CSD
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Radially Sheared Azimuthal Flow & Finite m DWT Fluctuations 
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Evidence that Flow is Driven 

by the Turbulence 
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Estimate Dissipation from Measurements 

Tidl
�a

a

� = 0.7eV

Tgasdl
�a

a

� = 0.4eV

Measure:�

Assume:�
Ti(0) > Ti(a)

Tgas(a) = Twall

μii =
3

10
�i

2� ii

Pgas = ngasTgas = const

μ ii � 4 �104 cm2 /sec

μii(0) > μii(a)

� i0 ~ 6 �103 sec�1

Tynan et al, April 2006 PPCF, 
Holland et al, in press, PRL�

μii � niTi
1/2
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Measured Profile Consistent with Turbulent Momentum Balance 

Tynan et al, April 2006 PPCF, , Holland et al, PRL 2006�
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Tynan et al, April 2006 PPCF, Holland et al, In press, PRL�
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Shear Layer Formation  

in Collisional Drift 

Turbulence Simulations  



CSDX�
•� (2D) Hasegawa-Wakatani model in cylindrical geometry. 

–� Includes ion-neutral flow damping effect , neglects nonlocal (finite s / Ln) 
terms, fixed parallel wavenumber. 

–� Parameters used reflect best estimates for average 
CSDX values:  

•�  s = 1 cm, Ln = 2 cm, || = 1,  = 0.03Cs/Ln,  

•� Dn = 0.01 s
2 Cs/Ln,  = 0.4 s

2 Cs/Ln 

–� Advances eqns by combination of 2nd order RK and 
implicit treatment of diffusive terms (conserves energy to 
within 1%). 
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CSDX�
Iso-Potential Shows Zonal Flow Formation from Drift Vortices 
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–� Simulation uses 64 x 64 pts, results 

insensitive to changes in Dn, ,  

–� Changing Ln to 10 cm does not 

qualitatively affect results 

Simulations Show Zonal Flow Formation  

Vortex Merging 

Time 
Iso-Potential Contours: 
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Numerical Model Reproduces Key Features  

of Experiment and Analysis 

Tynan et al April 2006 PPCF�
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kr
Z = kr

Z r̂u = u�

Z
�

�

Consider a Zonal Flow to Have: 
21 , kkk <<Z

r

corr
ZZ

rZ
tuk >>�� /1~

F.T., Write as KE, and Average Energy Eqn over Z-flow scales: 

where 

NL Energy  

Transfer 

PkZ

turb = Re u�Z

* kZ( ) �u k1( )i�( ) �u
�

k2( )
k1k2
kZ = k1 + k2

�

1

2

� u�Z

2 kZ( )

�t
� PkZ

turb = �μ u�Z

2 kZ( )

�u�

�t
+
� �ur �u�
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= ��dampu�

Usual Reynolds Stress Term in Simplified Momentum Eqn 

(ala Diamond et al. PRL 1994 and others) 

“Radial Transport of  

Angular Momentum” 

Flow Generation from Turbulence:  Fourier Space 
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Flow Generation from Turbulence:  Fourier Space 

•� Free Energy Source 

Releases Energy On One 

Scale 

•� Nonlinear Energy 

Transfer Moves Energy to 

Dissipation Region 

•� Shear Flows Develop Via 

Transfer of Energy to 

LARGE SCALES (small 

k) 
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 G.R. Tynan, 2008 Int'l 

Summer School, KAIST 

Nonlinear Energy Transfer 

Internal energy 
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ẑ � ����

Kinetic energy 



CSDX�
Nonlinear Kinetic Energy Transfer Confirms Turbulence Drive 
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Direct Visualization of Drift Vortex-ZF Interaction 

•� Vortex Born at Grad-

n Max 

•� Moves in r,� plane 

•� Stretched Out by ZF 

•� Merges w ZF 



CSDX�
Outline 

•� Demonstrate Development of “Weak” Turbulence 

from Drift Waves & Onset of Zonal Flows 

•� Study Nonlinear dynamics of coupled DWT/ZF 

system in simple system 

•� Show evidence for a non-diffusive turbulent stress 

at plasma boundary acting to drive rotation 

•� Demonstrate Critical Gradient dynamics of the 

system 

� SIMPLE PLASMA SYSTEM EXHIBITS THREE KEY 

NONLINEAR DYNAMICAL PROCESSES THOUGHT 

TO OCCUR IN FUSION SYSTEMS 



Flow Evolves at Slow Time Scale (250-300Hz) 

Weak shear flow 

Strong 

Shear 

flow 

Z. Yan, PhD Dissertation, UCSD, 2009 



Reynolds Stress Modulated In Phase Coherent 

Manner with ZF 
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Turbulence Kinetic Energy and ZF Energy 

Anti-correlated 

5-250k : 0-2k 

2-5k : 0-2k 

5-250k 

0-2k 

2-5k 

•�Kinetic energy transferred between higher 

frequency turbulence and low frequency flow.   
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Direct Visualization of Turbulent Decorrelation w/ High 

ZF Shearing Rate 

Strong shear Weak shear 

•�  Shear flow decorrelating turbulence structure is observed at 

strong shear case, but not at weak shear case. 



Anti-correlation between Flow Shear and 

Turbulence Radial Correlation Length 

             Shear flow de-correlates turbulent structures 

s

vd
r

dr r
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Correlation between 

and 

radial correlation length  



CSDX�
Outline 

•� Demonstrate Development of “Weak” Turbulence 

from Drift Waves & Onset of Zonal Flows 

•� Study Nonlinear dynamics of coupled DWT/ZF 

system in simple system 

•� Show evidence for a non-diffusive turbulent 

stress at plasma boundary acting to drive 

“intrinsic” rotation 

•� Demonstrate Critical Gradient dynamics of the 

system 

� SIMPLE PLASMA SYSTEM EXHIBITS  KEY 

NONLINEAR DYNAMICAL PROCESSES THOUGHT 

TO OCCUR IN FUSION SYSTEMS 



Finite Nondiffusive Stress at Boundary is Required to 

Drive NET Instrinsic Plasma Rotation: 

� V�

�r
= 0 and V� = 0

� p�
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�t
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� 0
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res���

� V�VV
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Residual 
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Azimuthal momentum balance w/o dissipation: 
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0

a

�Diamond et al,’09 



Synthesize Diffusive Flux from Measurements: 

Measured Turbulence Properties 

Synthesized Diffusive Momentum Flux 



CSDX�
Non-diffusive Stress Localized to Boundary Region 
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Nonlinear Kinetic Energy Transfer into m=0 Flow  

LOCALIZED TO EDGE 

TV�
= V�

* f( ) ˜ v f � f1( ) ��˜ v � f1( )
f <1kHz
f1 > 5kHz

�
Nonlinear K.E. 

Transfer into  
m=0 Flow 

m=0 Flow DRIVEN 

By Turbulence in 
This Region 

m=0 Flow DAMPED 

By Turbulence in 
This Region 



CSDX�
Schematic of Sheared Flow Dynamics 

Z. Yan et al, Submitted for Publication 

Residual Stress 

Diffusive Stress 

Diffusive 

Flux 
Region 

Residual 

Stress Drives 
Flow 



CSDX�
Results Similar to Momentum Transport in Tokamaks 

ALCATOR C-MOD 

EDA L-H Transition 

Rice et al,  Nuc Fusion 2004,  

Lee et al, PRL 2003 

Toroidal Momentum 

Transport Source 
Appears Localized to 

Edge & Diffused/
Convected Inwards 



CSDX�
Outline 

•� Nonlinear dynamics of coupled DWT/ZF 

system in simple system 

•� Evidence for a non-diffusive turbulent 

stress at plasma boundary acting to drive 

rotation 

•� Demonstrate Critical Gradient dynamics of 

the system 
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Magnetic field scaling of shear flow 

•� Equilibrium density 
•� Density fluctuation amplitude 

and radial particle flux 

Z. Yan PhD Dissertation, UCSD 2009 
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Magnetic field scaling of shear flow (2) 

•� Divergence of turbulent Reynolds stress at shear 
layer increase with magnetic fields 

Z. Yan PhD Dissertation, UCSD 2009 



CSDX�Development of Shear Flow w/ B-Field 

•� Shear flow increases with magnetic fields  (~ 700G or 

above) 

Z. Yan PhD Dissertation, UCSD 2009 



CSDX�
Re-casting in terms of Critical Gradient 

�ikmn
2 �mn

2 + � || 1 + kmn
2( ) +� k{ }�mn �� || m

�s

Ln

� i� k

� 

� 
� 

� 

	 

 = 0

Linear Dispersion Relation, including Cylindrical Geometry, Ion Viscosity,  

Ion-Neutral Damping: 

Where damping and wavenumbers are given by: 

� k = � i�n + μii kmn
2( )kmn

2

˜ � r ,� ,t( ) = Re ˜ � mnJm kmnr( )
m, n
� exp i m� ��mnt( ){ }

And Eigenmodes have the form: 
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Critical Gradient Development vs. |B| 
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Evolution of DWT-ZF System vs. Critical Gradient 

Implies “STIFF” Profiles vs Flux 

˜ n rms

˜ n B =0.1T
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CSDX�
Result is Similar to Tokamak Thermal Transport 

Implies “STIFF” Profiles At/Near Critical Gradient 

a

Ln

�
a

Ln crit

˜ � 

˜ � B =0.1T

0 

0.5 

1 

0 1 2 3 4 

CSDX Linear Device DIII-D, Baker PoP’01 



CSDX�
Conclusions 

•� Nonlinear dynamics of coupled DWT/ZF system in 

simple system qualitatively consistent with theory 

•� Show evidence for a non-diffusive turbulent stress 

at plasma boundary & diffusive transport in center 

acting to drive rotation 

•� Demonstrate Critical Gradient dynamics of the 

system 

� SIMPLE PLASMA SYSTEM EXHIBITS 

THREE KEY NONLINEAR DYNAMICAL 

PROCESSES THOUGHT TO OCCUR IN 

FUSION SYSTEMS 


