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GENERAL ASPECTS OF TRANSPORT 
Transport in tokamaks is dominated by low frequency 
turbulence.

Typical correlation lengths are of the order kρ≈0.3 in 
agreement with simulations of drift wave turbulence

Typical frequecies are about two orders of magnitude below the 
ion cyclotron frequency

Turbulence levels are of the order   eφ/T ≈0.01 which is in 
agreement with the mixing length estimate  (Kadomtsev, 
Plasma turbulence Academic press 1965)  
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Saturation level
The mixing length level is given by a balance between 
linear ExB convection (usually a part of the instability 
mechanism) and the nonlinear ExB convection which gives 
transport. Thus:  

Where n is the background density and δn is the perturbation in 
density . This leads to the saturation level  (Kadomtsev 
1965):
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Non-Markovian mixing-length

TT E δγδ ∇⋅= v

The mixing length level is actually the maximum 
saturation level. The balance between the linear growth 
and nonlinear convection gives a more direct estimate:
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Taking space variations as inverse correlation lengths, k, we get
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Saturation

The situation is well illustrated by Fig 1

The mixing length level (1) corresponds to convection going the full way 
around while  the result (2) includes rocking due to the real 
eigenfrequency

Fig 1 
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Saturation

This is seen from the expression for the convective 
perturbation 

nn ∇⋅= ξδ ξ
dt
d

=Evwhere 

(5) 

Now,  combining  (3) with (1) gives: 
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ξ is the ExB displacement  
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Diffusivity

The result (7) was first obtained in a somewhat more general form in
J. Weiland and H. Nordman, Proc. Varenna-Lausanne workshop, 
Chexbres 1988, p451 using the type of derivation outlined here. Later a 
more rigorous derivation was made in A. Zagorodny and J. Weiland, Phys. 
Plasmas 6, 2359 (1999).  
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Now entering the displacements (4) and (5) into 
the convective flux and using Ficks law we get:

(Kadomtsev estimate) 
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Turbulent transport

When we have many waves we have to estimate their total effect.
The estimate (6) was first suggested by Kadomtsev in his book
Plasma turbulence, Academic, 1965.  
Kadomtsev also argued that this would give the total transport when

is   choosen ar the inverse correlation length  and      is the 
corresponding growthrate.  (Nedospasov, Phys. Plasmas 16, 060501
(2009))

rk γ

Fig 2 
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Dominance of smaller eddies in 
correlation length 

Smaller eddies have faster rotation for the same field 
strength  (ExB rotation). They tear apart larger eddies and 
reduce the correlation length 

)(1 φ∇×= e
BEV
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Correlation length

The correlation length L is defined as the scale length of the turbulence 
space dependence. The Fourier representation of the space variation is:

rk
k

⋅∑= ieφφ

and its space variation is: 
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r
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Thus long wavelengths contribute little to the space variation. We thus 
expect the inverse correlation length to be located according to Fig 2 
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Boundary conditions
While the saturation level (4) has the character of maximum 

possible level (wave braking limit), the level (5) was obtained by
balancing linear growth and nonlinear damping. This means 
that the nonlinearity is entirely stabilizing

Entirely stabilizing nonlinearity excludes reflections in k-
space from the boundaries in k

Fig 3 
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Absorbing boundaries in k-space
Since (6) is obtained as a limiting case of (7) it must 
also be restricted to absorbing boundaries in k-space 
However, another way of looking at it is that there is a 
natural source at the fastest growing mode. Reflections
In k-space would introduce another source leading to 
an effective source with an intermediate correlation 
length 

Fig 4 
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Stabilizing mechanisms

Absorbing  mechanisms are mainly
For large k:    Viscocity
For small k:    Zonal flows

Since zonal flows are more efficient in absorbing turbulence the
longer the wavelength gets, turbulence codes have to use a 
sufficiently large box size in order to have absorbing 
boundary for long wavelength

For our reactive fluid model the required box size was about half 
the radius  (Dastgeer et. al. Phys. Plasmas 9, 1565 (2002)).  
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Ion thermal conductivity
With our reactive fluid model, which includes the 
perpendicular fluid resonance,  and assuming Boltzmann 
electrons we then get: 

In addition to the non-Markovian feature included in (7), (8)
also includes off diagonal fluxes and a Doppler shift due to 
the magnetic drift. This is the thermal conductivity obtained in
Weiland, Nordman, Chexbres 1988 and has the same 
normalization as (7) and accordingly also as (6) as suggested 
by Kadomtsev. 
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Turbulence simulations
The result (8) was confirmed within 20% by turbulence 
simulations for a Cartesian geometry in  J. Weiland and H. 
Nordman, Proc. Varenna-Lausanne workshop, Chexbres 
1988 p. 451,  and H. Nordman and J. Weiland, Nuclear 
Fusion 29, 251 (1989)  and for the Cyclone parameters in a 
Connor Hastie Taylor equilibrium in Dastgeer Shaikh, 
Sangeeta Mahajan and Jan Weiland, Phys Plasmas 9, 
1565 (2002).
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Kadomtsev’s estimate

Our result (8) turns into Kadomtsevs estimate when 
non-Markovian and off diagonal effects are ignored. 
This usually does not change the order of magnitude.

It is interesting to compare Kadomtsev’s estimate with  
more recent results. While our diffusivity is somewhat 
smaller than the Kadomtsev prediction the kinetic 
growthrate is smaller.  For the Cyclone case the results 
are, in fact, close.  (Dimits et.al. Phys Plasmas 7, 969 (2000).)
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The Cyclone base case

Fig 5  Comparison of 
linear models for DIII-
D 81499  (H-mode) at 
half radius 

Linear growthrates  Maximum at  kρi = 0.3 ( here ρi = ρs )
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The Cyclone basecase

Fig 6  Comparison of 
transport models for 
DIII-D 81499  (H-
mode) at half radius 



Chalmers University of Technology

Transport level
To recover the IFS-PPPL result for the Cyclone basecase  
with the Kadomtsev formula and the kinetic growthrate 
requires a correlation length about 3 times the wavelength 
of the fastest growing mode

Fig 7 
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Effects of toroidicity

Toroidal effects are very fundamental since they represent the third 
dimension in which the magnetic dield does not confine the plasma

Toroidal effects make Chi grow with radius in a tokamak

Fig 8 

Fig 9
Chi  cylinder 

Fig 10
Chi torus 
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Radial growth of Chi

The toroidal effects (from the fluid closure) in Eq (8) are 
responsible for the radial growth of Chi. 

The fact that toroidal effects cause the radial growth was also 
found in nonlinear kinetic simulations by  M.J. LeBrun, et al. ( Phys. 
Fluids B5, 752 (1993)).

Electron trapping further emphasizes the radial growth.
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Several transport channels

We have above focused on ion thermal transport. Several 
other channels such as electron thermal transport, multiple 
species particle transport and momentum transport can be 
described in similar ways.  Of particular present interest are:

Particle transport

Momentum transport
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Particle transport

A particle pinch has for a long time been needed to understand 
tokamak transport (Wagner and Stroth, Plasma Phys. Control. Fusion 35, 
1321 (1993) ). A particle pinch of the right magnitude was obtained 
by a reactive fluid model including the perpendicular fluid 
resonance due to toroidicity.  (L. Garzotti et. al. Nuclear Fusion 43, 1829 
(2003))

The particle pinch is particularly sensitive to the fluid closure 
and quasilinear kinetic models usually get a too weak particle 
pinch.
This is in agreement with theory indicating that strongly 
nonlinear effects lead to a reactive fluid closure. 
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Momentum transport

( ) ( )i i i i i i i im N U U P eN E U B
t

π∂
+ ⋅∇ = −∇ −∇ ⋅ + + ×

∂

Momentum transport is needed to calculate shear flows
In a plasma.   These may stabilize instabilities  (B. Lehnert
Phys. Fluids 9, 1367 (1966))

where U is the fluid velocity and π is the stress tensor

We will here only consider the toroidal component 
which is well approximated by the parallel.  

(9) 

The fluid momentum equation is written:  
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Toroidal momentum

Again toroidal effects turn out to be very important!

We can proceed along two different  routs. Either we use 
fluid equations like (9) or we use gyrofluid equations. Fluid 
equations are obtained by taking moments of the Vlasov
equation while gyrofluid equations are obtained by taking 
moments of the gyrokinetic equation.

At first we might not expect toroidal effects, other than an 
effect on the parallel modenumber to enter the parallel 
momentum equation.

However, the parallel and perpendicular dynamics are, 
in fact, coupled through toroidal effects!
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Doppler shift

The first inclusion of magnetic drift effects in the parallel 
momentum equation seems to have been in connection with the 
derivation of gyrofluid equations by Waltz, Hammett and 
Dominguez (Phys Fluids B4, 3138 (1992)). Toroidal effects there 
enter as a convective magnetic drift term with a coefficient 2.

Dωωω 2−→ (10) 

This toroidal effect was first included for momentum transport by  
Peeters, Angioni and Strinzi, (Phys. Rev. Lett. 98, 265003 (2007)) and 
by Hahm et. al. (Phys. Plasmas 14, 072302 (2007)).
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Doppler shift  cont.

Since the magnetic drift is not a fluid drift, the Doppler 
shift has to come from the stress tensor in the fluid 
derivation (fluid and gyrofluid equations have to give 
the same result!).
This was verified by Strinzi, Peeters and Weiland 

(Physics of Plasmas 15, 044502 (2008))
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Diagonal transport element

The Diagonal transport element is obtained from ExB 
convective momentum perturbation in the background 
gradient just as for density and temperature transport
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The corresponding ion thermal conductivity is just the 
diagonal part of  (8).
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Prandtl number

The Prandtl number is defined as:

iχχφ /Pr=

It has traditionally been assumed to be close to 1.
As seen from (11) and (12) this will usually be well 
fulfilled for the diagonal components except near 
marginal stability since there

Dir ωω
3
5

=

(13) 

(14) 
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Prandtl number

The ITG mode is close to marginal stability near the axis 
so there the diagonal Prandtl number is substantially 
below 1. 
Since the convective flux is usually stronger for 
momentum than for ion temperature transport, the 
effective Prandtl number is typically between 0.2 and 0.5.
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Convective transport of toroidal  momentum

The convective  transport of  toroidal  momentum has been 
derived from gyrofluid equations by Hahm et.al. Phys Plasmas 14, 
072302 (2007); Peeters et. al. Phys. Rev. Lett 98, 265003 (2007)

We will here follow the recent formulation from fluid 
equations  by Weiland et.al. Nuclear Fusion 49, 065033 (2009)
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Fluid derivation of convective toroidal 
momentum transport

( ) ( )i i i i i i i im N U U P eN E U B
t

π∂
+ ⋅∇ = −∇ −∇ ⋅ + + ×

∂

Convective diamagnetic effects are cancelled by the 
stress tensor

βααβ+=π

The stress tensor π is taken from Classen et. al. Phys. 
Plasmas 7, 3699 (2000). It has the general symmetry property
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Convective momentum transport

The linear perturbation of parallel momentum is then

[ ] )(2 0 φδδ ii
i

Di
Diii eNp

T
Um

UeuU
t

Nm i +∇⋅+∇⋅−=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ (15) 

We here again notice the convective magnetic drift contribution . 
The new part is the last magnetic drift term. It adds to the parallel 
operator and this is the reason for symmetry breaking. As we 
know the plasma flow introduces unsymmetry also in the parallel 
operator. Taking Boltzmann density perturbation gives us a pinch
of the form 2         . This term corresponds to the Coriolis pinch 
of Peeters, Angioni and Strinzi. This term was also recovered by
Hahm (we have only a factor 2 because we use the total magnetic 
drift).

φω UD
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Symmetry breaking effects

The linear velocity perturbation in Fourier space is
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The corresponding flux is calculated as:

>=<Γ
rEvvδ (17) 
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Eigenvalue problem

The eigenvalue problem with a sheared flow is primarily in
the radial direction. We use the direct method of Taylor and 
Wilson  (PPCF 38, 1999 (1996)) and the eigenvalue solution by 
Davydova and Weiland ( Physics of Plasmas 7, 243 (2000)). The 
result is:
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Symmetry breaking

Here KS is due to curvature while the coefficient κ is linear in the 
flowshear. Thus we see that the parallel wavenumber is generated by 
flowshear and toroidicity. Also the toroidicity effect includes the 
background flow.

Preliminary simulations indicate that the right level of 
momentum transport is obtained with this model. No additional 
fudge factor has been introduced
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Conclusions
We have shown the importance of toroidal effects for 
tokamak transport of temperature, density and momentum

All of these but in particular particle transport depend 
strongly on the fluid closure

The fluid closure depends strongly on toroidal effects.

Early estimates of transport by Kadomtsev are amazingly 
good


