

2052-37

Summer College on Plasma Physics

10 - 28 August 2009

Experiments on drift waves

Thomas Klinger Max-Planck-Institut für Plasmaphysik Germany

IPP

Summer College on Plasma Physics

Thomas Klinger

Max-Planck-Institut für Plasmaphysik Greifswald 🅢 – EURATOM Assoziation 🔅

Experiments on drift waves

A selection of basic work

- I. Observation of drift waves
- **II.** Linear drift wave dynamics
- **III.** Drift wave turbulence
- **IV.** Control of drift waves
- V. Summary

IPP

Observation of drift waves

Where?

- Magnetically confined plasmas
- Magnetized laboratory plasmas
- Plasmas in the magnetosphere

How?

- Local probes (n, φ)
- Fast optical cameras + beam or gas puff
- Microwave reflectometry
- Laser-induced flourescence

IPP

Varieties of drift waves

Common features:

- pressure gradient B_0 (density or temperature)
- finite wavelength along B_0 (usually $k_{\parallel} \ll k$)
- electron and ion motions different (2 fluid)

Some variations:

- collisional drift wave (electron resistivity)
- collisionless drift wave (electron-wave resonance)
- current driven drift wave (includes δT_{e})
- rotation shear (KH, Kelvin-Helmholtz instability)
- *B*-field curvature (resistive ballooning mode)
- ion and electron temperature gradient (ITG, ETG)
- trapped electron and ion modes (TEM, TIM, toroidal)
- drift-Alfven waves (DAW, finite magnetic perturbations)

IPP

Earlier work

- Q-machine with K or Cs plasma
- relatively low density n ~ 10⁴...10⁷ m⁻³
- isothermal T_i=T_e=0.25eV

Hendel et al. Phys. Rev. Lett. 18, 439 (1967) and Hendel et al. Phys. Fluids 11, 2426 (1968)

Earlier work

A few comments:

- nearly coherent drift mode
- localized in high ∇n region
- $e\delta\phi/k_bT \approx \delta n/n$ Boltzmann satisfied
- δn **leads** δφ
- expected from linear theory
- collisional drift wave
- destabilized by electron resistivity
- \bullet stabilized by ion viscosity $\bot \textbf{B}$
- unstable when $k{\cdot}\rho_i{\sim}0.5$
- saturated instability

IPP

Max-Planck-Institut für Plasmaphysik

Garching Greifswald

Linear device: VINETA

Advanced probe diagnostics

azimuthal single probe positioning system

azimuthal 64 probe array

IPP

- 2D profiles
- 2D correlation functions

 density fluctuations on azimuthal circumference

Probe array raw data

IPP

Probe array raw data

IPP

Space-time data - mode

IPP

Space-time data - turbulence

50

r=50 mm

mmm

1 2

t/ms

5 10 15

f / kHz

3

IPP

30

2

3

0

0

Basic fluctuation characteristics

Azimuthal mode structure

mode amplitude

- propagation in v_{ed}
- fluctuation $\tilde{n}/n \sim 10\%$

IPP

- mode structure
- azimuthally sheared

Linear global model

eigenvalue equation

Ellis et al., Plasma Physics 22, 1980

IPP

$$\partial_{rr}\phi + \left(\frac{1}{r} - \kappa(r) + RD(r)\right)\partial_{r}\phi + \left(Q(r) - \frac{m^{2}}{r^{2}}\right)\phi = 0$$

with

$$RD(r) := i \frac{1}{\tilde{\omega} + i\nu_{in}} \left(\frac{\omega^* + iP}{\tilde{\omega} - \omega_1 + iP} \right) \nu_{in} r V_p$$

$$Q(r) := \frac{1}{\tilde{\omega} + i\nu_{in}} \left[\omega^* + \frac{m}{r} S_p - \tilde{\omega} \frac{\omega^* + iP}{\tilde{\omega} - \omega_1 + iP} \right]; P = P(\nu_e)$$

- important: v = v(r)
- solve for eigenfrequencies & eigenmodes $\omega = \omega_R + i\omega_I$

 $\omega = \omega_R + i\omega_I$ $\psi(r) = \psi_R(r) + i\psi_I(r)$

IPP

Eigenvalue solutions

sheared mode structure owing to radial collisionality profile

- $k_{\parallel} \neq 0$
- phase shift & axial separation provides parallel wavelength λ_z
- wavelengths group at $L_{//}$ and $2L_{//}$
- important proof to observe really drift waves

Drift wave turbulence spectra

radially resolved power

spectra

- coherent fluctuations
- fluctuations well localized
- spectrum is peaked
- higher harmonics

incoherent fluctuations

IPP

- fluctuations spread
- spectrum is broad
- power-law decrease

increase of plasma current

IPP

increas

of grid bias

A transition to turbulence

space (n)

pace (m)

ace (m)

ace (n)

асе (т)

control parameter

separation grid bias

Max-Planck-Institut für Plasmaphysik

Garching Greifswald

IPP

IPP

IPP

IPP

IPP

"weak" drift wave turbulence

Phase space analysis dimension, stability scenario

T.K. et al., PRL 79, 3913 (1997), Plasma Phys. Controlled Fusion 39, B145 (1997)

Ruelle-Takens-Newhouse (RTN) transition scenario

Newhouse, Ruelle, Takens, Commun. Math. Phys. 64, 35 (1978)

RTN was already found in earlier drift wave models

Wersinger, Finn, Ott, Phys. Fluids 23, 1142 (1980) Biskamp, He, Phys. Fluids 28, 2172 (1985)

Drift wave chaos exists in transition regime only

- turbulence is high-dimensional D~100
- phase space analysis impossible

Quick transition to weakly developed turbulence

Manneville, Dissipative Structures and Weak Turbulence, Academic Press 1990

Control of drift wave turbulence

• mode control by phase shift: $\delta = \pm \frac{2\pi \cdot m}{8}$

• Nyquist limit: m_{ex}< 4

T.K., Schröder, Block et al., Phys. Plasmas 8, 1961 (2001) Schröder, T.K., Block, Piel, Bonhomme, Naulin, Phys. Rev. Lett. 86, 5711 (2001)

Model: rotating current profile

extended HW-model (2d)

1

$$\frac{\partial}{\partial t} \nabla_{\perp}^{2} \phi + \vec{V}_{E \times B} \cdot \nabla \nabla_{\perp}^{2} \phi = \tilde{\sigma} (\phi - n) - S + \mu_{w} \nabla_{\perp}^{4} \phi$$
$$\frac{\partial}{\partial t} n + \vec{V}_{E \times B} \cdot \nabla (N_{0} + n) = \tilde{\sigma} (\phi - n) - S + \mu_{n} \nabla_{\perp}^{2} n$$

$$S = A\sin(\pi r/r_0)\sin(m_d\Theta - \omega_d t)$$

- rotating electron current profile // B
- azimuthal mode structure (m=2)
- radial localisation

Model: rotating current profile

extended HW-model (2d)

$$\frac{\partial}{\partial t} \nabla_{\perp}^{2} \phi + \vec{V}_{E \times B} \cdot \nabla \nabla_{\perp}^{2} \phi = \tilde{\sigma} (\phi - n) - S + \mu_{w} \nabla_{\perp}^{4} \phi$$
$$\frac{\partial}{\partial t} n + \vec{V}_{E \times B} \cdot \nabla (N_{0} + n) = \tilde{\sigma} (\phi - n) - S + \mu_{n} \nabla_{\perp}^{2} n$$

- rotating electron current profile // B
- azimuthal mode structure (m=2)

 $S = A\sin(\pi r/r_0)\sin(m_d\Theta - \omega_d t)$

radial localisation

IPP

Drift wave sync' - model

- no external field
- co-rotating field
- counter-rotating field

IPP

Drift wave sync' - experiment

- no external field
- co-rotating field
- counter-rotating field

IPP

Synchronising turbulence

 $V_{ex} = 20 V$

 $f_{ex} = 8.4 \text{ kHz}$ $m_{ex} = 2$

without external drive

with external drive

Single mode synchronisation

co-rotating

counter-rotating

synchronisation range

IPP

Arnold'd tongues

Summary of findings:

- drift modes can be synchronised
- features very much like driven non-linear oscillator
- space-time modulation required

 mechanism: rotating || B current profile – at rest in wave frame

Exciter schemes

• electric exciter:

electrodes draw current direct contact with plasma

• external magnetic field:

induction of parallel currents no contact with plasma

Conclusions

IPP

- Drift waves are universal instabilities in magnetized plasmas
- Magnetic field geometry plays a significant role (not discussed)
- Linear space-time dynamics is well understood
- Non-linear models usually prodict fully developed turbulence
- Spatio-temporal chaos plays a role in the transition to turbulence
- Taming turbulence:
 - rotating electric (magnetic?) fields
 - synchronised drift mode on expense of turbulence
 - space-time oscillator behavior

Credits to: O. Grulke, C. Schröder (MPI Greifswald); D. Block, A. Piel (U Kiel); G. Bonhomme (U Nancy); V. Naulin (Risoe); T. Dudok de Wit (U Orleans)

Garching Greifswald Max-Planck-Institut für Plasmaphysik IPP **Drift wave basic elements** electric field electron drift plasma potential ion drift У $\odot \mathbf{B}_{o}$ density 3 V₁ 3 ē E (n)LESS DENSE DENSE ISOBAR (g ----) ⊽n₀ 0 В VDe х simplified diagram ambient magnetic field

Intermittency

€ u 0.5 0 0.5 0 0 50 100 r [mm]

Observation:

- quasi-coherent fluctuations in the gradient region
- strongly intermittent fluctuations in the far plasma edge

- conditional correlation analysis used to reconstruct spatiotemporal dynamics
- quasi-coherent m=1 mode pattern dominates
- mode-coupling analysis (bicoherence) suggests inverse energy transfer
- plasma peels-off and is transported into edge region

Phase space

