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I. INTRODUCTION

For a better understanding of linear and weakly nonlinear behavior of fluctuations in
plasmas, the Hamiltonian formulation in the dissipationless limit is quite informative and
to specify the action-angle variables for linear waves is a fundamental issue. However, in
contrast to finite-dimensional Hamiltonian systems and quantum mechanics, linearized equa-
tions for plasmas are generally infinite-dimensional and non-Hermitian. In particular, the
treatment of the continuous spectrum is still nontrivial and highly involved. The continuous
spectrum is known to occur in either fluid or kinetic description of plasmas due to inhomo-
geneities (gradient and shear) of background fields [1–5] and often play a central role in the
linear stability analysis. Recently, we have proposed a general technique for the action-angle
representation by making use of the spectral theory [6, 7], which is applicable even in the
presence of the continuous spectrum. This lecture note provides a short review of some
requisite Hamiltonian theory and introduces our method from a renewed point of view.

The simplest example of the action-angle variables would be a single Harmonic oscillator,
whose Hamiltonian is given by

H =ω
q2 + p2

2
= ωµ (1)

in terms of the canonical coordinate q and momentum p, where ω corresponds to the fre-
quency of the oscillation. In the rightmost expression, an action variable µ = (q2 +p2)/2 has
already appeared. By introducing an angle variable as θ(t) = ωt+θ0 with an appropriate ini-
tial value θ0, the solution may be written as q(t) =

√
2µRe[e−iθ(t)] and p(t) =

√
2µIm[e−iθ(t)].

Thus, the angle variable indicates the phase angle of oscillation, whereas the action variable
measures the amplitude in such a way that the action variable multiplied by the frequency
amounts to the modal energy.

For the case of linear waves in plasmas, a care is needed to evaluate the action variable,
since the canonical variables (q, p) are not obvious from the fluid and kinetic equations.
These systems are known to be noncanonical and a certain kinematical (or topological) con-
straint on dynamics, so-called the dynamical accessibility, must be taken into account [8].
For example, the continuity equation imposes the mass conservation law on the hydrody-
namic motion. If a linear perturbation violates the mass conservation law, such a perturbed
state is not dynamically accessible from the reference state. Then, we cannot expect the
perturbation to behave like the canonical variables (q, p). On the other hand, if an initial
perturbation is assumed to satisfy all the kinematical conservation laws, the perturbed state
would be dynamically accessible and the subsequent wave would have the same energy ex-
pression as (1). Note that, however, the wave generally involves multiple eigenmodes as
well as continuum modes. For simplicity, let us consider the situation that all modes are
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neutrally stable. In this note, we will see that the wave energy is formally represented by

H̃ =

∫
R

ωµ(ω)dω, (2)

where µ(ω) represents the frequency spectrum of the wave action. For the case of discrete
spectra at {ωn ∈ R, n = 1, 2, . . . }, we simply observe the corresponding delta functions
µ(ω) = µnδ(ω−ωn) and obtain H̃ =

∑
n ωnµn, where µn, n = 1, 2, . . . , correspond to action

variables for eigenmodes. Therefore, nonzero distribution of µ(ω) on a continuous spectrum
is understood as uncountable set of action variables for a continuum mode. The derivation
of µ(ω) has been performed in the cases of electrostatic oscillation [9] and parallel shear
flow [10]. Our method can reproduce them and apply to more complicated problems [6, 7].

In general, the wave energy can take negative value, in which case the corresponding wave
tends to release the energy stored in the background fields so that an instability occurs [11].
The sign of the modal energy for each eigenmode is essential for understanding the loss of
stability, namely, the bifurcation of equilibrium state. According to Krein’s theorem [12],
linear instability (local bifurcation) is possible when pairs of eigenvalues of positive and
negative energy modes collide. Although we have obtained some evidence suggesting that
the same idea is true for the case of continuum modes [6], the bifurcation theory in the
presence of continuum modes is under development and our method for evaluating µ(ω)
would hopefully form the foundation of it.

The wave action is traditionally well-studied in the eikonal approach [13–15], where the
wave action density, say µ̂(x, t), satisfies a conservation law, ∂tµ̂ +∇ · (vgµ̂) = 0 (vg: group
velocity). Our spectral approach agrees with this theory through the relation

∫
µ(ω)dω =∫

µ̂(x, t)d3x and can deal with general waves for which the eikonal approximation is not
always suitable.

In Sec. II, we will review the noncanonical Hamiltonian theory that is common to various
models of plasmas and especially highlight the linear theory. For example, incompressible
fluid, magnetohydrodynamics and the Vlasov-Poissson system will be introduced. Spectral
decomposition of non-Hermitian operators in the linearized equations is highly associated
with the action-angle representation of waves. In Sec. III, we will show that, the Fourier-
Laplace transform is, in practice, useful for calculating the action-angle variables in the
presence of continuous spectrum [6]. This formulation will be demonstrated in Sec. IV by
using the simplest and classical model, called the Case-Van Kampen equation [1, 2].

II. HAMILTONIAN EQUATION AND ITS LINEARIZATION

Various nonlinear equations governing ideal plasmas are regarded as Hamiltonian systems.
The common Hamiltonian structure is however known to be noncanonical and the linearized
system also inherits the noncanonical property.

We denote an abstract dynamical variable by u, which may be a set of time-dependent
scalar and vector fields. Let the space of u be a Hilbert space L2 with an inner product 〈, 〉.
A Hamiltonian equation can be written as

∂tu =Ju
δH

δu
, (3)

where Ju is a linear operator depending on u and δH/δu denotes the functional derivative
of the Hamiltonian function H : L2 → R. The Poisson bracket of F,G : L2 → R is defined
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by

{F,G} =

〈
δF

δu
,Ju

δG

δu

〉
. (4)

Therefore, in order for (3) to be indeed Hamiltonian, the operator Ju is required to be
anti-symmetric and have a special property associated with the Jacobi identity [16].

The system (3) is essentially different from the standard canonical one in the following
two points. First, the Poisson operator Ju itself depends on u, which brings about another
nonlinearity in the Hamiltonian equation. Second, Ju is usually singular (J −1

u does not
exist), implying that the system is subject to some kinematical constraints (or conservation
laws). These noncanonical properties are pointed out by Arnold (see Ref. 17, 18) and then
found in various dynamical systems [19]. We will exhibit a few examples below.

Now, let us discuss linear perturbations ũ(t) on a given steady solution u; JuδH/δu = 0.
The linearized Hamiltonian equation for ũ(t) will be denoted by

∂ũ

∂t
=Kũ, (5)

where the generator is defined by

Kũ :=
d

dε

∣∣∣∣
ε=0

Ju+εũ
δH

δu
(u + εũ). (6)

It is very important to note that, by introducing the adjoint operator K∗ of K, a relation

KJu = −JuK∗ (7)

must hold due to the Jacobi identity [16]. Let ξ(t) be a solution of the adjoint equation
given by

∂ξ

∂t
= −K∗ξ. (8)

Then, the above relation (7) implies that ũ(t) = Juξ(t) for all t if ũ(0) = Juξ(0) initially.
Since the linear map Ju is singular, such ũ(t) is constrained into the range of Ju. The class
of linear perturbations belonging to the range of Ju is said to be dynamically accessible [8],
for we can generate them by ũ = JuδF/δu with some arbitrary Hamiltonian F . In physi-
cal terms, these perturbations will not violate any conservation laws and will preserve the
topology of the basic solution u. In this paper, we restrict our attention to dynamically
accessible (or iso-topological) perturbations by employing the assumption ũ(0) = Juξ(0).
The resultant linear dynamics ũ(t) = Juξ(t) will conform to the canonical Hamiltonian
formalism and admit the action-angle representation.

Example 1: Incompressible fluids

The Euler equation is known as a Hamiltonian system with a noncanonical Poisson
bracket [17, 18]. Let V ⊂ R3 be a domain filled with a fluid. The velocity field u belongs
to the space X(V ) of divergence-free vector fields in V which are tangent to the boundary
wall ∂V . This space X(V ) is a Hilbert space with an inner product 〈v,u〉 =

∫
V

v · ud3x for
v,u ∈ X(V ),
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The Hamiltonian function H and the Poisson operator Ju are given by

H(u) =
1

2

∫
V

|u|2d3x (9)

Ju =P [◦ × (∇× u)] (10)

where P denotes the orthogonal projection to the space X(V ). The Hamiltonian equation
(3) then coincides with the Euler equation.

∂u

∂t
=P[u × (∇× u)], (11)

= − P [(u · ∇)u]. (12)

The linearized equation is straightforward,

∂ũ

∂t
= P [u × (∇× ũ) + ũ × (∇× u)], (13)

and the adjoint equation for ξ ∈ X(V ) is given by

∂ξ

∂t
= ∇× (u × ξ) + P [ξ × (∇× u)]. (14)

If ξ(t) solves (14), the dynamically accessible perturbation u(t) = Juξ(t), namely,

ũ = P [ξ × (∇× u)], (15)

solves the linearized Euler equation.
It is interesting to note that the equation (14) corresponds to the definition of the La-

grangian displacement field [20, 21],

∂ξ

∂t
+ (u · ∇)ξ − (ξ · ∇)u = ũ. (16)

Namely, the vector field ξ physically represents the infinitesimal displacement of the fluid
particle orbits.

The constraint (15) implies that the vorticity field w = ∇ × u must be frozen to the
displacement ξ and preserve its topology (the Kelvin’s circulation theorem). For instance,
the vorticity perturbation w̃ = ∇ × ũ cannot occur in the absence of the background
vorticity w = 0. This topological aspect of ideal fluid was observed by Arnold, who call (15)
isovortical perturbation [17, 18].

Example 2: Magnetohydrodynamics

The above Hamiltonian structure for the Euler equation can be extended to compressible
fluids and, furthermore, to magnetohydrodynamics (MHD) [22]. The number of dynamical
variables are increased and written by u = (ρu,B, ρ, s) for the MHD case, where B is the
magnetic field, ρ is the mass density and s is the specific entropy.

The Hamiltonian function becomes

H(u) =

∫
V

(
ρ

2
|u|2 +

1

2
|B|2 + ρU(ρ, s)

)
d3x,
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where a given function U(ρ, s) of ρ and s denotes the internal energy per unit mass.
The Poisson bracket is determined by the Poisson operator,

Ju =


ρ ◦ ×(∇× u) − ρ∇(u · ◦) − u∇ · (ρ◦) −B × (∇× ◦) −ρ∇◦ ◦∇s

∇× (◦ × B) 0 0 0
−∇ · (ρ◦) 0 0 0
− ◦ ·∇s 0 0 0

 , (17)

which indeed recovers the ideal MHD equations [22].
By denoting the adjoint variables by ξ = (ξ,η, α, β), the dynamically accessible pertur-

bations are

ũ =ρξ × (∇× u) − ρ∇(u · ξ) − B × (∇× η) − ρ∇α + β∇s, (18)

B̃ =∇× (ξ × B), (19)

ρ̃ = −∇ · (ρξ), (20)

s̃ = − ξ · ∇s. (21)

It is known that these constrained perturbations satisfy the conservation laws of magnetic
flux, mass, entropy and so on. The vector field ξ still corresponds to the Lagrangian dis-
placement field. The similarity between this dynamically accessible perturbation and the
famous Frieman-Rotenberg theory [21] is discussed in Ref. 6.

Example 3: Vlasov-Poisson system

Consider a collisionless plasma consisting of electrons and ions with charges qe,i and
masses me,i, whereas the ions are assumed to be immobile and form a uniform background
with a charge density qini = const. Let x, v ∈ R3 denote the position and velocity of elec-
trons and f(x, v, t) be the distribution function. The Vlasov-Poisson equations for electrons
are

∂f

∂t
+ v · ∂f

∂x
+

qe

me

E · ∂f

∂v
= 0, (22)

divE =
1

ε0

(
qe

∫
fd3v + qini

)
. (23)

This is also written as a noncanonical Hamiltonian system [23, 24],

∂f

∂t
=

[
δH

δf
, f

]
, (24)

where the Hamiltonian function is given by

H(f) =

∫∫
me

|v|2

2
fd3xd3v + ε0

∫
|E|2

2
d3x, (25)

and the Poisson operator (Ju) now corresponds to

Jf = [◦, f ] :=
1

me

(
∂◦
∂x

· ∂f

∂v
− ∂◦

∂v
· ∂f

∂x

)
. (26)
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The linearization about an equilibrium state f gives

∂f̃

∂t
=

[
δH

δf
, f̃

]
+

[
δ2H

δf 2
f̃ , f

]
. (27)

The dynamically accessible perturbation is f̃ = [ζ, f ], where the adjoint variable ζ(x,v, t)
is governed by the adjoint equation [9]

∂ζ

∂t
=

[
δH

δf
, ζ

]
+

δ2H

δf 2
[ζ, f ]. (28)

This linear problem will be considered later in Sec. IV.

III. SPECTRAL APPROACH TO ACTION-ANGLE VARIABLES FOR LINEAR
WAVES

A. Action integral for linear waves

For dynamically accessible perturbations ũ(t) = Ju(t)ξ(t), we can naturally define the
perturbation energy H̃ in terms of ξ(t) as

H̃ :=
1

2

〈
∂ξ

∂t
, ũ

〉
= −1

2
〈ξ,KJuξ〉 . (29)

It is easy to confirm that this is a constant of motion for the linearized system (5) [or (8)].
From the property (7), H̃ is a symmetric quadratic functional of ξ. If an eigenmode is sub-
stituted into H̃, the time derivative ∂/∂t turns into an eigenvalue −iω and we immediately
obtain the modal energy in the form of (1). However, this naive procedure does not apply to
continuum mode that is composed of infinite number of singular (or improper) eigenmodes.
If a singular eigenmode was substituted, the energy H̃ would diverge.

In order to handle multiple eigenmodes and continuum modes as well, we make the
following general observations. Suppose that we have a closed family of solutions ξ(t, θ0)
labeled by a parameter 0 ≤ θ0 < 2π that satisfies ξ(t, θ0) = ξ(t, θ0 +2π). Since the evolution
of ξ is deterministic, the dependence on θ0 must originate from a closed family of initial
values. Then, we claim that the Poincaré’s invariant (or the action integral associated with
the family of solutions) is given by the ensemble average,

S :=
1

4π

∫ 2π

0

〈
∂ξ

∂θ0

, ũ

〉
dθ0 = − 1

4π

∫ 2π

0

〈
ξ,

∂ũ

∂θ0

〉
dθ0, (30)

which is actually invariant ∂S/∂t = 0.
Suppose that the family of solutions is attributed to only a single oscillatory eigenmode

such as ξ(t, θ0) = 2Re[ξ̂e−iωt−iθ0 ], where ξ̂ is a complex eigenfunction for an eigenvalue ω ∈ R.
Then, the Poincaré’s invariant is reduced to

S =
1

4π

∫ 2π

0

〈
ξ̂e−iωt−iθ0 + ξ̂eiωt+iθ0 , iJu

(
ξ̂e−iωt−iθ0 − ξ̂eiωt+iθ0

)〉
dθ0 (31)

=
〈
ξ̂, iJuξ̂

〉
, (32)
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where ξ̂ denotes the complex conjugate of ξ̂. Since ∂ξ/∂t = ω∂ξ/∂θ0 holds for such eigen-
mode, this is related to the perturbation energy by

ωS =
1

4π

∫ 2π

0

〈
∂ξ

∂t
, ũ

〉
dt = H̃. (33)

Therefore, S is understood as the action variable for the eigenmode. The angle variable is
obviously θ(t) = ωt + θ0.

B. Fourier-Laplace analysis

Now, we consider general perturbations. Since the eigenmodes and continuum modes are
respectively associated with the discrete and continuous spectra of the linear operator K (or
K∗), we will formally perform the spectral decomposition by invoking the Fourier-Laplace
analysis.

While the perturbation ũ (or ξ) must be always real, it is conventional in the spectral
analysis to view it as a complex variable belonging to the complex Hilbert space with the
inner product 〈◦, ◦〉. By simply multiplying the imaginary unit i, the evolution equations,
(5) and (8), can look like non-Hermitian Schrödinger equations,

i
∂ũ

∂t
=Lũ, ũ(0) = ũ0 = Juξ0, (34)

i
∂ξ

∂t
=L∗ξ, ξ(0) = ξ0 (35)

where L∗ = −iK is the adjoint operator of L = iK with respect to the inner product 〈◦, ◦〉.
The property (7) becomes LJu = JuL∗. The evolution equation is said to possess a

pseudo-Hermitian structure [25, 26], since L is Hermitian with respect to an indefinite inner
product given by 〈◦,Jj◦〉.

The solution of (34) [or (35)] is formally represented by the Dunford-Taylor integral [27],

ũ(t) =
1

2πi

∮
Γ(σ)

(Ω − L)−1Juξ0e
−iΩtdΩ = Juξ(t), (36)

ξ(t) =
1

2πi

∮
Γ(σ)

(Ω − L∗)−1ξ0e
−iΩtdΩ, (37)

where the integral path Γ(σ) in the complex plane Ω ∈ C positively encircles the whole
spectrum σ ⊂ C defined by

σ :={ω ∈ C|(Ω − L)−1Juξ0 is not regular at Ω = ω}. (38)

We can prove that the set σ is symmetric with respect to both real and imaginary axes;
σ = σ = −σ = −σ, which is a common property of Hamiltonian systems [6]. Suppose that
σ does not overlap the imaginary axis for simplicity and decompose it into σ = σ+ ∪ σ−
such that σ+ is inside the right half plane Re(Ω) > 0. Since ξ(t) is in fact real-valued, (37)
is rewritten as

ξ(t) =2Re

[
1

2πi

∮
Γ(σ+)

(Ω − L∗)−1ξ0e
−iΩtdΩ

]
. (39)
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Now, we can generate a family of solutions by replacing the initial condition ξ0 by ξ0e
−iθ0 ,

ξ(t, θ0) =2Re

[
1

2πi

∮
Γ(σ+)

(Ω − L∗)−1ξ0e
−iΩt−iθ0dΩ

]
. (40)

The corresponding Poincaré’s invariant (30) is then expressed by

S =Re

〈
1

2πi

∮
Γ′(σ+)

(Ω′ − L∗)−1ξ0e−iΩ′tdΩ′, i
1

2πi

∮
Γ(σ+)

(Ω − L)−1ũ0e
−iΩtdΩ

〉
, (41)

=Re
1

(2πi)2

∮
Γ′(σ+)

∮
Γ(σ+)

〈
ξ0, i(Ω

′ − L)−1(Ω − L)−1ũ0

〉
ei(Ω′−Ω)tdΩdΩ′, (42)

=
1

2πi

∮
Γ(σ+)

D(Ω)dΩ, (43)

where a function D : C → C is defined by

D(Ω) :=
〈
ξ0, i(Ω − L)−1ũ0

〉
=

〈
ξ0, i(Ω − L)−1Juξ0

〉
. (44)

Here, it should be remarked that the Poincaré’s invariant S is defined for general pertur-
bations that are not necessarily periodic in time, since σ+ may include complex eigenvalues
and continuous spectrum. Our definition of S however corresponds to the wave action (or
the action variables) for neutrally stable modes, where the integration over the phase angle
0 < θ0 ≤ 2π is transformed to an integral path in C enclosing the spectrum σ+. Note that
if the integral path were to enclose the whole spectrum σ, it would always result in

1

2πi

∮
Γ(σ)

D(Ω)dΩ = 0, (45)

and mislead us into obtaining ‘zero wave action’. We suggest that the correct wave action can
be obtained by counting only the contribution from σ+, i.e. the right half of the spectrum.

C. Spectral decomposition of wave action

We analytically deform the integral path Γ(σ+) such that it consists of many closed paths
that individually enclose each isolated singularity of D(Ω).

Let us introduce a notation U(Ω) = (Ω − L)−1ũ0, which is essentially equivalent to the
Laplace transform of ũ(t). If there are semi-simple eigenvalues ωn, n = 1, 2, 3, . . . , the U(Ω)
must have poles in the Ω plane,

U(Ω) =
ˆ̃un

Ω − ωn

+ . . . . (46)

where ˆ̃un is the projection of ũ0 onto the eigenspace for ωn. An integral path Γ(ωn) sur-
rounding ωn gives the action variable for the eigenmode,

µn =
1

2πi

∮
Γ(ωn)

D(Ω)dΩ =
〈
ξ0, iˆ̃un

〉
=

〈
ξ0, iJuξ̂n

〉
. (47)
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Strictly speaking, this is not the conventional action variable when ωn is complex, for which
the eigenmode is not oscillatory, but exponentially growing or damping. Nevertheless, µn is
naturally derived from the Poincaré’s invariant (or the action integral), and hence we refer
to it as an ‘action variable’ in a generalized sense. A little attention needs to be paid to the
fact that µn is complex when ωn is complex. Due to the symmetry σ+ = σ+ of spectra, an

eigenvalue ωn also exists in σ+, and let ˆ̃un = Juξ̂n be the corresponding projection and µn

be the ‘action variable’. Using the orthogonality of the projection [27], we obtain

µn =
〈
ξ̂n, iJuξ̂n

〉
=

〈
ξ̂n, iJuξ̂n

〉
= µn, (48)

and hence the sum µn+µn of action variables for growing and damping modes is always real.

When ωn is a real eigenvalue, there is no distinction between ωn and ωn, and µn =
〈
ξ̂n, iJuξ̂n

〉
agrees with the previous result (32).

As for the continuous spectrum σc ⊂ R on the real axis, the path of integration is
deformed into the two paths that run parallel to σc at the slightly upper and lower sides;

1

2πi

∮
Γ(σc)

U(Ω)e−iΩtdΩ = lim
ε→0

i

2π

∫
σc

[U(ω + iε) − U(ω − iε)] e−iωtdω.

Hence, it is reasonable to define a singular eigenfunction for ω ∈ σc by

ˆ̃u(ω) :=
i

2π
[U(ω + i0) − U(ω − i0)] . (49)

This definition of ˆ̃u(ω) agrees with the Fourier transform of ũ(t) according to Sato’s hyper-
function theory [28] (see also the Appendix of Ref. 29). Examples of singular eigenfunctions
ˆ̃u(ω) for various continuous spectra are found in literatures; see Van Kampen [1], Case [2, 3],
Sedláček [4] and Tataronis [5].

The wave action for the continuous spectrum is then given as a function of ω;

µ(ω) =
i

2π
[D(ω + i0) − D(ω − i0)] =

〈
ξ0, iˆ̃u(ω)

〉
. (50)

If the spectrum σ+ is composed of such semi-simple discrete spectrum {ωn ∈ C : n =
1, 2, . . . } and a real continuous spectrum σc ⊂ R, the solution is represented by

ũ(t) =

[∑
n

ˆ̃une
−iωnt +

∫
σc

ˆ̃u(ω)e−iωtdω

]
+ c.c., (51)

where the complex conjugate (c.c.) stems from the other spectrum σ−. The Poincaré’s
invariant is decomposed into the action variables,

S =
∑

n

µn +

∫
σc

µ(ω)dω. (52)

Similarly, the perturbation energy H̃ becomes

H̃ =
∑

n

ωnµn +

∫
σc

ωµ(ω)dω. (53)
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The action variable µ(ω) for continuous spectrum has been already derived in a few
problems [9, 10]. Our technique shown here is not only applicable to any noncanonical
Hamiltonian system, but also suggesting an efficient way of derivation utilizing the Fourier-
Laplace transform. In the next section, we revisit the problem tackled by Morrison &
Pfirsch [9] as a demonstration of our method.

IV. EXAMPLE: VLASOV-POISSON EQUATION AND LANDAU DAMPING

A. The Case-Van Kampen equation

Our method developed in the previous sections is applicable to the Vlasov-Poisson system
(see Example 3 of Sec. II). In order to demonstrate the action-angle representation as shortly
as possible, let us restrict our consideration to spatially uniform steady states f(v), and

Fourier-transform f̃ in space

f̃(x, v, t) =
1

(2π)3/2

∫
f̃(k,v, t)eik·xd3k. (54)

For fixed k, the linearized equations, (27) and (28), are greatly simplified into a 1D problem

for f̃(v, t) along the k vector (v := k · v/k). We further introduce a normalization qe =
−1,me = ε0 = 1 and finally obtain

i
∂f̃

∂t
=kvf̃ + kη(v)

∫
R

f̃dv, f̃(v, 0) = f̃0(v) (55)

i
∂ζ

∂t
=kvζ +

∫
R

kη(v)ζdv, ζ(v, 0) = ζ0(v) (56)

where η(v) is a given function associated with the steady state f(v),

η(v) = − 1

k2

∂f

∂v
. (57)

This equation was studied by Van Kampen [1] and Case [2]. The dynamical accessibility

condition f̃ = [ζ, f ] is now reduced to f̃ = −ik3ηζ.

B. Laplace transform

Let F(v, Ω) and Z(v, Ω) be the solutions of

(Ω − kv)F =kη(v)

∫
R

Fdv + f̃0 (f̃0 = −ik3ηζ0), (58)

(Ω − kv)Z =

∫
R

kη(v)Zdv + ζ0. (59)

The relation F(v, Ω) = −ik3η(v)Z(v, Ω) follows immediately, and Z(v, Ω) is explicitly solved
as follows.

Z(v, Ω) =
ζ0(v) − Φ(Ω)

Ω − kv
, (60)
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where we have put

Φ(Ω) = −
∫

R
kη(v)Z(v, Ω)dv = − 1

π∆(Ω)

∫
R

kη(v)ζ0(v)

Ω − kv
dv, (61)

π∆(Ω) =1 −
∫

R

kη(v)

Ω − kv
dv. (62)

The function D(Ω) in (44) is now written as

D(Ω) =

∫
R

ζ0iF(v, Ω)dv =

∫
R

k3η(v)
|ζ0(v)|2

Ω − kv
dv + k2π∆(Ω)Φ(Ω)Φ(Ω). (63)

• Discrete spectrum

Some eigenvalues {ωn ∈ C, n = 1, 2, . . . } may exists due to the zeros of ∆(Ω),

π∆(ωn) = 1 −
∫

R

kη(v)

ωn − kv
dv = 0. (64)

By denoting the residue of Φ(Ω) at Ω = ωn by

φ̂n = lim
Ω→ωn

[(Ω − ωn)Φ(Ω)] = −
∫

R
kη(v)ζ0(v)

ωn−kv
dv∫

R
kη(v)

(ωn−kv)2
dv

, (65)

the corresponding eigenfunctions are represented by ˆ̃fn(v) = −ik3η(v)ζ̂n(v), where

ζ̂n(v) = − φ̂n

ωn − kv
. (66)

The action variable is immediately given by

µn =
1

2πi

∮
Γ(ωn)

D(Ω)dΩ = φ̂n φ̂n

∫
R

k3η(v)

(ωn − kv)2
dv, (67)

where φ̂n is the residue of Φ(Ω) at Ω = ωn.

• Continuous spectrum

There exists a continuous spectrum on the real axis of Ω,

σc ={ω ∈ R s.t. η(ω/k) 6= 0} (68)

at which Z(v, Ω) is not analytic with respect to Ω. Let us introduce the following shorthand
notations,

η\(ω) =

∫
R

η(v)δ(ω − kv)kdv = η(ω/k), (69)

η†(ω) = − 1

π
p.v.

∫
R

η(v)

ω − kv
kdv, (70)
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where the operation † corresponds to the Hilbert transform. Using the well-known formula

1

ω − kv ± i0
= p.v.

1

ω − kv
∓ πiδ(ω − kv), (71)

we can evaluate ∆(Ω) and Φ(Ω) in the limit of Ω → ω ± i0 as

∆(ω ± i0) =λ(ω) ± iη\(ω), (72)

Φ(ω ± i0) =ζ\
0(ω) − α(ω)λ(ω) ± iα(ω)η\(ω), (73)

where λ(ω) = 1
π

+ η†(ω) and

α(ω) = − (ηζ0)
†(ω) − λ(ω)ζ\

0(ω)

λ2(ω) + η\2(ω)
. (74)

Therefore, the singular eigenfunctions (called the Van Kampen modes) are obtained as

ζ̂(v, ω) =
i

2π
[Z(v, ω + i0) − Z(v, ω − i0)] (75)

=α(ω)

[
1

π
p.v.

η\(ω)

ω − kv
+ λ(ω)δ(ω − kv)

]
, (76)

ˆ̃f(v, ω) = − ik3α(ω)η\(ω)

[
1

π
p.v.

η(v)

ω − kv
+ λ(ω)δ(ω − kv)

]
. (77)

Note that we have also derived the appropriate “amplitude” α(ω) of the singular eigenmode,
which depends on the initial value ζ0. The wave action for the continuous spectrum ω ∈ σc

turns out to be

µ(ω) =
i

2π
[D(ω + i0) − D(ω − i0)] =k2η\(ω)[λ2(ω) + η\2(ω)]|α(ω)|2. (78)

V. SUMMARY

In this lecture note, we have shown a technique for doing the action-angle representation
of linear waves in plasmas, which is based on the noncanonical Hamiltonian structure of the
linearized systems and exploits the spectral theory. The notion of action variable (or wave
action) is naturally generalized to exponentially growing and damping eigenmodes as well
as continuum modes by introducing a suitable action integral.

This method is demonstrated for the classical problem of electrostatic oscillations posed
by Van Kampen [1] and Case [2], which is rather straightforward since the Laplace trans-
form is analytically executable. When more complicated linear systems are considered, both
elimination and transformation of variables are essential for reducing the systems to simpler
ones [6]. We have investigated other continuous spectra in hydrodynamics and magnetohy-
drodynamics in this manner [6, 7].
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