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1. Introduction

Nonlinear elliptic partial differential equations ap-
pear naturally in many models in Plasma Physics.
We will concentrate our attention in nonlinear second
order elliptic PDEs, specially involved in equilibrium
questions. In particular we deal with existence and
multiplicity of solutions for problems related the so
called nonlinear Poisson equation, namely

−∆u = f(x, u),(1.1)

where x ∈ Ω ⊆ Rn, Ω a domain (i. e. an open
and connected set), ∆ := div∇ is the usual Laplace
operator in Rn and

u : Ω −→ R
and

f : Ω× R −→ R
are functions (f is the so called nonlinearity).
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2. Function spaces

We will give a partial list of the more usual spaces
of functions involved in the study of equations like
(1.1) (for details see for instance [28] among many
others).

From now on Ω will be a bounded domain in Rn

with smooth boundary.

• C0(Ω): continuous functions on Ω with the
norm

‖ v ‖C0(Ω):= sup
Ω

|v|.(2.1)

• Ck(Ω) where k ∈ N, k ≥ 0: k times differen-
tiable functions on Ω with the norm

‖ v ‖Ck(Ω):=
∑

0≤|γ|≤k

‖ Dγu ‖C0(Ω) .(2.2)

• C∞
0 (Ω): C∞(Ω) functions with compact sup-

port in Ω.
• C0,α(Ω) where 0 < α ≤ 1: Hölder 1 continuous

functions on Ω, with the norm

‖ v ‖C0,α(Ω):=‖ v ‖C0(Ω) + sup
x,y∈Ω,
x +=y

|v(x)− v(y)|
|x− y|α

(2.3)

1Roughly a function is Hölder-α for 0 < α ≤ 1, if |f(s1)− f(s2)| ≤ |s1− s2|α for
all s1, s2 ∈ Ω.
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• Ck,α(Ω) where k ≥ 0 and 0 < α ≤ 1: Ck(Ω)
functions with Hölder-α derivatives of order k,
endowed with the norm

‖ v ‖Ck,α(Ω):=‖ v ‖Ck(Ω) + sup
x,y∈Ω,
x +=y,
|β|=k

|Dβv(x)−Dβv(y)|
|x− y|α

(2.4)

• Lp(Ω) where 1 ≤ p < ∞: (Lebesgue spaces)
p-integrable functions on Ω, furnished with the
norm

‖ v ‖Lp(Ω):=

(∫

Ω
|v|p

)1
p

.(2.5)

• L∞(Ω): essentially bounded functions on Ω, en-
dowed with the norm 2

‖ v ‖L∞(Ω):= ess supΩ |v|.(2.6)

• Hk,p(Ω) where k ≥ 1 and 1 ≤ p ≤ ∞: (Sobolev
spaces) measurable functions with weak deriva-
tives (i. e. in the sense of distributions) up to
order k in Lp(Ω) endowed with the norm

‖ u ‖Hk,p(Ω):=
∑

0≤|γ|≤k

‖ Dγu ‖Lp(Ω) .(2.7)

2ess sup |v| := inf{a ≥ 0 : µ({|f | > a}) = 0}, where µ in our cases is the
Lebesgue measure.
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• H1
0(Ω): the closure of C∞

0 (Ω) in H1,2(Ω).
For functions in H1

0(Ω) the Poincaré inequal-
ity holds, namely:∫

Ω
|u|2dx ≤ c

∫

Ω
|∇u|2dx,(2.8)

where c = c(Ω) is a constant (possibly depend-
ing on Ω but independent of u). As a conse-
quence of the Poincaré inequality it follows that

‖u‖ :=

(∫

Ω
|∇u|2dx

)1
2

(2.9)

is a norm equivalent to the standard one ‖·‖H1
0
.
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3. Some embeddings

Let k ≥ 1 be. For 1 ≤ p < ∞ we will denote

p∗k =

{
pn

n−kp =
(

1
p −

k
n

)−1
, if n > kp;

+∞, if n = kp.

Theorem 3.1. (Sobolev embedding theorem) Let
Ω be a bounded domain in Rn with Lipschitz bound-
ary ∂Ω and let k ≥ 1, 1 ≤ p ≤ ∞. Then,

Hk,p(Ω) −−−−−→ Lq(Ω) more integrability

kp < n cont. embed. 1 ≤ q ≤ pn
n−kp > p

kp < n comp. embed. 1 ≤ q < pn
n−kp > p

kp = n comp. embed. 1 ≤ q < ∞
Hk,p(Ω) −−−−−→ C0,α(Ω) more regularity

kp > n︸ ︷︷ ︸
0<k−n

p

cont. embed. α ∈






{k − n
p}, if k − n

p < 1;
[0, 1), if k − n

p = 1;
{1}, if k − n

p > 1.
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One particularly useful case of Theorem 3.1 is the
following:

Theorem 3.2. (Sobolev embedding for H1,2(Ω))
Let Ω be a bounded domain in Rn with smooth
boundary ∂Ω and let

2∗ =

{
2n

n−2, if n > 2;
+∞, if n = 2.

Then,

H1,2(Ω) −−−−−→ Lq(Ω)
2 < n cont. embed. 1 ≤ q ≤ 2∗

2 < n comp. embed. 1 ≤ q < 2∗

2 = n comp. embed. 1 ≤ q < ∞
H1,2(Ω) −−−−−→ C0,α(Ω)
2 > n cont. embed. α ∈ 1− n

2 .

In particular this holds for H1,2
0 (Ω).
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4. The solution operator (Green op.)

Let the Dirichlet problem

−∆u = h on Ω(4.1)

u = 0 on ∂Ω,

where h is a given function on Ω. If h ∈ L2(Ω), a
weak solution of (4.1) is a function u ∈ H1

0(Ω) such
that

∫

Ω
∇u ·∇v =

∫

Ω
vh,(4.2)

for all v ∈ C∞
0 (Ω).

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain.

Sobolev: If h ∈ Lp(Ω), 1 < p < +∞, then
(4.1) has a unique solution u ∈ H1

0(Ω) ∩
H2,p(Ω) such that

‖u‖H2,p(Ω) ≤ C‖h‖Lp(Ω),

where C is a real constant independent of h
and u.

Schauder: If Ω is C2,α and h ∈ C0,α(Ω), then
(4.1) has a unique solution u ∈ C2,α(Ω) such
that

‖u‖C2,α(Ω) ≤ C‖h‖C0,α(Ω),

where C is a real constant independent of h
and u.
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So we can define the following solution operator
K of (4.1) (i. e. (−∆)−1):

L2(Ω) H1
0(Ω) L2(Ω)........................................................................................................................................................... ............

K
.................................................................................................................................................... .........................

........... Sobolev.................................................................................................................................................... .........................

...........

compact


....................
..............
...........
.........
........
..................
............

K is compact

Analogously and by the theorem of Ascoli

C0,α(Ω) C2,α
0 (Ω) C2,α(Ω)............................................................................................................................. ............

K
...................................................................................................................... .........................

...........


....................

..............
...........
.........
........
..................
............

K is compact

where C2,α
0 (Ω) := {v ∈ C2,α(Ω) : v|∂Ω = 0}.

See [6, p. 7-11] for a presentation of the linear
Poisson equation in Sobolev and Hölder spaces (See
also [14, p.176]).
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5. The Dirichlet nonlinear problem

Let the Dirichlet problem associated to (1.1) be,
namely

−∆u = f (·, u) on Ω(5.1)

u = 0 on ∂Ω.

By a weak solution of (5.1) we will understand a
function u ∈ H1

0(Ω) such that
∫

Ω
∇u ·∇vdx =

∫

Ω
f (·, u)vdx,(5.2)

for all v ∈ C∞
0 (Ω).
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To illustrate the analysis we will assume the follow-
ing conditions for the nonlinearity f : Ω× R → R:

(f.0): f ∈ C0(Ω×R)
⋂

C1(Ω×R) and is posi-
tive on Ω× R>0.

(f.1): |f (x, t)| ≤ a(x)|t|p, where a is positive on
Ω and 1 < p ≤ 2∗ + 1. The equality holds for
t large.

Applying (f.1) it is possible to prove that the op-
erator

L2∗(Ω) −→ L
2n

n+2(Ω)
u(·) /−→ f (·, u(·))(5.3)

is continuous. Moreover,

F (x, t) :=

∫ t

0
f(x, s)ds

satisfies

|F (x, t)| ≤ a(x)
1

p + 1
|t|p+1 ≤ sup

Ω

a
1

p + 1
|t|p+1,

(5.4)

where 2 < p + 1 ≤ 2∗. So, if u ∈ L2∗(Ω)

|F (·, u(·))| ≤ sup
Ω

a
1

p + 1
|u(·)|p+1,(5.5)

and as consequence
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H1
0(Ω) L2∗(Ω) L1(Ω)............................................................................................................................................ .........................

........... Sobolev ......................................................................................................................................................... ............

u u F (·, u(·)).................................................................................................................................................................................................................................. ............................ .............................................................................................................................................................. ............................

Thus,

J : H1
0(Ω) −→ R
u /−→ 1

2

∫

Ω
|∇u|2dx−

∫

Ω
F (·, u)dx

(5.6)

is well defined and it is not difficult to prove that
∀v ∈ C∞

0 (Ω) holds (see the definition of differentia-
bility below)

J ′(u)[v] :=
d

dt
J(u + tv)

∣∣∣
t=0

=

∫

Ω
〈∇u,∇v〉dx−

∫

Ω
f(·, u)vdx.

Hence, the critical points of J in H1
0(Ω) are weak

solutions of (5.1).

Note 5.1. In order to fix the ideas it would be useful
to take in mind the example

{
f(x, t) := a(x) |t|p on Ω× R
a(x) > 0 on Ω and 1 < p ≤ 2∗ + 1.

(5.7)
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Differentiability : [11, p. 16] Let X be a Banach
space; a function J : O → R, O ⊆ X an open
subset; x ∈ X and p a continuous linear functional
on X.

Gâteaux: We said that p is the Gâteaux deriv-
ative of J at x, if for any ν ∈ X

lim
h→0
h∈R

1

h
[J(x + hν)− J(x)− 〈p, hν〉] = 0.(5.8)

Frêchet: We said that p is the Frêchet deriva-
tive of J at x, if

lim
h→0
h∈X

1

‖h‖X
[J(x + h)− J(x)− 〈p, h〉] = 0.(5.9)

A such p is usually denoted by J ′(x).
Clearly Frêchet differentiability implies Gâteaux dif-

ferentiability. The converse is false.

With these definitions, the functional introduced in
(5.6) is Frêchet differentiable. Even more, “J is C1

as a functional on H1
0(Ω) with values in R”.



ABOUT NONLINEAR ELLIPTIC PROBLEMS IN PLASMA PHYSICS 13

6. The maximum principle

Let Ω be a bounded domain in Rn and let L be a
linear second order uniformly elliptic operator on
Ω of the form

Lu := −
n∑

i,j=1

aij(x)uxixj +
n∑

i=1

bi(x)uxi + c(x)u,

(6.1)

where the coefficients are continuous functions. Uni-
formly elliptic means aij = aji and there exists a
positive constant θ such that aijξiξj ≥ θ|ξ|2 for a.e.
x and ∀ξ ∈ Rn.

Theorem 6.1. (Weak Maximum Principle) As-
sume u ∈ C2(Ω)

⋂
C0(Ω) and c ≡ 0.

i: If

Lu ≤ 0 on Ω (subsolution)(6.2)

then maxΩ u = max∂Ω u.
ii: If

Lu ≥ 0 on Ω (supersolution)(6.3)

then minΩ u = min∂Ω u.
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Theorem 6.2. (Strong Maximum Principle) As-
sume u ∈ C2(Ω)

⋂
C0(Ω) and c ≥ 0 in Ω.

i: If

Lu ≤ 0 on Ω(6.4)

and maxΩ u is attained in Ω, then u is con-
stant in Ω.

ii: If

Lu ≥ 0 on Ω(6.5)

and minΩ u is attained in Ω, then u is con-
stant in Ω.

For the proofs of these principles and several ex-
tensions see for instance [28, chap. 6 ].

Example 6.3. Let the Dirichlet problem

−∆u− λu = f on Ω(6.6)

u = 0 on ∂Ω,

where λ ≤ 0. If f is nonnegative and u sufficiently
regular verifies (6.6), then u is positive in Ω or u ≡ 0
in Ω. In other words, the solution operator of −∆−
λId is positive if λ ≤ 0 (really it holds for λ < λ1, the
principal eigenvalue of −∆ with Dirichlet conditions
on the boundary).

Example 6.4. Consider the problem (5.1) with f
nonnegative. So, if u is a sufficiently regular solu-
tion of (5.1), then by the strong maximum principle
u is positive on Ω or u ≡ 0 on Ω.
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Notice that if we look for positive solutions, without
lose of generality, we can modify the nonlinearity in
order to avoid the case u ≡ 0. In synthesis we will
assume also

(f.2): f is positive for t ≤ 0 and f (x, t) = a(x)|t|p
for t large.

7. About sub-super solutions

Some words about the Method of Sub and Super-
solutions (see [19], [2, p. 648], [6, p. 46], [35]).

Theorem 7.1. Let Ω ⊂ Rn a smooth bounded
domain and f ∈ C1(Ω × R). Assume that there
exist u, u ∈ C2(Ω)

⋂
C0(Ω) such that

−∆u ≤ f(·, u) on Ω(7.1)

u ≤ 0 on ∂Ω

and
−∆u ≥ f(·, u) on Ω(7.2)

u ≥ 0 on ∂Ω.

If u ≤ u, then there exists u with u ≤ u ≤ u
verifying of (5.1).

A function u (respectively u) that verifies (7.1)
(respectively (7.2)) is called a sub-solution (respec-
tively super-solution) of (5.1).
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Example 7.2. Let 0 < q < 1 be. In order to apply
Theorem 7.1 to

−∆u = uq on Ω(7.3)

u = 0 on ∂Ω,

it is sufficient to note that
• −∆(εu1) = λ1εu1 ≤ λ1ε

1−q‖u1‖1−q
∞︸ ︷︷ ︸

≤1

(εu1)q,

where λ1is the principal eigenvalue of −∆ with
Dirichlet conditions on the boundary and u1 its
corresponding normalized eigenfunction.

• Let e be the normalized solution of (4.1) with
h ≡ 1. By the maximum principle e > 0 in Ω.
−∆(te) = t = t1−qe−q(te)q ≥ t1−q‖e‖−q

∞︸ ︷︷ ︸
≥1

(te)q

• With ε eventually smaller, there results

u := εu1 ≤ te =: u.

Then, by Theorem 7.1 there exists a positive solution
of (7.3) with u ≤ u ≤ u.
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8. Some variational results

Among others, the following are important refer-
ences for the arguments in this section and more
[39, 14, 43, 28, 3, 6, 11].

By the previous discussions in order to look for
positive solutions of (5.1) we are interested in the
critical points of (5.6), i. e. functions in H1

0(Ω) where
J ′(u)[v] = 0 for all v ∈ C∞

0 (Ω).
Thus we will consider some arguments that imply

the existence of stationary points of real functions
defined on a Banach space.

If the function J is bounded from above or below
it is reasonable to try to show that it attains a max-
imum or minimum. For convex functions, a classical
result in this direction is

Theorem 8.1. [39, p. 277] Let J be a lower-semi-
continuous convex function, bounded from below,
defined on a reflexive Banach space, such that
J(x) → +∞ as x →∞, i.e. J is coercive. Then
J attains its minimum.

8.2. Semi-continuity : [11, p. 11] Let X be a Banach
space. A function J : X → R∪{+∞} is lower semi-
continuous (lsc) if for each point x̄ ∈ X, we have

lim inf
x→x̄

J(x) ≥ J(x̄).(8.1)

This means that the set (usually called the epigraph)

epi J := {(x, a) ∈ X× R : a ≥ J(x)}(8.2)
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is a closed subset of X× R.

Results about the existence of stationary points
make use of some kind of compactness. In the The-
orem 8.1 the compactness is hidden. The proof uses
the fact that a closed bounded convex set in a reflex-
ive Banach space is compact in the weak topology.

If J is not convex, it does not need achieve its in-
fimum (see [39]).

An usual compactness condition for special sequences
employed to prove the existence of stationary points
is the Palais-Smale condition (PS) for a C1 function
J (see for instance [39],[11, p. 269-270]).

8.3. Palais-Smale condition: Let X a Banach space
and J : X → R a C1 function. We say that J
satisfies the Palais-Smale condition (PS) on X, if
any sequence {xn}n in X, with

|J(xn)| ≤ constant(8.3a)

J ′(xn) → 0 in X∗(8.3b)

has a strongly convergent subsequence {xnk
}k.

It is clear that in a such case, if x = limk xnk
, then

J ′(x) = 0, i.e. x results a critical point of J .
A sequence in X verifying the conditions (8.3) is
called a Palais-Smale sequence (for short (PS)-se-
quence).
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The following result holds:

Theorem 8.4. Let J be a real C1 function on a
Banach space satisfying (PS) and bounded from
below. Then J achieves a minimum at some point.

8.5. Existence of almost-minimizing sequences : A
central question in the proof of Theorem 8.4 is to
show the existence of (PS)-sequences. A pioneering
result in this direction is (see [27, p. 452, Thm. 8]):

Let X be a Banach space. If J : X → R a C1

function bounded from below, then there exists a
sequence {yn}n such that

J(yn) → inf J(8.4)

J ′(yn) → 0 in X∗, .(8.5)

where X∗ is the topological dual of X.

8.6. Ekeland variational principle :[27, Thm 1 bis]
Let V be a complete metric space, and F : V →
{+∞} ∪ R a l.s.c. function, +≡ +∞, bounded from
below. For any ε > 0, there is some point v ∈ V
with:

F (v) ≤ inf
V

F + ε,(8.6)

∀w ∈ V, F (w) ≥ F (v)− εd(v, w).(8.7)
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Analogously, it is possible to prove that:

Theorem 8.7. Let J be a real C1 function on a
Banach space satisfying (PS) and bounded from
below. If C ⊂ X is bounded closed convex set with
int C += φ (for instance a ball) and

inf
int C

J < inf
∂C

J,

then there exists x0 ∈ int C such that

J(x0) = inf
int C

J.

And as consequence J ′(x0) = 0.

8.8. Existence of almost-minimizing sequences : To
show the existence of (PS)-sequences, it is sufficient
to apply [27, p. 445, Thm. 1 bis], to J restricted to
the complete metric space C. Indeed, for any ε such
that

0 < ε < inf
∂C

J − inf
intC

J,

there exists vε ∈ C with

f (vε) ≤ inf
C

J + ε < inf
∂C

J(8.8)

and for all w ∈ C

f (w) ≥ f(vε)− ε‖vε − w‖.
Notice, that (8.8) implies that vε ∈ int C.

Hence, the same procedure applied in [27, p. 452,
Thm. 8], allow to infer the existence of a (PS)-
sequence in int C.
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Saddle Points

In order to look for critical points of this type the
central result is the pioneering Mountain Pass The-
orem of Ambrosetti-Rabinowitz (see [6] and many
references therein), namely:

8.9. Mountain Pass Theorem: Let X be a Banach
space and J : X → R a C1(X, R) and

∃ρ > 0 : m(ρ) := inf{J(x) :‖ x ‖= ρ} > J(0)
(8.9a)

∃z ∈ X :‖ z ‖> ρ and J(z) < m(ρ)
(8.9b)

J satisfies (PS).
(8.9c)

Then there is a point x̄ ∈ X where

J(x̄) = inf
σ∈Σ

sup
[0,1]

J ◦ σ ≥ m(ρ) and J ′(x̄) = 0.
(8.10)

Example 8.10. About (PS) and Mountain Pass -
Brezis-Nirenberg example: The only geometric con-
ditions do not imply the existence of a Mountain Pass
critical point, already in dimension 2. Indeed, let
J : R2 → R

J(x, y) = x2 + (1− x)3y2.(8.11)

J verifies (8.9a) and (8.9b), but not (8.10), thus (PS)
is not verified (see [6, p. 118 and 121-122 —]).



22 FERNANDO DOBARRO

Fortunately, in many applications, the associated
functionals satisfy the Palais-Smail condition (or even-
tually some variant of this) in suitable spaces. For
instance, for our example (5.1) with the conditions
(f.0) and (f.1), the functional (5.6) verifies (PS).
This is a consequence of essentially of two facts:

(1) A (PS)-sequence is bounded in H1
0(Ω).

(2) The embedding of H1
0(Ω) in Lp(Ω) for 1 < p <

2∗ is compact (see the Sobolev embedding The-
orem 3.2).

So, applying the Mountain Pass Theorem the fol-
lowing result holds (see [39, p. 281-282]).

Theorem 8.11. Let Ω be a bounded domain in
the Rn with smooth boundary and f : Ω×R → R
verifying (f.0), (f.1) and (f.2). Then there exists
a positive solution of (5.1).
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9. Some operators in plasma physics

In the applications instead of −∆ frequently ap-
pear more general second order differential operators
L linear or nonlinear and depending or not explicitly
of the independent variable x ∈ Ω. For instance:

• Linear second order operators in non-
divergence form

Lu := −
n∑

i,j=1

aij(x)uxixj +
n∑

i=1

bi(x)uxi + c(x)u,

(9.1)

with suitable hypothesis about the coefficients.

• Linear second order operator in diver-
gence form

Lu := −
n∑

i,j=1

(aijuxi)xj +
n∑

i=1

bi(x)uxi + c(x)u,

(9.2)

with suitable hypothesis about the coefficients.
Clearly −∆ belongs to this class of operators.
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• Grad-Shafranov equation in R3
+

In the 80’s Heyvaerts and coauthors intro-
duced a two dimensional model of solar flares
(the plane x, y is the surface of the sun) as-
suming that the magnetic field is force-free (i.
e. j × B = 0) and that its evolution is quasi-
static. This brings to the study of a semi-linear
elliptic equation in a half-plane depending of
one parameter λ which describes the time evo-
lution (see [30, 31, 32, 33, 34]; a recent review
about these arguments is [41]).

In 89 Amari & Aly generalized this model
in order to study the structure and quasi-static
evolution of a two-dimensional x-invariant mag-
netostatic equilibria in the half-space {z > 0},
where the plasma pressure p and gravity are
taken into account, but the field is shearless
(Bx = 0) (see [1]). Their approach follows the
Low’s ideas in [36], namely.



ABOUT NONLINEAR ELLIPTIC PROBLEMS IN PLASMA PHYSICS 25

Let R3
+ the Euclidean space and {ex, ey, ez}

the usual orthonormal frame.
The equation of magnetostatic equilibrium of
the plasma is

0 = −∇p + j×B + ρg,(9.3)

where p(x) is the gas pressure, B(x) is the mag-
netic field, ρ(x) is the gas density,

g = −gez(9.4)

is the uniform gravity acceleration in the nega-
tive ez direction and

j = ∇×B = curl B,(9.5)

is the current density. 3

Equation (9.3) is a magnetohydrostatic balance
among the pressure gradient, the Lorentz force
( j×B ) and the gravitational force.

We assume the gas obeys the ideal gas law

ρ =
p

T
,(9.6)

where T (x) is the gas temperature.
Furthermore equation (9.5), we assume

div B = 0.(9.7)

The equations (9.7) and (9.5) are the Maxwell
equations.

3Notice that except g, the other involved constants were normalized.
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Consider now the case where the physical quan-
tities depend only on the Cartesian coordinates
y and z, so that they are x-invariant.

The magnetic field derives from a vector po-
tential A = (Ax,Ay, Az)

B = curlA =

∣∣∣∣∣∣

ex ey ez

∂x ∂y ∂z

Ax Ay Az

∣∣∣∣∣∣
= (∂yAz − ∂zAy︸ ︷︷ ︸

B

)ex + ∂z Ax︸︷︷︸
u

ey − ∂y Ax︸︷︷︸
u

ez

= (B, ∂zu,−∂yu),

where u is usually called a flux function. Clearly
(9.7) is verified.

Since B = B(y, z) and u = u(y, z), the cur-
rent

j = curlB =

∣∣∣∣∣∣

ex ey ez

∂x ∂y ∂z

B ∂zu −∂yu

∣∣∣∣∣∣
= −∆uex + ∂zBey − ∂yBez

= (−∆u, ∂zB,−∂yB)

where ∆ is the Laplace operator, namely

∆u = ∂2
yyu + ∂2

zzu.
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So,

j×B =

∣∣∣∣∣∣

ex ey ez

−∆u ∂zB −∂yB
B ∂zu −∂yu

∣∣∣∣∣∣
=(−∂zB∂yu + ∂yB∂zu)ex

− (∆u∂yu + B∂yB)ey

+ (−∆u∂zu−B∂zB)ez.

Thus, (9.6), (9.4) and since p = p(y, z) and
T = T (y, z), (9.3) takes the form 4

0 =∂zB∂yu− ∂yB∂zu(9.8a)

0 =∂yp + ∆u∂yu + B∂yB(9.8b)

0 =∂zp + ∆u∂zu + B∂zB + g
p

T
.(9.8c)

The equation (9.8a) implies

B(y, z) = B̄(u(y, z)).(9.9)

Then, (9.8b) and (9.8c) take the form

0 =∂yp + [∆u + B̄B̄′]∂yu(9.10a)

0 =∂zp + [∆u + B̄B̄′]∂zu + g
p

T
.(9.10b)

Now, making (9.10a)∂zu−(9.10b)∂yu, there re-
sults

∂yp∂zu− ∂zp∂yu = g
p

T
∂yu.(9.11)

4See equations (7,8,9) in [36].
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Let us assume now that

p(y, z) = p̄(u(y, z), z)(9.12a)

and

T (y, z) = T̄ (u(y, z), z),(9.12b)

physically this means that pressure and tem-
perature vary with height z along any given
magnetic field line u(y, z) = constant. Ap-
plying (9.12) to (9.11) the latter is transformed
in

∂up̄∂yu∂zu− (∂up̄∂zu + ∂zp̄)∂yu = g
p̄

T̄
∂yu.

(9.13)

If we also consider ∂yu += 0, (9.13) results equiv-
alent to

∂zp̄ = −g
p̄

T̄
(9.14)

and as consequence to

∂z log p̄ = −g
1

T̄
.(9.15)

So

p̄(u, z) = p0(u) exp

[
−

∫ z

0
g

1

T̄ (u, s)
ds

]
,(9.16)

where p0 is an arbitrary function.
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Thus, the equations (9.10) take the form

0 =∂up̄∂yu + [∆u + B̄B̄′]∂yu

(9.17a)

0 =∂up̄∂zu + [∆u + B̄B̄′]∂zu + ∂zp̄ + g
p̄

T̄︸ ︷︷ ︸
=0

.

(9.17b)

So if ∂yu += 0 += ∂zu, we reduce both equations
to

0 = ∂u

{
p̄ +

1

2
B̄2

}
+ ∆u(9.18)

or equivalently, by (9.16), to the Grad-Shafranov
equation

−∆u = ∂u

{
p0(u) exp

[
−

∫ z

0
g

1

T̄ (u, s)
ds

]
+

1

2
B̄2

}
.

(9.19)

Thus, if we know p0, T̄ and B̄ we have an equa-
tion of the type (1.1). The solutions of (9.19)
define the associated magnetic fields.
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The Heyvaerts and coauthors works corre-
spond to (9.19) with g = 0 (no gravity) and
∂up0 = λf , where λ is a nonnegative real pa-
rameter (i.e., λ ∈ R≥0) and B̄ = 0. Or even-
tually p0 = 0 and ∂uB̄2 = 2λf , again with
λ ∈ R≥0.
More precisely,

−∆u = λf (u) on R2
+ := R× (0, +∞](9.20)

u = h on R× {0},
where λ ∈ R≥0.

The Amari and Aly work corresponds to (9.19)
but in isothermal conditions, so that T̄ is con-
stant; the field is shearless, so that B̄ = 0 and
∂up0 = λf , where λ ∈ R≥0.
More precisely,

−∆u = λe−βzf (u) on R2
+ := R× (0, +∞](9.21)

u = h on R× {0},
where λ ∈ R≥0 and β ∈ R>0.
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In both cases the Authors consider the follow-
ing set of hypothesis:

f : R −→ R is a C1 function satisfying

(f − 1) There exists s0 > 0 such that
f (s) > 0 ∀ s ∈ (0, s0).

(f − 2) f (s) = 0 for s ≤ 0 or s ≥ s0.
(f − 3) f (s) ≤ asσ, where a is a positive

constant and σ > 3.
(f − 4) There exists l > 0 such that

|f (s1)− f (s2)| ≤ l|s1 − s2|∀s1, s2 ∈ R.

and

the boundary condition h : R −→ R is a C2,α

function satisfying

(h) Fixed n(σ) ∈
(

2

σ − 1
, 1

)
, there exists

κ > 0 such that h(y) ≤ (Pκ(y))n(σ) ∀y ∈ R,

where Pκ(y) :=
1

π

κ

κ2 + y2
is the Poisson kernel

for the halfplane R2
+ .
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Low in [37] consider (9.20) with completely
different hypothesis, namely

f(s) =− e−2s(9.22a)

h(y) = log(1 + y2).(9.22b)

See some comments about the Low work in [33,
p. 106].

For the problem (9.20), Heyvaerts and coAu-
thors proved, by techniques of sub-super solu-
tions, the existence of at least two solutions
with different behavior as z −→ +∞. One ex-
ists for any positive value of λ and tends to s0.
The other one tends to 0 and exists if and only
if λ belongs to a finite positive interval beside
0. They proved also that the possible behaviors
as z −→ +∞ are either 0 or s0. Furthermore,
that for λ large enough any solution approaches
s0.

Through numeric tests they conjectured the
existence of a third solution for positive λ’s near
0.

They associate the existence of turning points
to the trigger of a catastrophic event: in their
model a solar flare.
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In [15, 24] we looked for solutions of (9.20)
and (9.21) under Heyvaerts type hypothesis by
variational and expanding domains techniques.
Notice that (9.21) is equivalent to

−∆v = λe−βzf (v + γ) on R2
+ := R× (0, +∞]

(9.23)

v = 0 on R× {0},

where v = u− γ and γ is the solution of

∆γ = 0 on R2
+ := R× (0, +∞](9.24)

γ = h on R× {0}.

Our approach consists in the study of the
problems

−∆v = λe−βzf(v + γ) on DR(9.25)

v = 0 on ∂DR,

where DR is a semidisk of radius R and cen-
ter 0. The main result in [24] is the existence
of a range of λ’s for which (9.25) has at least
three positive solutions if R is large enough.
We do it by variational techniques, showing the
existence of a local minimum, a global mini-
mum and a mountain pass solution for the as-
sociated functional on a suitable Sobolev type
space. The involved functionals are

Φλ,γ,R : H1
0(DR) −→ R
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Φλ,γ,R(u) =
1

2

∫

DR

|∇u|2 − λ

∫

DR

e−βyF (u + γ),

where F ′ = f .
The existence of three solutions for large enough

semidisks can be obtained by sub-super solu-
tions techniques also (see [15]).

The variational approach adopted for β > 0
fails in the gravity free case, i.e. β = 0, because
the Poincaré inequality is not satisfied in the
whole positive half-plane R2

+. The role of the
Poincaré inequality in R2

+ is play by the Hardy
inequality∫

R2
+

u2(y, z)e−βzdxdy ≤ 1

β2

∫

R2
+

|∇u|2dydz,

for all u ∈ C∞
0 (R2

+).
It is remarkable that when the radius R →

+∞, the local minimum converges, the global
minimum tends to −∞ and we do not know
what happens with the mountain pass solution,
we only know that the mountain pass levels are
bounded from below by a positive constant and
are non increasing with R. Perhaps remains
something in the limit?

More information about the Grad-Shafranov
equation, can be obtained in [13, 38, 40] among
many others papers and books.

In [16, 17] the Authors studied problems anal-
ogous to (9.23) with different linear part.
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• Generalized Grad-Shafranov equation

Let −L the generalized Grad-Shafranov op-
erator, namely

−Lu := ∇[(1−M 2(u))∇u] +

(
M 2(u)

2

)′

|∇u|2.

(9.26)

The generalized Grad-Shafranov equation is

−Lu + F ′(u) = 0,(9.27)

where F is a generic function.

If M is a constant M0 += 1, then the latter
takes the form (1.1), precisely

−∆u = − 1

1−M 2
0

F ′(u).(9.28)

Motivations about the introduction of equa-
tion (9.27) can be obtained for instance in [29],
[46].
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One particular interesting case

Let −Lµ be the operator

−Lµu := ∇[A(u)∇u]− µA′(u)|∇u|2.(9.29)

When

A(s) := 1−M 2(s) and µ =
1

2
,(9.30)

we obtain exactly (9.26).
Thus, if α ∈ R and u > 0

−Lµ(uα) = (1− µ)A′(uα)|∇uα|2 + A(uα)∆uα.
(9.31)

But,

∇uα = αuα−1∇u

∆uα = α[(α− 1)uα−2|∇u|2 + uα−1∆u].
(9.32)

So,

−Lµ(uα) = (1− µ)A′(uα)|∇uα|2 + A(uα)∆uα

(9.33)

= [(1− µ)αuαA′(uα) + (α− 1)A(uα)] αuα |∇u|2

u2

+ A(uα)αuα∆u

u
.

5

5

−L(uα)
uα

=
1

α− 1
[(1− µ)αuαA′(uα) + (α− 1)A(uα)]

∆uα

uα

− (1− µ)
α2

α− 1
uαA′(uα)

∆u

u
.
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Thus, if A verifies

(1− µ)αsA′(s) + (α− 1)A(s) = 0,(9.34)

then

−Lµ(uα) = A(uα)αuα∆u

u
.(9.35)

But the solutions of (9.34) are

A(s) = c|s|
1

1−µ
1−α
α ,(9.36)

with c ∈ R a constant. So (9.35) takes the form

−Lµ(uα) = cαu
µ

1−µ(1−α)∆u.(9.37)

Thus, if we look for positive solutions of (9.27)
where

M 2(s) = 1− c|s|21−α
α ,(9.38)

it is sufficient to obtain positive solutions of

−cαv1−α∆v = F ′(vα)(9.39)

and take u = vα. Then, in this very particular
case we return again to equations of the type
(1.1) and their several boundary value prob-
lems.
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Generalized Grad-Shafranov and scalar cur-
vature

Equations of this type, appear also in the
study of scalar curvature of semi-Riemannian
manifolds. For instance the relation among the
involved scalar curvatures in a warped prod-
uct of Riemannian manifolds (Bm × Fk, g =
gB + f 2gF ) can be written in the form:

f 2Sg = 2kLµf + f 2SgB + SgF(9.40)

where f is the so called warping function and

Lµf = −∇[A0(f )∇f ] + µA′
0(f)|∇f |2(9.41)

with µ =
3− k

2
and A0(s) = s.

The function A0 verifies

(1− µ)αsA′(s) + (α− 1)A(s) = 0,(9.42)

if α =
2

k + 1
.

Thus,

Lµ(u
2

k+1) = − 2

k + 1
u

4
k+1

∆gBu

u
(9.43)

and as consequence (9.40) takes the form

uSg = − 4k

k + 1
∆gBu + SgBu + SgF u1− 4

k+1 .(9.44)
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This type of equation also appear in relativ-
ity (York-Lichnerowicz equation about the con-
straints for the Einstein equations), in filtra-
tion in porous media with absorption and in
population dynamics among other areas. See
[12, 23, 25, 26] and references therein.

The trick “change of variables of the type uα

in order to eliminate the terms with |∇f |2”,
was applied already in the original paper of
Yamabe [45] about the study of the behavior
of the scalar curvature under conformal changes
in the metric of a Riemannian manifold. This
trick was also applied in [23] for the study of
scalar curvature of warped products of Riemann-
ian metrics (see also [25, 26] where this is also
applied to Hessians). A P. J. Morrison gener-
alization (see [44, footnote p. 453]) of this idea
was applied after in plasma physics in [44] (see
also [18]).
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There is a set of existence results of Arcoya,
Boccardo and collaborators for equations of the
type

−∇[a(x, u)∇u] +
1

2
∂ua(x, u)|∇u|2 = F ′(u).

(9.45)

in dimension > 2 (see [8],[9],[10]), but again
avoiding the singular situation (i. e. a > 0).
In any case it is interesting to note the diffi-
culties for the variational approach, since the
associated functional

1

2

∫

Ω
a(x, u)|∇u|2dx−

∫

Ω
F (u)dx(9.46)

is not Gâteaux differentiable in whole H1
0(Ω),

but only in H1
0(Ω)∩L∞(Ω), even if a is smooth.

They introduced a suitable notion of critical
point and proved a variant of the mountain pass
theorem applicable to functionals like (9.46).
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We observe that there exist cases where (9.45)
with Dirichlet boundary conditions has no non-
negative solutions, for instance: If Ω ⊂ Rn(n >
2) is a starshaped smooth bounded domain and
let m ≥ 2∗, then the problem (9.45) has no non
trivial non negative solution in H1

0(Ω)∩L∞(Ω)
for

a(u) = (1 + u)−2γ and F ′(u) = um−1,(9.47)

where 0 < γ ∈ R suitable. This result was
proved in [10, Theorem 5.1] applying a gener-
alization of the so called Pohozaev identity (for
the latter see for instance [6]).
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• Coupled systems of equations of the
form {

−∆u = S(u, v)

−∆v = P (u, v),
(9.48)

on Ω. We will not deal with the study of these
systems, but mention among others the follow-
ing references and others therein

(physical references): [46, p. 3663], [42, p.
11], [29].

(mathematical references): [20, 21, 22].
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• Grad-Shafranov equation with discon-
tinuous non linearity

Equations of the type (1.1) where the non-
linearity is discontinuous appear frequently in
plasma physics and fluid dynamics. These are
also called free boundary problems. For in-
stance:

−∆u = f(u− a) on Ω(9.49)

where a is a positive real parameter and f :
R → R is a non-decreasing bounded function
in C1([0, +∞)), ≡ 0 in (−∞, 0) and > 0 in
[0, +∞). Typical example of f is the Heaviside
function.

We only give some references about these ques-
tions and others therein: [7, 4, 5, 3, 6].
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Appendix A. Example in dimension 1

Example A.1. [6] Let J : H1,2
0 (0, 1) → R the func-

tional

J(u) =

∫ 1

0

[
1

2
u̇2 +

1

2
u2 − 1

4
u4

]
dt.(A.1)

One has that J ∈ C∞(H1,2
0 (0, 1), R) and there holds

J ′(u)[v] =

∫ 1

0

[
u̇v̇ + uv − u3v

]
dt.(A.2)

Then a critical point of J on H1,2
0 (0, 1) is an element

ζ ∈ H1,2
0 (0, 1) such that ∀v ∈ H1,2

0 (0, 1)
∫ 1

0

[
ζ̇ v̇ + ζv − ζ3v

]
dt = 0(A.3)

and this means that ζ is a weak (and by regularity,
see Theorem 1.16, classical) solution of the two point
problem

− ü = u− u3,(A.4)

u(0) = u(1) = 0.(A.5)

Let us remark that the boundary conditions ζ(0) =
ζ(1) = 0 are automatically satisfied because ζ ∈
H1,2

0 (0, 1).

If we consider J : H1,2(0, 1) → R, then a critical
point ζ of J satisfies −ζ̈ = ζ − ζ3 together with the
Neumann boundary conditions ζ̇(0) = ζ̇(1) = 0.
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And if we take

J : {u ∈ H1,2(R) : u(t + 1) = u(t),∀t ∈ R} → R,
(A.6)

then a critical point ζ of J is a 1-periodic solution of
−ü = u− u3.

Of course, the choice of Sobolev spaces like H1,2(0, 1)
is also related to the fact that (A.4) is a second order
equation and the term

∫ 1
0 u̇2dt makes sense.

The preceding example is a model of the following
variational technique: roughly, to look for solutions
of boundary value problems consisting of a differ-
ential equation together with some boundary condi-
tions, when these problem have a variational struc-
ture, namely they are the Euler-Lagrange equation
of a functional J on a suitable space of functions E,
chosen depending on the boundary conditions. The
critical points of J on E (if they exist) give rise to
solutions of these boundary value problems.
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