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Outline

First lecture: Introductory remarks and calculations

• Relativistic kinematic nonlinearities

• Fluid and kinetic nonlinearities

• Role of nonlinearities: small scale generation

• Relativistic self-focussing: heuristic derivation

• Relativistic mirrors
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Second lecture: Analytical 1D results and numerical simulations

• Electromagnetic and Langmuir waves with relativistic amplitudes

• Relativistic Solitons

• Energy density manipulation: soliton reflection by a relativistic mirror

• Conclusions

For a recent review of relativistic effects on light propagation in plasmas see:

Optics in the relativistic regime by G.A. Mourou, T. Tajima and S.V. Bulanov, Rev. Mod.
Phys., 78, 309 (2006).
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Relativistic single particle kinematics

The motion of a test particle in a large amplitude electromagnetic wave
provides a good example of the nonlinearities that are intrinsic to relativistic
kinematics. Let us use standard 3D notation1 and write

d(γv)
dt

=
e

m
(E +

v
c
×B) (1)

with γ ≡ (1− v2/c2)−1/2. Let us consider a monochromatic wave with
E = E0 exp (ik · x− iωt), B = B0 exp (ik · x− iωt),
|E0| = |B0|, k ·E0 = k ·B0 = 0, k×E0 = ωB0.

1Covariant notation in terms of four-vectors is theoretically more satisfactory but may hide features that the
standard 3D notation leaves more evident. In these lectures c.g.s. units are used.
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The charged particle motion depends nonlinearly2 on the electromagnetic fields
because of
• the dependence of the Lorentz factor γ on v,
• the magnetic term in the force,
• and the coordinate dependence of the wave phase.

In the reference frame where the particle is initially at rest, in the small amplitude
limit we can assume v/c $ 1 in which case γ ∼ 1, the magnetic force term can
be neglected and the particle motion is driven by the electric field only.
As a consequence k · x = const.
In this limit Eq.(1) is linear and describes a particle oscillating with frequency ω
along the direction of the electric field.

2i.e. the superposition principle does not apply.
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It is easy to verify that the small amplitude limit is restricted by the condition

a ≡ eE0

mcω
$ 1, with a the dimensionless vector potential. (2)

Present day laser technology allows us to generate ultraintense laser pulses with
intensities approaching 1023 W/cm2 with ω ∼ 2× 1015 sec−1.
For such intensities Eq.(2) is not valid and Eq.(1) has to be solved as is.
In the case of a propagating plane wave Eq.(1) is not difficult to solve because
there are three integrals of motion in convolution, i.e., the Hamiltonian from which
Eq.(1) has been derived is integrable. The three integrals of motion correspond
to three components of the canonical four-momenta that are conserved because
of Noether’s theorem3. In the case of a 1D propagating wave, with k say along
x, the Hamiltonian is invariant under translations in the transverse plane (y-z)
and under combined x and t translations that leave x− ct invariant.

3applied to the corresponding Lagragian http://en.wikipedia.org/wiki/Noether’s theorem.
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Exercise: using the above result calculate the energy of a particle initially at rest under the action
of the electromagnetic fields of a 1D, linearly polarized wave packet. Then calculate the particle
energy after the wave packet has passed the particle.

Exercise: draw by numerical integration the particle trajectory and show that in the case of a
monochromatic wave, in the reference frame where the particle mean velocity along x is zero, the
particle trajectory has the shape of the number 8.

Exercise: calculate the particle trajectory in the case of a monochromatic plane wave using a
perturbative expansion in terms of (eE0)/(mcω) up to quadratic terms.

Exercise: generalize these results to a circularly polarized plane wave packet.

Exercise: analyse the electron motion in the case of a standing wave and show that in this case

the motion is no longer integrable. What are the consequences?
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Summer College on Plasma Physics, ICTP, Trieste 2009 Plasma relativistic nonlinearities [7]

This example introduces us to two important features:

• relativistic effects bring new nonlinearities in the particle response to a time-
varying electromagnetic field,

• in a 1D configuration the effect of these nonlinearities can be investigated
analytically,

• • In addition, the case of circular polarized electromagnetic fields (see exercise)
is easier to investigate because |E|2 and |B|2 do not oscillate with frequency 2ω

These features will also remain valid in the case of a plasma, not of a single
test particle, that we will discuss in these two lectures.

Actually even in the case of a single particle, in the presence of ultraintense electromagnetic
fields not much more intense than those we already obtain in the laboratory, we need to abandon
the test particle point of view and must include the effect of the radiation reaction.
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In the non relativistic limit its well known expression, usually derived from the Larmor formula for
the radiated power, is

F = τod(ma)/dt,
where τo = (2e2)/(3mc3) is the time it takes the radiation to cross a distance of the order of
the so called classical electron radius.
This equation, and its relativistic generalization, has theoretical difficulties arising from the third
derivative (the time derivative of the acceleration).
In the relativistic limit the Landau form is generally used

dp
dt

= F = e

„
E +

v
c
× B

«
+ eτ0γ

»„
∂

∂t
+ v · ∇

«
E +

v
c
×

„
∂

∂t
+ v · ∇

«
B

–

+ τ0
e2

mc

»
E× B +

„
v
c
× B

«
× B +

„
v
c
· E

«
E

–

− τ0
e2

mc
γ2

»„
E +

v
c
× B

«2

−
„

v
c
· E

«2–
v
c
. (3)

Note that Eq.(3) introduces additional nonlinearities in the equation for the particle motion.
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In relativistic covariant notation Eq.(3) reads

mc
duµ

dτ
= eF µνuν + eτ0

„
∂αF µνuνu

α +
e

mc
F µνFναuα +

e

mc
(F νβuβFναuα)uµ

«
(4)

where F µν is the electromagnetic field tensor, τ is the proper time and uµ = (γ, γv/c) is the
particle four-velocity.

Is it interesting to note also this equation can be solved exactly in the 1D case4.

Exercise. Using Eq(4), prove that

d(uµuµ)

dτ
= 2uµ

duµ

dτ
= 0

as required by the definition of the particle four-velocity uµ.

4A. di Piazza , Lett Math. Phys., 83, 305 2008.
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Fluid and kinetic nonlinearities

In these two lectures we are not interested exclusively in the single particle
motion but we aim at addressing the behaviour of a large system of charged
particles such as a plasma in which the electromagnetic fields are not externally
imposed but are generated in large part by the charge and current densities that
are present in the plasma.
This leads to the main difference e.g. between a particle bunch in an accelerator (where the
particles are considered at least in the simplest description as test particles) and a plasma and is
at the foundation of what is called the selfconsistent (i.e., nonlinear) plasma response:

∇ · E = 4π
X

j

Zj

Z
d3vfj, c∇× B = ∂E/(∂t) + 4π

X

j

Zj

Z
d3vvfj,

where the time evolution of the distribution functions fj(x, v, t) depends on the electromagnetic

fields E and B through Vlasov equation (if collisions are inessential).
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The reduction in the detail of description that is brought about by the
transition from a kinetic to a fluid description of the plasma brings about new
nonlinearities. In the continuity equation a quadratic nonlinearity appears

∂n/∂t +∇ · (nu) ≡ [∂/∂t + u · ∇]n + n∇ · u = 0.

In the momentum equation (Euler equation) a quadratic and a cubic nonlinearity
appear in the inertia term.

nm [∂/∂t + u · ∇]u ≡ m [∂(nu)/∂t +∇ · nuu] = −∇p + external forces

where n(x, t) =
∫

d3vf(x, v, t) is the particle density, p(x, t) = ... is the
pressure5 and u(x, t) =

∫
d3vvf(x, v, t)/

∫
d3vf(x, v, t) is the fluid velocity

(not to be confused with the single particle four velocity uµ used before).
5I will not discuss here the additional problem that arises in this reduction from the conceptual a priori

impossibility of closing the fluid equations in the absence of thermodynamic equilibrium: p =?.
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In the relativistic case in the fluid equations become

∂µ(now
µ) = 0, ∂n/∂t +∇ · nu = 0 (5)

where no is the proper density no = n/γ, and wµ = (γ, γu/c) is the fluid velocity
with γ ≡ (1− u2/c2)−1/2, and

∂νT
νµ = Fµνjν, (6)

with T νµ ≡ poδµν + (εo + po)wµwν the mechanical stress tensor with δµν the
Minkowski metric tensor, εo is the internal + rest energy (εo '= nomc2), po the
pressure in the fluid rest frame and jµ = ρ, j/c the electric four current.
The spatial part of Eq.(6) can be rewritten in 3D notation as

∂[(εo + po)γ2u/c2]/∂t +∇[(εo + po)γ2uu/c2] +∇po = γ[ρE + (j/c)×B]. (7)
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A fluid, a plasma, can be relativistic because its fluid velocity u approaches the
velocity of light c or because its temperature is very high, po ∼ nomc2.

In these lectures we will be interested only Fwith the former case and will neglect
all pressure contributions (cold plasma approximation). Then εo reduces to
mnoc2.
In addition we will consider a single charge fluid6 where jµ = noewµ.
In this case, using the continuity equation, we find the simpler equation

m[∂/∂t + u · ∇](γu) = e[E + (u/c)×B], (8)

that resembles the single particle equation of motion (1) with mγu the relativistic
fluid momentum and d/dt = ∂/∂t + u · ∇.
Again relativistic kinematics introduces new nonlinearities in the fluid equations.

6i.e. we will write a fluid equation for each charge species in the plasma.
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The so called convective derivative d/dt = ∂/∂t + u · ∇ actually corresponds to
the transformation from the Eulerian variables x, t to Lagrangian variables xo, t

x = xo + ξ(xo, t), t = t,

where the position xo of the fluid element at t = 0 plays the role of the fluid
element label, ξ(xo, t) is its displacement at time t, and d/dt stands for ∂/∂t|xo.
It is interesting to note that the transformation from Eulerian to Lagrangian
variables is an example of an important mathematical procedure whereby a linear
equation can be associated to a nonlinear equation via a nonlinear transformation7.

Exercise: Show that in a cold homogeneous plasma the nonrelativistic 1D equation for nonlinear

Langmuir waves becomes linear in Lagrangian variables. Discuss whether a superposition principle

applies. Show that relativistic effects keep this equation nonlinear also in Lagrangian variables.
7Other cases are e.g., the hodograph transformation in 1D hydrodynamics [see at the end of these notes] or the

inverse scattering transform associated to the Korteweg-de Vries (KdV) equation.
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Role of nonlinearities: small scale generation

A fundamental difference between linear and nonlinear processes is that linear
processes preserve the initially imposed space and time scales8 while nonlinear
processes move energy through the space and time scale spectrum.
Example of the effect in Fourier space of a quadratic nonlinearity

k1, k2 → k1 − k2, k1 + k2 ω1, ω2 → ω1 − ω2, ω1 + ω2.

This is well known in hydrodynamics and in gas dynamics because of the u · ∇u
nonlinearity.

8Strictly speaking this is only valid for homogeneous conditions, if the system is not homogeneous small scales
can be produced also by linear phenomena. A well known example is the phase mixing that occurs when solving
Vlasov equation in phase space and that is ultimately responsible for the Landau damping of linear waves.
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Summer College on Plasma Physics, ICTP, Trieste 2009 Plasma relativistic nonlinearities [16]

The energy transfer in time to increasingly small scales leads to the breaking of
the waves, or to the formation of shocks when dissipative processes quench this
transfer at some small spatial scale (of the order of the particle mean free path).
This energy transfer is clearly at work also in collisionless systems where however
this transfer of energy to increasingly small scales can be interrupted dynamically
because of dispersion effects (in this case energy is reflected, not absorbed)

if k1, ω1 satisfy the dispersion relation, k1 + k1 = 2k1, ω1 + ω1 = 2ω1 do not.

This may lead to a balance between nonlinear and dispersion effects that can
allow for solitary waves (solitons for short) involving dispersive spatial scales (such
as the electron skin depth c/ωpe or the electron Debye length λDe = vthe/ωpe

with ωpe the Langmuir frequency and vthe the electron thermal velocity) instead
of dissipative scales. A similar balance can also occur between nonlinear and
diffraction effects (self-focussing).

Dipartimento di Fisica Università di Pisa pegoraro@df.unipi.it
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The nonlinear transport of energy to small scales may mean the onset of
turbulence which is a fundamental phenomenon of nature, but need not be very
useful for applications (aside e.g., for faster mixing processes and transport).

But the nonlinear transport of energy to small scales can also mean
concentration of energy (in space) or of power (in time) and, if controllable,
it can lead to a completely new variety of applications.

In the rest of these lectures I will illustrate a few examples of how relativistic
nonlinearities in a plasma can serve this purpose.
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Relativistic self-focussing: heuristic derivation

In vacuum or in a linear medium a wave packet with a Gaussian transverse
amplitude spreads because of diffraction.

Exercise: Consider a wave packet propagating in vacuum of the form9 at t = 0

Eoez exp (−[x2/L2 + y2/D2] + ikx0x) with L $ D and k0D > 1,

where ez is the unit vector along z, L is the length and D the width of the wave packet.
Calculate the time evolution of this wave packet, e.g., using a Fourier expansion in plane waves
and approximating the wave dispersion relation in the form

ω(k) = c[k2
x + k2

y]
1/2 ∼ ckx[1 + k2

y/(2k2
x)] ∼ ckx[1 + k2

y/(2k2
x0)].

9Prove that the magnetic field in this wave packet must have a component along x.
This would also be the case for the electric field if r2 ≡ y2 + z2 would be substituted for y2.
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Show that its effective transverse width increases with time as

[D2 + 4(ct/kx0)
2]1/2 = [D2 + 4(X/kx0)

2]1/2

where X(t) ≡ ct is the propagation distance along x at time t [see at the end of these notes].

Note that for X = kx0D
2/2 the width of the wave packet has doubled: Rayleigh length.

Nonlinear effects con either compensate for or increase the diffraction
spreading. Relativistic effects in a plasma can compensate for the spreading10

and allow for focussed laser pulse to propagate without spreading over distances
much longer than the Rayleigh length. Let us take for granted for the moment
that the ”nonlinear” dispersion relation of a large amplitude (circularly polarized)
transverse electromagnetic wave in a plasma be given by:

ω2 = k2c2 + ω2
pe/γ,

with ωpe ≡ [4πne2/m]1/2 the Langmuir frequency and γ = (1+a2)1/2 the Lorentz
factor of an electron in an e.m. wave of dimensionless amplitude a = eE0/mcω.
In the next lecture a more formal derivation of this result will be given.

10G.A. Askar’yan, Sov. Phys. JETP, 15, 8, (1962).
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First let us recall that the phase velocity (i.e., the velocity of constant phase
planes) of transverse waves in a plasma is superluminous (larger than c) and that
it is an increasing function of ωpe.
For a pulse inhomogeneous in the transverse direction, in the local approximation
we have γ(a) = γ(a(r)) (see exercise above, r is the transverse coordinate). At
the centre of the pulse where the wave amplitude a is larger, electrons appear to
be heavier and as a consequence the effective Langmuir frequency squared ω2

pe/γ
becomes smaller and thus the phase velocity less superluminous.
As sketched in Fig.(1) this bends the phase planes and focuses the pulse as in a
linear optical fiber with index of refraction decreasing with r.
For the sake of simplicity in this heuristic derivation we have taken the electron density to
remain uniform. This indeed is not the case because ponderomotive effects (radiation pressure)
contribute to the pulse focussing by reducing the electron density where the pulse intensity is
larger11 (pulse self-channelling).

11Exercise: modify this reasoning and show that on the contrary for a pulse propagating in a neutral gas ionization
of the gas induced by the laser pulse leads to spreading and thus adds to its diffraction.
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Summer College on Plasma Physics, ICTP, Trieste 2009 Plasma relativistic nonlinearities [21]

Figure 1: Bending of the phase planes
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A simplified equilibrium type argument can be given using an infinitely long
pulse and adopting a perturbative approach by expanding γ(a) in powers of a2

up to first order (cubic nonlinearity).
Start from the nonlinear wave equation

∇2a−
ω2

c2

"
1−

ω2
pe

γ(a)ω2

#
= 0

with 1/γ(a) ∼ 1− a2/2 and a of the (imposed) form
a = a0 exp−(r2/D2) [ey cos (kx− ωt) + ez sin (kx− ωt)]

Expanding the wave equation around r = 0 we obtain

ω2 = k2c2 + ω2
pe, and D2/4 = (c2/ω2

pe) [1/(2a2)]

where c/ωpe is the collisionless electron skin depth12.

12Note that this inverse dependence of the size of the structure on the amplitude of the fields (the strongest, the
smallest) is a common feature of nonlinear phenomena.
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The latter condition can be expressed in terms of a critical pulse power Pcr (integrated
over the pulse cross section) for self-focussing to take place: a more accurate treatment gives

Pcr = (mc5/e2) (ω2/ω2
pe) ∼ 17 GW (ω2/ω2

pe).
Well above this threshold the pulse can divide into self focussed filaments.
PIC numerical simulations (see Appendix) can be exploited to illustrate this phenomenon.

Dipartimento di Fisica Università di Pisa pegoraro@df.unipi.it
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Relativistic Mirrors

Relativistic effects in a high energy plasma provide also a matching condition
that makes it possible to exchange very effectively ordered kinetic energy and
momentum between the e.m. fields and the plasma (provided the plasma is and
remains non-transparent).

Radiation
energy density flux

momentum density flux
∝ c,

Non relativistic matter

kinetic energy density flux

momentum density flux
∝ v.

where v is the matter velocity (assumed ( c).
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Suppose radiation momentum is absorbed (or reflected) by matter. Then the
ratio between the (ordered kinetic) energy13 and the momentum gained
by matter scales as v/c. On the contrary it can be shown that the efficiency
of laser energy conversion into ordered kinetic energy of matter tends to unity
when matter moves at relativistic velocities.
• This property will be exploited in some proposed experimental schemes that use
relativistic plasma mirrors.
Under appropriate conditions, the reflection of ultraintense electromagnetic radiation from a thin

plasma foil can be exploited in order to push the mirror to relativistic energies.

Viceversa the energy density of a pulse interacting with a counterpropagating relativistic mirror

can be amplified as the pulse frequency gets upshifted and the pulse length shortened14.

13The excess energy must be reflected or absorbed e.g., as heat.
14A basic point here is the coherent plasma response: photon frequency upshift by inverse Compton scattering

from a bunch of relativistic electrons has already been obtained e.g., at SLAC where 1018 W/cm2 laser photons,
backscattered by a 46.6 GeV electron beam, interacted with the laser pulse and several electron-positron pairs were
detected: D.L. Burke, et al., Phys. Rev. Lett. 79, 1626 (1997).
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Direct approach

In this approach sheets of plasma are first accelerated to relativistic velocities
through the interaction of an ultra intense laser pulse with a plasma, e.g,. through
the process of controlled wavebreak of a plasma wake wave excited by the laser
pulse. Under appropriate conditions, the electrons in these sheets can reflect
coherently a counter-propagating laser pulse15. In the process the laser pulse
gains energy and at the same time becomes shorter, which corresponds to a
further increase in its energy density.

Reverse approach

Conversely the reflection of radiation from a plasma mirror can be exploited in
order to push the mirror to relativistic energies at the expense of the laser energy.
In the reflection process the laser pulse energy is transferred to the electrons of
a thin plasma foil and then to the ions of the foil, through the formation of a

15S.V. Bulanov,et al., Phys. Rev. Lett. 91, 085001 (2003).

Dipartimento di Fisica Università di Pisa pegoraro@df.unipi.it
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charge separation electric field so intense as to keep electrons and ions locked
together16.

16T. Esirkepov, et al., Phys. Rev. Lett. 92, 175003 (2004).
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The mechanism of momentum transfer to charged particles by radiation
pressure was first investigated long ago17. Particle acceleration by radiation
pressure has been considered in high energy astrophysical environments18.

The reflection properties of an e.m. field structure from a moving mirror can be
derived by performing a Lorentz transformation to the reference frame where the
mirror is at rest. In this frame the e.m. fields are Fourier transformed with
respect to time and the appropriate (frequency dependent) reflection coefficient is
used. For a perfect mirror the standard condition that the tangential component
on the electric field vanishes in the mirror frame is used.
The form and amplitude of the reflected pulse in the laboratory frame are then
obtained by adding the reflected Fourier components and by performing the
inverse Lorentz transformation of the resulting e.m. fields.

17P. N. Lebedev, Ann. Phys., (Leipzig) 6, 433 (1901); A.S. Eddington, MNRAS 85, 408 (1925).
18P. Goldreich, Phys. Scripta 17, 225 (1978); T. Piran, ApJ 257, L23 (1982); V. S. Berezinskii, et al.,

Astrophysics of Cosmic Rays, (Elsevier, Amsterdam, 1990).
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In the case on an electromagnetic wave. the frequency of the reflected wave
is given in the laboratory frame by 19

ωr = ω0
1 + 2βM cos θ0 + β2

M

1− β2
M

(9)

where βMc is the mirror velocity and θ0 is the incidence angle, while the reflection
angle is given by

cos θr =
(1 + β2

M) cos θ0 + 2β2
M

1 + β2
M + 2βM cos θ0

(10)

The wave amplitude transforms according to E0/ω0 = Er/ωr: the amplitude of
the transverse component of the wave vector potential is the same in both frames.

19A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).
W. Pauli, in Theory of Relativity, Dover Publications, Inc., New York, (1981).
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At normal incidence

ωr = ω0
(1 ± βM)2

1− β2
M

(11)

i.e. for a co-propagating (βM > 0) mirror (frequency downshift, the mirror gains
energy from the wave)

ωr = ω0
1 + βM

1− βM
∼ 4/γ2

M for βM → 1, (12)

while for a counterpropagating mirror (frequency upshift, the mirror gives energy
to the wave)

ωr = ω0
1− βM

1 + βM
∼ γ2

M/4 for βM → −1. (13)

In the reflection the number of oscillations inside the e.m. wave is conserved.
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How to construct a relativistic mirror

The mechanism envisaged is based on the results derived in S V. Bulanov, et
al., Phys. Rev. Lett. 91, 085001 (2003), where it was shown (analytically and
numerically), that when a laser pulse interacts with a breaking Langmuir wake
wave, part of the pulse20 is reflected in the form of a highly compressed and
focused e. m. pulse with an up-shifted carrier frequency due to the Doppler effect.

The pulse enhancement of the pulse intensity and the pulse compression arise
because the electron density modulations in the wake wave act as parabolic
relativistic mirrors.

20The frequency dependent reflection coefficient ρ(ω′) = −q/(q − iω′) is used.

Here ω′ is the pulse frequency in the breaking wave frame, q = 2ωpe(2γph)1/2 with γph the Lorentz factor
corresponding to the phase velocity of the wake wave that takes the place of γM in the previous formulae. This
coefficient is obtained by solving the wave equation with a ”foil current” linear in the vector potential
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Figure 2: 3D relativistic Langmuir wake wave
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Electromagnetic and Langmuir waves with relativistic
amplitudes in underdense plasmas

It is well known that constant amplitude solutions of the equations for linear
e.m. (transverse) and Langmuir (longitudinal) waves can be written in the form
of waves propagating with constant phase velocity vph ≡ ω/k:

ut(x, t) = ut0 cos[kx− (k2c2 + ω2
pe)

1/2t] and ul(x, t) = ul0 cos[kx− ωpet].

For finite amplitude waves the frequency depends on the wave amplitude and the
superposition principle does not apply.
In the theory of the interaction of high-intensity laser radiation with plasmas the
paper A.I. Akhiezer R.V. Polovin, Sov Phys. JETP 30, 915 (1956) has played
a key role, searching for nonlinear solutions21 that depend on x− vpht.

21Obviously, in these solutions vph depends on the wave amplitude. Furthermore these solutions do not form a
complete basis since there is no superposition principle.

Dipartimento di Fisica Università di Pisa pegoraro@df.unipi.it
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Here we will apply the relativistic cold plasma equations described before with some change of

notation and using the relativistic version22 of the identity u · ∇u = ∇u2/2− u× (∇× u).

Maxwell’s equations and cold collisionless plasma equations with ions at rest read

∆A− 1
c2

∂ttA−
1
c
∇∂tϕ−

4πene

mec2γ
(P +

e

c
A) = 0, (14)

ne = ni(x) +
1

4πe
∆ϕ, (15)

∂tP = ∇(eϕ−mec
2γ) +

1
γ
(P +

e

c
A)× rotP. (16)

The continuity equation is implied by equations (14,15). These equations are written in the

Coulomb gauge: div A = 0 . Here P is the canonical electron momentum, P = p − eA/c,

p = meγp and the relativistic Lorentz factor is γ =
ˆ
1 + (P + eA/c)2/(mec

2)
˜1/2

.

22Exercise: prove the identity u · ∇(γu) = (1/γ)[γu · ∇(γu)] = ∇γ − u× [∇× (γu)].
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Let us assume that all the variables that characterize the fields and the plasma
are independent of y and z (thus Ax = 0) and that Py = Pz = 0.
Then we can rewrite equations (14)-(16) in components as

∂xtϕ− 4πenep||/mecγ = 0 , (17)

∂xxA⊥ − ∂ttA⊥ − (4πe2ne/mec
2γ)A⊥ = 0 , (18)

ne = ni(x) + ∂xxϕ/4πe, (19)

∂tp|| + ∂x(eϕ−mec
2γ) = 0, (20)

where γ = [1 + (eA⊥/mec2)2 + (p||/mec)2]1/2.

Subscripts || and ⊥ denote the components of the vectors along and perpendicular
to the x-axis while e|A⊥|/(mec2) corresponds to the normalized wave amplitude
a used before.
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Assume homogeneous ion density and wave propagating with constant velocity
vph. Look for solutions that depend on the variable X = x − vpht . We obtain
for the electron density

ne =
nimevphγ

mecβphγ − p||
, (21)

and the two coupled equations for γ = γ(p||, |A⊥|) and A⊥

(βphp|| −mecγ)′′ −
ω2

pep||
(mecβphγ − p||)c2

= 0, (22)

A′′
⊥ +

ω2
peβphγ2

ph

(βphγ − p||)c2
A⊥ = 0 . (23)

Here βph = vph/c, γ2
ph = (1− β2

ph)−1 (γ2
ph is negative for superluminous waves)

and a prime denotes a differentiation with respect to the variable X.
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Longitudinal Relativistically Strong Waves in Cold Plasmas

Assuming the transverse components of electron momentum to be zero which
implies A⊥ = 0 and γ = γ(p||) , we obtain from equation (22):

[(βphp||/mec− γ)′]2/2 = (ω2
pe/c2) (γm − γ) , (24)

where γm = [1 + (pm/mec)2]1/2 = 1/(1 − β2
m)1/2 is an integration constant,

and βmc the maximum value of the electron velocity in the longitudinal wave:
−βm ≤ β = p||/mecγ ≤ βm. Integrating equation (24) we obtain an implicit
solution for X = X(γ)

(2βph)1/2(ωpe/c)X = (γm − γ)1/2 − 2βph [F (Ψ, κ)− (γm + 1)E (Ψ, κ)] , (25)

where F (Ψ, κ) and E (Ψ, κ) are the incomplete elliptic integrals of the first
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and second kind, Ψ = arcsinh[(γm − γ)1/2/(γm + 1)1/2] their argument and
κ = [(γm − 1)/(γm + 1)]1/2 their modulus.

In a relativistically strong Langmuir wave the electric field depends on the
coordinate X through the relationship

E =
meωpec

e
[2(γm − γ)]1/2 . (26)

The maximum electric field is at the point where p||(X) = 0. The expression
for γ given by equation (25) is periodic in X. For the wave frequency we obtain

ω = πωpe/ [2 (K (κ)− (γm + 1)E (κ))] , (27)

where K (κ) and E (κ) are the complete elliptic integrals.
The wave frequency does not depend on the phase velocity of the wave (cold
plasma).
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Simple formulae for the frequency: small and large amplitudes of the wave. In
the small amplitude case when pm $ mec, the frequency is

ω = ωpe

[
1− 3(pm/4mec)2

]
, (28)

which corresponds to the nonlinear shift of the frequency. In the large amplitude
case case when γm + 1 the frequency is23

ω = πωpe/(γ1/2
m 23/2). (29)

Rewriting this expression in terms of the maximum value of the electron
momentum, pm = mec(γ2

m − 1)1/2, we obtain that the period of the wave
is T = 2π/ω = 4(pm/2mec)1/2/ωpe.

23Note the ω2
pe/γm behaviour which is responsible for the ”parabolic” shape od the Langmuir wake waves

mentioned before.
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The expression for the electron density given by equation (21) becomes singular
when the maximum velocity of the electrons in the wave becomes equal to the
wave phase velocity, i.e., when γ = γph = (1− β2

ph)−1/2.
This corresponds to the so called wave breaking (crossing of the fluid element
trajectories).

Close to the wave-breaking limit when, cβm → vph the maximum of the electron
density tends to infinity while the width of the density spike tends to zero.

For cβm = vph, from equations (21) and (25) we obtain that the electron density
in the spike tends to infinity as X → 0 as

n(X)/n0 = 21/3γm(3ωpe|X/|cβm)−2/3 + . . . . (30)
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Note the characteristic cusp-like pattern that appears in phase plane:

p||(X)/mec , βmγm[1− (3ωpe|X|/cβm)2/3] + . . . . (31)

Integrating the electron density (30) in the neighbourhood of the singularity we
find that the total number of particles in the density spike is finite.

The wave breaking imposes a constraint on the maximum value of the
electric field in the wave:

Em =
meωpec

e
[2(γph − 1)]1/2 (32)

which is the Akhiezer–Polovin limiting electric field24.
24This electric field is used in the experiments of electron laser wake field acceleration. This subject is presently of

great interest but is not treated in these lectures.
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Transverse Relativistically Strong Electromagnetic Waves

For a purely transverse circularly polarized electromagnetic wave, from
equation (23) with p‖ = 0 we find that the amplitude of the transverse component
of the vector potential A⊥, A⊥ = Ay + iAz = A⊥ exp(iωX/vph)25, is constant
and the frequency is

ω2 = −
ω2

peβ
2
phγ2

ph

[1 + (eA⊥/mec2)2]1/2
. (33)

In the x, t-coordinates this corresponds to the dispersion equation for the frequency
and wavenumber26

ω2 = k2c2 +
ω2

pe

[1 + (eA⊥/mec2)2]1/2
. (34)

25 exp(iωX/vph) ≡ exp(iωx/vph − iωt) ≡ exp(ikx− iωt)
26This result proves the nonlinear dispersion relation used in the previous lecture to illustrate the phenomenon of

relativistic self-focusing: [1 + (eA⊥/mec2)2]1/2 = (1 + a2)1/2 = γ(a) .
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The dispersion equation (34) can be rewritten in the form

k =
[ω2(1 + (eA⊥/mec2)2)1/2 − ω2

pe]1/2

c[1 + (eA⊥/mec2)2]1/4
.

The electromagnetic wave can propagate (relativistic transparency ) in an
overdense plasma, where ω $ ωpe, provided

ω + ωpe/[1 + (eA⊥/mec
2)2]1/4. (35)

The e.m. fields in the wave are E = ωA⊥/c and B = cωA⊥/vph.
The wave velocity is greater than the speed of light in vacuum:

vph = c [1− ω2
pe/ω2(1 + (eA⊥/mec

2)2)1/2]−1/2. (36)
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Langmuir Wave Excitation

Consider a circularly polarized laser pulse with dimensionless amplitude a,
propagating in an underdense plasma (ω0 + ωpe) along the x-axis.
Write the dimensionless vector potential a in the form

a(X, t) exp(−iω0t− ik0x) + c.c..
The complex amplitude a(X, t) is a function of the variables t and X = x− vgt
with vg the group velocity vg = c2k0/ω0. Assume the ions to be at rest.
Assume that the change in time of a(X, t) and of the dimensionless electrostatic
potential φ(X, t) are slow (∂/∂t$ c∂/∂X) and that vg ≈ c.
From the relativistic hydrodynamic equations and from Maxwell’s equations (14-
16) we obtain a system of coupled equations27

27See e.g., S.V. Bulanov, et al, JETP Lett. , 50, 176 (1989);
S. V. Bulanov,et al, Sov. J. Plasma Phys. 16, 543 (1990).
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2iω0
∂a

∂t
+

(
ωpe

ω0

)2

c2 ∂2a

∂X2
+ 2vg

∂2a

∂X∂t
=

(
ωpe

ω0

)2 φ

1 + φ
a, (37)

∂2φ

∂X2
=

k2
p

2

[
1 + |a|2

(1 + φ)2
− 1

]
, (38)

where kp = ωpe/vg.
Here the vector potential a is normalized on meω0c/e and the electrostatic
potential φ is normalized on mec2/e.
If a = 0, equation (38) describes free Langmuir oscillations in the limit vph = c
considered above (see equation (24)).

If for the sake of reasoning, the laser pulse is assumed to be given as a
square-pulse profile with amplitude a0 (|a|2 = a2

0 at L < X < 0, and |a|2 = 0 at
X < L,X > 0), equation (38) can be solved analytically.
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In the region occupied by the pulse in terms of elliptic functions we have

kpX = −2(1 + a2
0)

1/2E

{
arcsin

[(
(1 + a2

0)φ
a2
0(1 + φ)

)1/2
]

,
a0

(1 + a2
0)1/2

}

+2
(

φ(a2
0 − φ)

1 + φ

)1/2

. (39)

By matching this solution with the solution for the free plasma wave we obtain
that the typical value of the electrostatic potential in the plasma wave is

ϕmax ≈ mec
2a2

0/e. (40)

The optimal pulse length is L = 2(1 + a2
0)1/2E

(
a0/(1 + a2

0)1/2
)
.
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The corresponding wake field has a wavelength equal to λ = 23/2|a0|k−1
p , and the

maximum electric field (before breaking, it can be higher in a breaking wave) is

E = mec
2ωpea

2
0/(1 + a2

0)
1/2e. (41)

The maximum electron energy in the wake wave is given by

1
2

(
dφ

dX

)2

=
k2

p

2
ϕ(a2

0 − φ)
1 + φ

. (42)

Here the constant of integration is chosen such that there is no wake wave before
the laser pulse. We see that the potential inside the laser pulse varies between
zero and mec2a2

0/e. Behind the laser pulse, for an optimal pulse length, the
electrostatic potential also scales as a2

0.
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In the case of a laser pulse with amplitude a > (mi/me)1/2, which corresponds
to the petawatt power range, ions can no longer be considered to remain at rest.
The modifications of the wake field generated by a sufficiently short laser pulse
with a ≈(mi/me)1/2 propagating in an underdense plasma (see for comparison
equations (22) and (38)) are given by

d2φ

dX2
=

γ3
phβph (1 + φ)

[
γ2

ph (1 + φ)2 − (1 + a2(X))
]1/2

(43)

−
γ3

phβph (µ− φ)
[
γ2

ph (µ− φ)2 − (µ2 + a2(X))
]1/2

,

where µ = mi/me.
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We assume the (circularly polarized) laser pulse to be given. The effect of the
ion motion restricts the potential φ between the two bounds (in these estimates
we assume βg → 1)

−1 < φ < min{µ, a2
m}. (44)

From equation (43) we can also find that behind a short laser pulse with optimal
length l = 21/2/am, λw and the maximum value of the electric field Ew and of
the potential φw scale for 1 < am < µ1/2, as

λw = 23/2am, Ew = am/21/2, φw = a2
m,

and, for am > µ1/2, as
λw = 21/2µ/am, Ew = am/21/2, φw = µ

For am > µ1/2 the wake field wavelength decreases with increasing laser pulse
amplitude while the value of the electrostatic potential does not change.
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Relativistic Solitons

Solitary structures (solitons for short) arise from the balance between nonlinear
and dispersion effects. Among nonlinear modes, solitons are of fundamental
importance for basic nonlinear science in a wide variety of fields.

Nonlinear one-dimensional (1-D) relativistic solitons in a plasma have been studied
analytically and numerically28

28J.H. Marburger and R.F. Tooper, Phys. Rev. Lett., 35, 1001 (1975); N.L. Tsintsadze, D.D. Tskhakaya, JETP,
45, 252 (1977); V.A. Kozlov, A.G. Litvak, and E.V. Suvorov, Sov. Phys. JETP, 76, 148 (1979); M.Y. Yu, P.K.
Shukla and N.L. Tsintsadze, Phys. Fluids, 25, 1049 (1982); R.N. Sudan, Ya.S. Dimant, and O.B. Shiryaev, Phys.
Plasmas, 4, 1489 (1997); T.Zh. Esirkepov, F.F. Kamenets, S.V. Bulanov, N.M. Naumova, JETP Lett. . 68, 36,
(1998); S.V. Bulanov, T.Zh. Esirkepov, F.F. Kamenets, and N.M. Naumova, Plasma Phys. Rep., 21, 600 (1995);
F. Cattani et al., Phys. Rev., E 64, 016412 (2001); D. Farina, S.V. Bulanov, Plasma Phys. Contr. Fusion, 47,
A73 (2005); V. Saxena, A. Das, S. Sengupta, P. Kaw, A. Sen, Phys. Plasmas, 14, 072307 (2007), and references
therein.
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2D and 3D (subcycle) solitons have been found with PIC simulations29 and
“detected” experimentally30 (+ analytical solutions expanding in powers of a).
Let us return to the relativistic electron equations (14-16), assume the
electromagnetic wave to be circularly polarized, introduce the new coordinates
X = x− vst , and τ = t , and look for solutions of the form31

A⊥ = Ay + iAz = A(X) exp {iω[(1− v2
s/c2)τ − vsX/c2]}, (45)

p||/mec = βsb(X) . (46)
29S. V. Bulanov, T. Zh. Esirkepov, N. M. Naumova, et al., Phys. Rev. Lett. 82, 3440 (1999); ,S.V. Bulanov, F.

Califano, T.Zh. Esirkepov, et al., J. Plasma Fusion Research 75, 506 (1999); Y. Sentoku, T.Zh. Esirkepov, K.
Mima, et al., Phys. Rev. Lett. 83, 3434 (1999); N.M. Naumova, et al., Phys. Rev. Lett. 87, 185004 (2001); T.
Esirkepov, K. Nishihara, S.V. Bulanov, F. Pegoraro, Phys. Rev. Lett., 89, 275002 (2002).

30M. Borghesi, et al., Phys. Rev. Lett. 88, 135002 (2002).
31exp {iω[(1− v2

s/c2)τ − vsX/c2]} = exp [iω(τ − vsx/c2)].
Note that for linear transverse e.m. waves in a plasma vgvph = c2, with vg the group velocity.
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Inserting expressions (45,46) into (17-20 ) and assuming the ion density to be
homogeneous we obtain

(
γ − β2

sb
)′′ =

ω2
peb

(γ − b)c2
, (47)

a′′ +
ω2

c2
a =

ω2
peγ

2
s

(γ − b)c2
a, (48)

where γ =
(
1 + a2 + β2

sb2
)1/2

, γ2
s =

(
1− β2

s

)−1
, βs = vs/c, a = eA/mec2 and

a prime denotes a differentiation with respect to the variable X.

The system of equations (47,48), with boundary conditions32 a(∞) =
b(∞) = 0 , a(X) < ∞ , b(X) < ∞ , describes a one-dimensional relativistic
electromagnetic soliton propagating through a cold collisionless plasma.

32Constant amplitude e.m. transverse waves are recovered by taking a′′ = b = 0.
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The soliton speed and frequency are smaller than the speed of light and of the
electron plasma frequency: βs< 1 and ω <ωpe. In the case vs = 0, p|| vanishes
and we have

a′′ + k2
p[(ω/ωpe)2 − (1 + k2

pγ
′′)/γ]a = 0 , (49)

where kp = ωpe/c. With the help of the substitution a = shu, γ = chu this
equation can be transformed into

u′′ = k2
psh u [1− (ω/ωpe)

2 chu]. (50)

which leads to a subcycle structure

a(X, τ) =
2[1− (ω/ωpe)2]1/2 cosh

[
k2

pX
(
1− (ω/ωpe)2

)1/2
]
exp(iωτ)

cosh2
[
k2

pX (1− (ω/ωpe)2)
1/2

]
+ 1− (ω/ωpe)2

. (51)
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The relationship between the soliton amplitude am, which is equal to am = a(0, 0),
and the soliton frequency ω is given by

am = 2ωpe

(
ω2

pe − ω2
)1/2

/ω2 . (52)

Ion motion has important effect on the propagating envelope (multi-humped)
solitons and single cycle solitons. It can be shown33 (in the framework of two
fluid cold equations) that no solution can be found for propagation velocities vs

smaller than a critical value vs,cr

The non propagating solution given in Eq.(51) is not continuously connected to
those with vs '= 0: its structure will change on the ion dynamical time.

33D. Farina, S.V. Bulanov, Phys. Rev. Lett. 86, 5289 (2001);
D. Farina, S.V. Bulanov, Plasma Phys. Rep. 27, 641 (2001)
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Figure 3: One dimensional, sub-cycle soliton
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Higher dimensions: numerical simulations

These results have been derived using idealized low-dimensionality models.
At higher dimensions these investigations are technically and sometimes
conceptually (example: topology of field lines in 3D solitons) much more difficult
and exact solutions are seldom available. Numerical simulations play a
fundamental role in the analysis of regimes that are outside the reach of most
analytical developments because of their high dimensionality and because of
their full nonlinear dynamics.

Simulations here are not only used for validating analytical models, but
also as an investigative tool for discovering new phenomena. This simulation
analysis must be accompanied by the development of appropriate semantics that
can only be obtained from a physical understanding based on the extrapolation
of simplified, lower dimensionality, models.
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Figure 4: Three dimensional soliton topology
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Figure 5: 2D (post)soliton
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Figure 6: 2D wake
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Soliton reflection by a relativistic mirror

Non propagating relativistic solitons trap e.m. energy by surrounding it by
plasma walls ω < ωpe: the radiation pressure of the trapped e.m. fields acts on the electrons

that are kept in place by the charge separation field on time scales short with respect to the ion

dynamics. On longer time scales the ions start to move and the solitons expand (post-solitons)

as shown in Fig.(5).
It possible to manipulate the energy density inside the soliton by exploiting the
same mechanism of energy density enhancement described above where we have
shown that when a laser pulse interacts with a breaking wake plasma wave part of
the pulse is reflected in the form of a highly compressed and focused e.m. pulse
with an up-shifted carrier frequency.

The idea is simply to substitute a soliton for the incoming pulse34.
34A.V. Isanin, et al., Phys. Lett. A 337, 107 (2005); S.S. Bulanov, et al., Phys. Rev. E 73, 036408 (2006).
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One-dimensional analytical model

As already mentioned, the reflection of one-dimensional coherent structures
can be derived by performing a Lorentz transformation to the reference frame
where the wake plasma wave is at rest. In this frame the e.m. fields are Fourier
transformed with respect to time and a frequency dependent reflection coefficient
is used35. The form and amplitude of the reflected pulse in the laboratory frame
can obtained by adding the reflected Fourier components and by performing the
inverse Lorentz transformation of the resulting e.m. fields.

The main conclusion of this one dimensional analysis is that in a tenuous
plasma the frequency up-shift of the reflected pulse, and its related compression,
would be so large that it could lead to the generation of attosecond pulses36.

35In this model the mirror is taken not to be deformed by the interaction with the coherent structure in a sort of
“test particle approach” where the energy of the mirror, of the wake wave that produces it, is as large as required.

36attosecond = 10−18 seconds. Note that ∼ 24 attoseconds is the time taken by an electron to travel from ”one
side of a hydrogen atom to the other”.
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Numerical documentation

To take into account the effects of multi-dimensional geometry and strongly
nonlinear plasma dynamics, as well as the influence of kinetic effects, two
dimensional simulations were performed37.

The grid mesh size is λd/20; space and the time unit is λd and 2π/ωd. Here λd and
ωd is the driver laser wavelength and frequency, respectively. The electric and magnetic field
components are normalized to meωdc/e and the electron density is normalized to the critical
density ncr = meω

2
d/4πe2.

The ions are assumed to form an immobile neutralizing background and thus only the electron
motion is taken into account. This approximation is applicable because the typical interaction
period is much shorter than the ion response time.
The boundary conditions are absorbing for the e. m. field and the quasi-particles. The interaction
of a wake wave with a soliton is simulated in a box with size 60λd × 40λd, including the
absorbing edges of thickness 3λd.

37S.S. Bulanov, et al., Phys. Rev. E 73, 036408 (2006).
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Summer College on Plasma Physics, ICTP, Trieste 2009 Plasma relativistic nonlinearities [63]

A single relativistic e. m. sub-cycle soliton is generated by an auxiliary laser pulse with wavelength
λa = 2λd and dimensionless amplitude aa = 0.5, corresponding to the peak intensity a2

a × I1,
where I1 = 1.37 × 1018 W/cm2 × (1 µm/λ2

d). The pulse is Gaussian with FWHM size
(length×waist) 4λd × 6λd. The auxiliary laser pulse is linearly polarized with its electric field
along the z-axis; it is generated at the bottom boundary at t = 0 and propagates along the
y-axis at x = 20.
The plasma wakefield, which interacts with the soliton, is formed by a Gaussian laser pulse, the
driver pulse, with amplitude ad = 1.5 and FWHM size 2λd × 12λd, starting at time t = 45
from the left boundary and propagating along the x-axis. The driver laser pulse is linearly
polarized, its electric field is directed along the y-axis. The plasma slab occupies the region
5 ≤ x ≤ 35, 5 ≤ y ≤ 35; it is homogeneous in the direction of the y-axis and it has convex
parabolic slopes along the x-axis from x = 5 to 11 and from 29 to 35. This plasma-vacuum
interface profile is chosen so as to make the laser pulse entrance into the plasma smoother
and to avoid a fast wake wave breaking. The electron density at the center of the plasma
slab is ne = 0.09ncr, corresponding to the Langmuir frequency ωpe = 0.3. The number of
quasi-particles is 3.24 × 106. The phase velocity of the wakefield when it starts to interact
with the soliton is vph ≈ 0.925, corresponding to the Lorentz factor γph ≈ 2.63.
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Figure 7: Mirror-soliton interaction geometry
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Fig.(7) shows a portion of the simulation box shortly before the interaction.

The auxiliary laser pulse has already gone through the box: in its wake we see
a single s-polarized relativistic e. m. sub-cycle soliton and remnants of a broken
wakefield at the bottom of the window. The soliton frequency is well below
the unperturbed plasma frequency, ΩS ≈ 0.25ωd < ωpe. The soliton appears
as a region of low electron density. Since the driver and the auxiliary laser
pulses have different polarizations and the soliton inherits its polarization from
the auxiliary laser, it is easy to distinguish the e. m. field reflected from the
soliton in the distribution of the Ez component. The driver laser pulse induces
a strong wakefield which is seen in the electron density distribution as a series
of wide regions of rarefaction alternating with thin horseshoe-shaped regions of
compression.
Regions of compression correspond to spikes (cusps) in the longitudinal profile of
the electron density.
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Figure 8: Mirror-soliton interaction
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Fig.(8) shows the interaction of the density cusps in the wake of the driver pulse
with the soliton.

The z-component of electric field and the electron density are shown. The wake
wave of the driver is close to the wave breaking regime.
Each electron density maximum (each cusp) in the wake acts as a fast moving
semitransparent parabolic mirror that partially reflects the e. m. fields of the
soliton as it propagates through the soliton.
The process is repeated when the subsequent cusps of the electron density
propagate through the soliton. Thus a set of short e. m. pulses is formed.
Even though the electron density cusp is substantially distorted as it moves
through the soliton, it recovers after leaving the soliton. This transient distortion
of the cusp when crossing the soliton does not prevent the formation of well
pronounced single-cycle pulses.
We also note that the single cycle pulses move faster than the electron ridge.
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The frequency of the fields in the reflected single-cycle e. m. pulses is up-shifted
and their longitudinal size is much smaller than the size of the soliton.
Since the soliton is not exactly positioned at the crossing of laser pulse axes, the
reflected pulse is not exactly directed along the x-axis.
This is a consequence of the parabolic profile of the wakefield: as the pulse is
reflected by the upper wing of parabola it propagates at an angle with respect to
the x-axis.

The reflection of coherent structures such as solitons by a wake wave can be
exploited in order to produce ultra-short intense e.m. pulses. The modulations
of electron density in a strong wake wave close to the wave-breaking regime have
the shape of spikes and each spike acts as a semi-transparent mirror moving with
a relativistic velocity. Such a mirror partially reflects the electromagnetic field of
a coherent nonlinear structure and thus generates an electromagnetic pulse. For
each spike, the reflected pulse consists of a single cycle oscillation, which results
in a train of single oscillation pulses.
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Conclusions

Analytical and numerical investigations show that in the complex physics of
the interaction of high intensity ultrashort laser pulses with plasmas, fundamental
physical mechanisms can be identified that form the basic blocks of the nonlinear
physics of continuous media such as breaking waves and solitons.

In addition these investigation show that these nonlinear processes can be
harnessed in order to concentrate the e.m. radiation in space and in time and
produce e.m. pulses of unprecedented high intensity or short duration that can
be used to explore collective ultra-high energy density effects in the laboratory.
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Appendix

In the investigation of relativistic plasmas a new basic tool, besides experiments
and analytical modelling, has taken a major role: multi-dimensional, fully
relativistic Particle in Cell (PIC) numerical codes have made it possible38 to
reproduce, in many important plasma regimes, the kinetic plasma behaviour that
shapes the plasma and the laser pulse dynamics.
PIC codes solve the system of the coupled Maxwell’s and Vlasov equations along
an appropriate sample of particle characteristics (orbits in phase space).

PIC simulations indeed are not only used for validating analytical models
or for reproducing experimental results, but can also play the vital role of an
investigative tool for discovering new phenomena and new interaction regimes.

38See e.g., J.M. Dawson, Phys. Plasmas, 6, 4436 (1999)
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Hodograph transformation

1-D gasdynamics in coordinate free form and the hodograph transformation

For a 1-D fluid configuration, where quantities depend on x and t only, the continuity
equation

∂ρ

∂t
+

∂ρu

∂x
= 0 (53)

and the Euler equation

ρ

„
∂u

∂t
+ u

∂u

∂x

«
+

∂p

∂x
= 0 (54)

with density ρ, pressure p = p(ρ) and enthalpy h = h(ρ), can be written in the notation of
differential forms as

dρ ∧ dx = d(ρu) ∧ dt (55)

du ∧ dx = d(h + u2/2) ∧ dt. (56)
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Equations (53, 54) follow by taking x, t as the independent variables and by expressing the
dependent variables ρ, u as functions of x, t. Taking instead ρ, u as independent variables and
expressing x, t as functions of ρ, u we obtain the hodograph transformed equations

∂x

∂u
− u

∂t

∂u
+ ρ

∂t

∂ρ
= 0 (57)

∂x

∂ρ
+

dh

dρ

∂t

∂u
− u

∂t

∂ρ
= 0 (58)

which are linear in the dependent variables x and t.
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Diffraction spreading

Formulae: Numerical factors are neglected

exp (−[x2/L2 + y2/D2] + ik0x) = (59)

Z Z +∞

−∞
exp (−[(kx − k0)

2L2/4 + k2
yD

2/4]) exp [+i(kxx + kyy)] dkx dky

Z Z +∞

−∞
exp (−[(kx − k0)

2L2 + k2
yD

2]/4 + ikxx + ikyy − iω(k)t) dkx dky (60)

with k0D $ 1 and

ω(k) = c[k2
x + k2

y]
1/2 ≈ ckx [1 + k2

y/(2k2
x)] ≈ ckx + k2

y/(2k0). (61)

The integrals over kx and ky are factorized. Then
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Z +∞

−∞
exp (−[k2

yD
2/4 + ictk2

y/(2k0)]) exp (+ikyy) dky (62)

∝
exp (−[y2/(D2 + 2ict/k0)])

(D2 + 2ict/k0)1/2

The effective width of this complex Gaussian is

[D2 + 4(ct/k0)
2]1/2 = [D2 + 4(X/k0)

2]1/2 (63)

where X(t) = ct.
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