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1. Introduction

• Resonant MHD waves can provide efficient heating of even very weakly

dissipative plasmas

• Theory of resonant MHD waves can explain fast damping of global

waves in weakly dissipative plasmas

• It also provides mechanisms for excitation of large-amplitude oscilla-

tions by small-amplitude incoming waves

• Resonant MHD waves were first suggested for complementary heating

of fusion plasmas (e.g. Tataronis & Grossmann 1973, Z. Phys. 261,

217 [199]; Chen & Hasegawa 1974, Phys. Fluids 17, 1399 [219])

• Soon they were considered to explain large-amplitude oscillations ob-

served in terrestrial magnetosphere (Lanzerotti et al. 1973, PRL 31,

624 [58]; Southwood 1974, Planet. Space Sci. 22, 483 [758]; Chen &

Hasegava 1974, JGR 79, 1024 [754])
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• In a few years resonant MHD waves were suggested for explanation of

solar coronal heating (Ionson 1978, ApJ 226, 650 [404])

• Recently theory of resonant MHD waves successfully explained fast

damping of transverse oscillations of coronal magnetic loops (Ruder-

man & Roberts 2002, ApJ 577, 475 [107]; Goossens et al. 2002, A&A

394 L39 [65])

At present hundreds of papers on resonant MHD waves were published.

I mentioned only 8 of them, and altogether they were cited 2564 times,

more than 320 citations per paper!
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2. Basic equations

We consider strongly collisional plasmas assuming that

lcol � lch, tcol � tch

where lcol and tcol are collisional distance and time of particles, and lch and

tch are characteristic spatial scale and time of the problem.

Motions of such plasmas are described by MHD equations:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p +

1

μ0
(∇×B)×B + η∇2v (2.2)

∂B

∂t
= ∇× (v ×B) + λ∇2B (2.3)

∂

∂t

(
p

ργ

)
+ v · ∇

(
p

ργ

)
= 0 (2.4)
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Here ρ is density, p pressure, v velocity, B magnetic induction; μ0 is

magnetic permeability of empty space, η dynamic viscosity, λ coefficient

of magnetic diffusion, and γ the ratio of specific heats.

In Eq. (2.2) expression for viscous force is written in strongly simplified

form. However, it is sufficient for studying resonant MHD waves.

In spite of presence of dissipation we use entropy conservation equation

(2.2). To be precise we have to write two dissipative terms on right-hand

side of Eq. (2.2). However, in static equilibria with potential magnetic

field, this terms are quadratic with respect to perturbations. Since we are

going to study only linear theory of resonant MHD waves, we neglected

these terms.
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In what follows we use either Cartesian coordinates x, y, z, or cylindrical

coordinates r, ϕ, z, and consider one-dimensional static equilibria where

ρ, p and B are functions of either x or r, and v = 0. We mark equilib-

rium quantities with subscript ‘0’. It follows from solenoidal condition for

magnetic field, ∇ · B = 0, that either Bx = 0 or Br = 0. Equilibrium

quantities satisfy condition of total pressure balance,

p0 +
B2

0

μ0
= 0 (2.5)

Now we consider small perturbations to equilibrium and take ρ = ρ0 + ρ′,

p = p0 + p′ and B = B0 + b. In what follows we drop prime at ρ and p.

Then we linearised MHD equations to obtain
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∂ρ

∂t
+∇ · (ρ0v) = 0, (2.6)

ρ0
∂v

∂t
= −∇

(
p +

B0 · b

μ0

)
+

1

μ0
(B0 · ∇)b + η∇2v, (2.7)

∂b

∂t
= ∇× (v ×B0) + λ∇2b, (2.8)

∂

∂t
(p− c2

Sρ) + ργ
0v · ∇

p0

ργ
0

= 0, (2.9)

where c2
S = γp0/ρ0 is square of sound speed.
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3. MHD waves in ideal homogeneous plasmas

Let us assume that ρ0, p0 and B0 are constant. We also assume that

the plasma is ideal, i.e. η = λ = 0. Then we take perturbations of all

variables proportional to exp[i(k · r − ωt)], where k = (kx, ky, kz) and

r = (x, y, z). Then Eqs. (2.6)–(2.9) reduce to

ωρ− ρ0k · v = 0 (3.1)

ρ0ωv = k

(
p +

B0 · b

μ0

)
−

1

μ0
(k ·B0)b (3.2)

ωb = B0(k · v)− v(k ·B0) (3.3)

p = c2
Sρ (3.4)

Eliminating all variables in favour of v we obtain
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(ω2 − k2V 2
A cos2 α)v = k(c2

S + V 2
A)(k · v)

− V 2
Ab0k(k · v) cos α− kkV 2

A(b0 · v) cos α (3.5)

where V 2
A = B2

0/μ0ρ0 is the square of Alfvén speed, α is the angle between

k and B0, and b0 = B0/B0 is the unit vector in the equilibrium magnetic

field direction. Taking scalar product of this equation with k, b0 and k×b0

yields

[ω2 − k2(c2
S + V 2

A)](k · v) + k3V 2
A(b0 · v) cos α = 0 (3.6)

kc2
S(k · v) cos α− ω2(b0 · v) = 0 (3.7)

(ω2 − k2V 2
A cos2 α)(k × b0) · v = 0 (3.8)

Equations (3.6) and (3.7) constitute the system of two linear homogeneous

algebraic equations for k · v and b0 · v. It has non-trivial solution only

when its determinant is zero, which gives the dispersion equation

ω4 − ω2k2(c2
S + V 2

A) + c2
SV 2

A cos2 α = 0 (3.9)
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Equations (3.8) is an equation for (k×b0) ·v. It has a non-trivial solution

only when

ω2 = ω2
A ≡ k2V 2

A cos2 α (3.10)

(3.9) is the dispersion equation for magnetosonic waves. Its solutions

are

ω2
± =

1

2

(
c2
S + V 2

A ±
√

(c2
S + V 2

A)2 − c2
SV 2

A cos2 α

)
(3.11)

The signs ‘+’ and ‘−’ correspond to fast and slow magnetosonic waves.

The dispersion relation (3.10) corresponds to Alfvén waves. When

α �= 0 and α �= π
2 , ω2

± �= ω2
A. Hence, in magnetosonic waves

(k × b0) · v = 0, so that these waves are polarised in the kb0-plane (i.e.

the vectors k, b0, v and b are coplanar.

In Alfvén waves k · v = b0 · v = 0, so that v and b are perpendicular to

k and b0.
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Polar diagrams for phase speed ω/k

VA > CS VA < CS

Cf = (C2
S + V 2

A)1/2
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Phase speed along magnetic field

kk

B0k

T

||

CT =
CSVA√
C2

S + V 2
A

fast slow Alfvén
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Group velocity
∂ω

∂k
:

For Alfvén waves:
∂ω

∂k
= VAb0

For slow waves: ω ≈ CT (b0 · k) for k⊥ � k‖ =⇒
∂ω

∂k
≈ CTb0

Strongly localised Alfvén and slow waves (ak‖ � 1)

In all harmonics of Fourier expansion k⊥ � k‖

B

ω/
ω/

ω/

0

ω/k
k ||

k
k ||
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Let k⊥ be in x-direction, B0 be in z-direction. Then

f(x, z, t) =
1

(2π)2

∫ ∞

−∞

dk⊥

∫ ∞

−∞

f̂(k⊥, k‖) exp(ik⊥ + ik‖ − iωt) dk‖

=
1

(2π)2

∫ ∞

−∞

dk⊥

∫ ∞

−∞

f̂(k⊥, k‖) exp[ik⊥x + ik‖(z − VAt)] dk‖

= f(x, z − VAt)

This is also approximately valid for slow waves:

f(x, z, t) = f(x, z − CT t)
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4. Torsional waves in inhomogeneous plasmas

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
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� � � �

� � � �

� � � �

The sketch of a system consisting of N oscillators with different frequen-

cies. The bar is harmonically shaken in the y-direction.
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L

B

z

r
ϕ

(  )r

ρ r(  )

0

0

Magnetic field lines are

frozen in dense plasma at

z = 0, L. Plasma is at rest

at z = L, so that

v = 0 at z = L (4.1)

There is driver exciting ro-

tational oscillations at z =

0, so that

vr = vz = 0 at z = 0

(4.2)

vϕ = v0(r, t) at z = 0

(4.3)
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Now we assume that perturbations of all variables but the vϕ and bϕ are

zero, and vϕ and bϕ are independent of ϕ. Then all linearised MHD equa-

tions, Eqs. (2.6)–(2.9), but the ϕ-components of the linearised momentum

and induction equation, are satisfied identically, while the ϕ-components

of the linearised momentum and induction equation reduce to

∂vϕ

∂t
=

B0

μ0ρ0

∂bϕ

∂z
+ ν∇2vϕ (4.4)

∂bϕ

∂t
= B0

∂bϕ

∂z
+ λ∇2bϕ (4.5)

where ν = η/ρ0 is kinematic viscosity. We assume that dissipation is

weak. Then we will see that it is only important in a very thin annulus

embracing a cylindrical surface called the resonant surface. In this annulus

the derivatives with respect to r are much larger than the derivatives with

respect to ϕ and z, so we can take

∇2 ≈
∂2

∂r2
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Then, eliminating bϕ from Eqs. (4.4) and (4.5), we arrive at

∂2vϕ

∂t2
− V 2

A

∂2vϕ

∂z2
= (ν + λ)

∂3vϕ

∂t∂r2
(4.6)

Assume that

vϕ = ṽ1(r, z),
∂vϕ

∂t
= ṽ2(r, z) at t = t0 (4.7)

Introduce new variable

v(r, z, t) = vϕ(r, z, t)− v0(r, t)
(
1−

z

L

)
(4.8)

Then Eq. (4.6) is transformed to

∂2v

∂t2
− V 2

A

∂2v

∂z2
− (ν + λ)

∂3v

∂t∂r2
=

(
1−

z

L

)
g(r, t) (4.9)

and the initial and boundary conditions, Eqs. (4.7) and (4.1), (4.3) reduce

to
v = v1(r, z),

∂v

∂t
= v2(r, z) at t = t0 (4.10)

v = 0 at z = 0, L (4.11)
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where

g(r, t) = (ν + λ)
∂3v0

∂t∂r2
−

∂2v0

∂t2

v1(r, z) = ṽ1(r, z)− v0(r, t)
(
1−

z

L

)

v2(r, z) = ṽ2(r, z)−
∂v0

∂t

(
1−

z

L

)
We assume that v1(r, z) and v2(r, z) also satisfy the boundary conditions

v1 = v2 = 0 at z = 0, L (4.12)

Now we expand v, v1 and v2 in Fourier series of the form

f =
∞∑

n=1

fn sin
πnz

L

Then, using

1−
z

L
=

2

π

∞∑
n=1

1

n
sin

πnz

L
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we obtain
∂2vn

∂t2
+ n2ω2

Avn − (ν + λ)
∂3vn

∂t∂r2
=

2g(r, t)

πn
(4.13)

vn = v1n(r),
∂vn

∂t
= v2n(r) at t = t0 (4.14)

We assume that v1n(r) and v1n(r) are smooth functions with the char-

acteristic variation scale rch satisfying R = rchVA0/(ν + λ) � 1, where

VA0 = VA(0). Then, for “not large values of t− t0”, the ratio of the third

term in Eq. (4.13) to the second one is of the order of 1/R � 1, so that

the third term can be neglected. Then Eq. (4.13) becomes an ordinary

differential equation, and its solution satisfying Eq. (4.14) is

vn = Ac(t) cos[nωA(t− t0)] + As(t) sin[nωA(t− t0)] (4.15)

Ac(t) = v1n −
2

πn2ωA

∫ t

t0

g(τ ) sin(nωAτ ) dτ (4.16)

As(t) =
v2n

nωA
−

2

πn2ωA

∫ t

t0

g(τ ) cos(nωAτ ) dτ (4.17)
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If we now use this solution to calculate the third term in Eq. (4.13), then

we find that it grows as t2. This growth is caused by dependence of ωA

on r. Due to this dependence neighbouring magnetic field lines oscillate

with difference frequencies and become more and more out of phase. As a

result the spatial gradient in the r-direction grows. This process is called

the phase-mixing.

Let us obtain solution to Eq. (4.13) valid for any moment of time. First

we consider its homogeneous counterpart and take g = 0. We introduce

stretched time T = ε(t − t0) and look for solution to Eq. (4.13) in the

form
vn = 	{Q(r, T ) exp[iε−1Θ(r, T )]}

Substituting this expression in Eq. (4.13) we obtain

Q

(
∂Θ

∂T

)2

− n2ω2
AQ− 2iε

∂Q

∂T

∂Θ

∂T
− iε−2(ν + λ)

∂Q

∂T

(
∂Θ

∂r

)2

= O(ε2) +O[(ε−1(ν + λ)] (4.18)
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Now we demand that the third and fourth term on the left-hand side be

of the same order. Then ε = R−1/3.

First-order approximation:

∂Θ

∂T
= ±nωA (4.19)

For simplicity we take Θ = 0 at T = 0.

Second-order approximation:

∂Θ

∂T
= −3Λn2T 2, Λ =

aVA0

6

(
dωA

dr

)2

(4.20)

Solution to this equation is

Q = Q0(r) exp(−Λn2T 3)

Then the general solution to homogeneous counterpart of Eq. (4.13) valid

for any time is
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vn = exp[−Λn2(t− t0)
3/R]{Ãc(r) cos[nωA(t− t0)]

+ Ãs(r) sin[nωA(t− t0)]} (4.21)

To find solution to Eq. (4.13) we need to construct the Green’s function

Gn(t, τ ). It is determined by the following conditions:

(i) Gn(t, τ ) is continuous;

(ii) Gn(t, τ ) = 0 for t < τ ;

(iii)
∂Gn(t, τ )

∂t
= 1 at t → τ + 0.

It is easily verified that Gn(t− τ ) determined by

Gn(t) = H(t) exp(−Λn2t3/R)
sin(nωAt)

nωA
(4.22)

where H(t) is the Heaviside function, satisfies all these conditions.
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The convolution of Gn(t) and 2g(t)/πn gives a particular solution to

Eq. (4.13). The sum of this particular solution and the general solution to

the homogeneous equation given by Eq. (4.21) give the general solution

to Eq. (4.13). Recalling that it also has to satisfy the initial conditions we

eventually obtain that the solution to Eq. (4.13) satisfying Eq. (4.14) is

vn = exp[−Λn2(t− t0)
3/R]

{
v1n cos[nωA(t− t0)]

+
v2n

nωA
sin[nωA(t− t0)]

}
+

2

πn

∫ t

t0

Gn(t− τ )g(τ ) dτ (4.23)

The system “forgets” initial conditions after the time tmix = R1/3/ωA. To

get read off the initial conditions and obtain the steady state of driven

oscillations we take t0 → −∞. Then

vn =
2

πn

∫ t

−∞

Gn(t− τ )g(τ ) dτ (4.24)
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Let us now assume that the driving is harmonic: v0 = f(r) cos(ωt). Then

g = ω2f(r) cos(ωt) +O(R−1)

We assume that ωA(r) is a monotonically growing function. The range of

frequencies
[n min ωA, n max ωA]

is called the Alfvén continuum corresponding to fundamental mode

with respect to z for n = 1, and to the (n − 1)st overtone for n > 1.

We assume that ω is in the fundamental continuum, and not in any of the

overtone continua,

ω ∈ [min ωA, max ωA], ω /∈ [n min ωA, n max ωA] (n > 1)

Using integration by parts we obtain from Eqs. (4.22) and (4.24)

vn =
2ω2f(r) cos(ωt)

πn(n2ω2
A − ω2)

+O(R−1/3) (4.25)
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Equation (4.25) is valid for n > 1. It is also valid for n = 1 if r is not very

close to the Alfvén resonant position rA determined by ωA(rA) = ω.

Consider the vicinity of rA, |r − rA| � rch. Then

ωA − ω ≈
Δ

2ω
(r − rA), Δ =

dω2
A

dr

∣∣∣∣
r=rA

(4.26)

Using Eqs. (4.22) and (4.24) we obtain

v1 =
ω2f(r)

πωA

∫ t

−∞

exp[−Λ(t− τ )3/R]{sin[ωAt + τ (ω − ωA)]

+ sin[ωAt− τ (ω + ωA)]} dτ

=
ω2f(r)

πωA

∫ t

−∞

exp[−Λ(t−τ )3/R] sin[ωAt+τ (ω−ωA)] dτ +O(1) (4.27)

Now we use Eq. (4.26) and make substitution τ = t− τ ′. As a result we

obtain the approximate expression

v1 =
2ω2fA

πδAΔ
	{ie−iωtF [(r − rA)/δA]} (4.28)
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where fA = f(rA) and

F (x) =

∫ ∞

0

exp(−ixσ − σ2/3) dσ (4.29)

δA = R−1/3

(
ωrchVA0

Δ

)1/3

=

(
ω(ν + λ)

Δ

)1/3

(4.30)

The layer |r − rA| � δA is called the dissipative layer.
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5. Laterally driven resonant waves

z

y

x

B 0

x A

B0 ⊥ ex

All equilibrium quantities depend on x only, incoming wave is harmonic.

Alfvén resonance:
ω

k‖
= VA(xA) slow resonance:

ω

k‖
= CT (xc)

Alfvén continuum:
[
min(V 2

Ak2
‖), max(V 2

Ak2
‖)

]
Slow continuum:

[
min(C2

Tk2
‖), max(C2

Tk2
‖)

]
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We look for solution to Eqs. (2.6)–(2.9) where perturbations of all quan-

tities are proportional to exp[i(k · r − ωt)], where k = (0, ky, kz). Then

Eqs. (2.6)–(2.9) can be reduced to

D
dξx

dx
+

[
ω4 − C2

fk
2(ω2 − ω2

c )
]
P = 0 (5.1)

dP

dx
− ρ0(ω

2 − ω2
A)ξx = 0 (5.2)

where ξ is plasma displacement related to velocity by v = −iωξ, and

D = ρ0C
2
f(ω2 − ω2

A)(ω2 − ω2
c ), ωA = VAk‖, ωc = CTk‖

P is perturbation of total pressure given by

P = p +
B0 · b

μ0
(5.3)

We see that D = 0 at x = xA, where ω2
A = ω2, and at x = xc, where

ω2
c = ω2, so that these points are singular point of system (5.1), (5.2).
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The singular points xA and xc are regular singular points, so that the

solution in their vicinities can be found in the form of Frobenius series.

We assume that there is only one Alfvén resonant position xA, and no

slow resonant positions, and ωA is monotonically increasing. Omitting the

details we only give the result. The expansions for P and ξx are given by

P = P1 +O((x− xA)), ξx =
P1k

2
⊥

ρAΔ
ln |x− xA| +O(1) (5.4)

where P1 is constant. Using the linearised MHD equations (2.6)–(2.9) with

x

y

z

x

B0

z

y

T||

b
b

b
b

b

b

η = λ = 0 we now can easily find

the expansions for other variables. It

turns out that expansions for p, ρ,

ξ‖ and b‖ start from constant terms.

Expansion for bx starts from the term

proportional to ln |x − xA|. Finally,

expansions for ξ⊥ and b⊥ are given by

30



ξ⊥ =
iP1k⊥

ρAΔ(x− xA)
+O(1), b⊥ =

−P1B0k⊥k‖
ρAΔ(x− xA)

+O(1) (5.5)

These two variables are most singular, so that they are called large vari-

ables. Note that near xc the large variables are ξ‖, b‖, ρ and p.

Near xA there are large spatial gradient, so that dissipation becomes impor-

tant, and we have to use dissipative linearised MHD equations (2.6)–(2.9).

On the other hand, we need to use dissipative equations only in a narrow

dissipative layer embracing xA. In this layer we can approximate all

equilibrium quantities by the first non-zero terms of their expansions in

Taylor series with respect to x− xA. In particular we use the approximate

expression (4.26). Then Eqs. (2.6)–(2.9) reduce to

sΔ
dξx

ds
+ iω(ν + λ)

d3ξx

ds3
= −

Pk2
⊥

ρA
(5.6)

sΔξ⊥ + iω(ν + λ)
d2ξ⊥
ds2

= −
iPk⊥
ρA

(5.7)
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where s = x − xA. In addition we obtain P = const. This implies that,

inside the dissipative layer, P is completely defined by its value outside

this layer.

Matched asymptotic expansions

δ δ

ideal MHD ideal MHD

region
overlap overlap

region

A A

dissipative
    layer

x − x x −A A A

Thickness of the dissipative layer is determined by condition that the two

terms on the left hand side of Eq. (5.6) or Eq. (5.7) are of the same order.

We easily obtain that it is equal to δA given by Eq. (4.30).
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Introducing τ = s/δA we rewrite Eqs. (5.6) and Eq. (5.7) as

d3ξx

dτ 3
− iτ

dξx

dτ
=

iPk2
⊥

ρAΔ
(5.8)

d2ξ⊥
dτ 2

− iτξ⊥ = −
Pk⊥

ρAδAΔ
(5.9)

First we solve Eq. (5.9). For this we introduce the Fourier transform with

respect to τ ,

ξ̂⊥(σ) =

∫ ∞

−∞

ξ⊥(τ )eiστdτ, ξ⊥(τ ) =
1

2π

∫ ∞

−∞

ξ̂⊥(σ)e−iστdσ (5.10)

Taking the Fourier transform of Eq. (5.9) we obtain

dξ̂⊥
dσ

+ σ2ξ̂⊥ =
2πPk⊥
ρAδAΔ

δ(σ) (5.11)

ξ̂⊥ has to vanish as σ → ∞. The solution to Eq. (5.11) satisfying this

condition is

ξ̂⊥ =

⎧⎨
⎩

0, σ < 0,
2πPk⊥
ρAδAΔ

e−σ3/3, σ > 0
(5.12)
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Then the inverse Laplace transform gives

ξ⊥ =
Pk⊥

ρAδAΔ
F (τ ) (5.13)

where F (τ ) is given by Eq. (4.29). Integrating by parts we obtain

F (τ ) ≈
i

τ
, as |τ | → ∞ (5.14)

which is in agreement with the asymptotics of the ideal solution as |s| → 0

given by Eq. (5.5).

Now we can immediately write down the solution to Eq. (5.8):

dξx

dτ
= −

iPk2
⊥

ρAΔ
F (τ ) (5.15)

Integrating with respect to τ we obtain

ξx =
Pk2

⊥

ρAΔ
G(τ ) + const (5.16)

where
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G(τ ) =

∫ ∞

0

[exp(iστ )− 1]
e−σ3/3

σ
dσ (5.17)

It can be shown that

G(τ ) ≈ − ln |τ | + const, as |τ | → ∞ (5.18)

which is in agreement with the asymptotics of the ideal solution as |s| → 0

given by Eq. (5.4).
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Let us introduce the jump of a quantity across the dissipative layer,

[[f(τ )]] = lim
τ→∞

{f(τ )− f(−τ )}

Since P is constant in the dissipative layer, we immediately obtain

[[P ]] = 0 (5.19)

Now

[[G(τ )]] = lim
τ→∞

∫ ∞

0

[exp(iστ )− exp(−iστ )]
e−σ3/3

σ
dσ

= 2i lim
τ→∞

∫ ∞

0

sin(στ )

σ
e−σ3/3 dσ = 2i lim

τ→∞

∫ ∞

0

sin σ

σ
e−(σ/τ)3/3 dσ

= 2i

∫ ∞

0

sin σ

σ
dσ = 2i

π

2
= πi

so that

[[ξx]] =
πiPk2

⊥

ρAΔ
(5.20)

Equations (5.19) and (5.20) are called the connection formulae.
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The connection formulae connect the solutions at the two sides of the

dissipative layer. Using the connection formulae we can consider the dis-

sipative layer as a surface of discontinuity, solve the ideal MHD equations

(5.1) and (5.2) at the two sides of these surface, and then connect the

obtained solution.
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6. Summary and conclusions

• In inhomogeneous plasmas the resonance between global wave/oscillation

and local waves/oscillations can occur at resonant magnetic surface

where the driver frequency matches either local Alfvén or local slow

frequency.

• Resonant MHD waves are characterised by large amplitudes and large

spatial gradients in the vicinity of resonant magnetic surface.

• In weakly dissipative plasmas dissipation is only important in a narrow

dissipative layer embracing the resonant surface, while the wave motion

can be described by ideal MHD equations far from the resonant surface.

• In case of driven torsional waves the wave motion in the dissipative

layer is described in terms of F -function.

• In case of laterally driven waves the wave motion in the dissipative layer

is described in terms of F and G-function.
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• In case of lateral driving there are connection formulae determining the

jumps across the dissipative layer of the total pressure and the plasma

displacement in the direction perpendicular to the dissipative layer.

• The connection formulae enables us to consider the dissipative layer

as a surface of discontinuity. We solve the ideal MHD equations at

the two sides of the dissipative layer, and then connect the obtained

solutions using the connection formulae.
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