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lon acceleration with high intensity laser pulses

Fast ions can find many applications in basic science, inertial fusion,
industry and medicine. They demonstrate very attractive properties:

. short acceleration distance (a few pm)
. high beam charge (uC)
. good laminarity and low emittance
. low ratio current/energy flux
. simple ballistic transport
. high absorption efficiency (Bragg peak)
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Mechanisms of ion acceleration

Two mechanisms of laser ion acceleration have been considered:

TNSA - target normal sheath acceleration from a narrow layer
at the rear side of the target. It requires:

. efficient production of high energy electrons (> 30%)
. high quality target surface

. mild restrictions on the laser pulse (prepulse)

. limited number of ions (< pC)

RPA - radiation pressure acceleration at the front side and in the
volume of target. It requires:

. cold electrons (circ polarization)

. high quality laser pulse (very high contrast > 1012)
. higher intensities (> 102! W/cm?)

. mild restrictions on the target

. could be more efficient

. more ions could be accelerated
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TNSA mechanism of ion acceleration

target

Target normal sheath acceleration
from a narrow layer at the rear side
of the target

 efficient production of high
energy electrons (> 30%)

* high quality target surface

* mild restrictions on the laser
pulse (prepulse)

* limited number of ions (< uC)
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lon emission from the front side of the target
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lon acceleration is a natural result in any
laser plasma interactions — formation of a
rarefaction wave, but the attractive feature of
short pulses is a significant amount of ions
with a narrow angular spread and a high
energy

Origin

100 J 40 ps, Sakabe et al. PRA 26, 1982
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lon emission from the rear side
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ions are their
higher energy,
small divergence,
good laminarity,
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conversion
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lon acceleration — a basic model

The basic model considers the ion acceleration in the electrostatic field

created by hot electrons: Front side: smooth density profile

Thin target - small electric field
/ Rear side: steep density profile -
strong electric field, good
acceleration

Zone of interaction
laser-target

Zone of ion acceleration
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Quasi-neutral ion acceleration

The basic model of ion acceleration consists of a

n =n ex ep two-component (electron-ion) plasma with the
e0 p T isothermal electrons and cold collisionless ions
e coupled by the quasi-neutrality equation:
ov,
V — |, =N, 5
X
= \/ LT,/ m,
Ze 0
V. =———
l I
m. OX E=T,/ect

Self-similar solution: Gurevich et al. JETP, 1966

n, =ngyexp(-xct-1), v=c tx/t, ep=-T,(-x/cit—1)

x(v)
lon energy spectrum le /dv = I/liof GXp(—V / CS) Nl. (V) = J:Ct n, dx
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Maximum ion velocity: electrostatic shock

Quasi-neutral model is in a perfect
agreement with the kinetic
simulations. However it fails at

rarefaction front where
L=ct~1,

V omt = 2¢, In(t++ 5+ 1)

where 1= copl.t/ \J2¢ Mora 2003

n/n

> 3 4 5 ¢X/cd

1 0 1

Hybrid simulations: kinetic ions and
Boltzmann electrons with a fixed
temperature

Tikhonchuk, Pl. Phys. Conf. Fus., 2005
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Maximum ion velocity: electrostatic shock

n/n
Exponential ion distribution with a 1
high energy cut-off
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Two temperature electrons: rarefaction shock

A more realistic model has to account for several additional effects:
« two electron populations: cold dominant and hot minority

» ions are created in situ by the field ionization
 multiple ion species: proton contamination

Cold electrons are stopped at the shock front
The potential jump at the shock front accelerates ions

Bezzerides et al. 1978, Wickens 1981

Discontinuity appears for T,/T_=10:

v./cy, )
| )
n
, |
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n,/n,=0.1,
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lon bunching at the shock front

Kinetic hybrid simulations show the
collisionless shock and plateau formation

Number ions in the peak
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Expansion of two ion species: spatial separation

The ion species separation happens naturally in a homogeneous multi-
species targets:
Heavy ion rarefaction wave Gurevich et al. 1973, Srivastava et al. 1988

Via = Cyy [1111/2 (4NV 2a ) + 1} C*/H* = 10:1

dN./dv N
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the peak Npe“k nzocszt/\/a B
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Tikhonchuk, Pl. Phys. Conf. Fus., 2005
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Kinetic simulations of two-ion-species expansion

Simulations show the formation of the
plateau region in velocity behind the
separation point

X, =c,tln (4N\/ﬁ)

X, =c,tn'? (4N\/%)
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Experiment on ion acceleration from water droplets

Formation of peaks and holes in the ion energy spectrum has been seen in
the experiment: liquid water droplets are the unique targets with two ion
species and without surface contamination. The idea of light ions
accelerated in the heavy ion front was verified with H,O and D,0 targets

MCP
- 400 protons
deflected p*
ion beam 200+
~ S
8
| '§ 100+ protons
©
pinholes = 501 p*
/ ~ - %
tothesecond / ®
thomSOrI — 135° y J a 400 4 protons
spectrometer G - field plates S p*
A\ 0
N 200
water droplet =
2 !
2 100 deuterons
d+
50 -
Two times difference in the deuteron and A e _— 4
proton energies they are accelerated to the 0.2 04 06 08 ’2
same velocity energy (MeV)

Brantov et al. Phys. Plasmas, 2006
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Two ion species: heterogeneous target

Similar interaction between two ion species takes place in a heterogeneous target

Al
laser Esirkepov et al. PRL, 2002
H Brantov et al. Phys. Plasmas, 2006
Formation of a narrow ion spectrum
in a heterogeneous target
18 ,_;: {f
5; L ermg-33 L 10— X[iﬁkm : R
low density hydrogen 102° cm-3 high density hydrogen 1022 cm-3
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Two ion species: heterogeneous target

Light ions in a heterogeneous target indeed are moving initially in a narrow
bunch, however, a narrow spectrum spreads with time - this is the effect of
Coulomb explosion: Full PIC simulations 1D

Laser: 1 um, 4x101° W/cm?, 50 fs

Target: 3 ym Al + 0.1 pmH

; ; ; ; —0.17 ps
St T T S ——0.23 ps|
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Simulations show that heavy ions are following the protons closely and
affect their acceleration at later times: Brantov et al. Phys. Plasmas, 2006
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Comparison: homogeneous and double layer target

3D simulations of the ion acceleration from a foil: comparison of the homogeneous
two-species target and a double layer target — protons are gaining the same energy

Homogeneous target Brantov et al., 2009

b

I =5%102" W/cm? super-Gaussian
D°”'°|'e layer target profile in perpendicular directions
0 50 100 I]énl 200 with FWHM =4 pm t= 30 fs

Proton energy MeV
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Radiation pressure ion acceleration

Radiation pressure acceleration at the
front side and in the volume of target:
« cold electrons (circ polarization)

* high quality laser pulse (very high

contrast > 10'2)

 higher intensities (> 102" W/cm?)

* mild restrictions on the target

« could be more efficient

« more ions could be accelerated

ions

empty channel ‘e
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Circular vs linear laser polarization

Circular laser polarization suppresses the electron heating. It provides favorable
conditions for ponderomotive acceleration and ion beam neutralization. Example
of electron spectra at the laser intensity 1.5%102° W/cm? and a solid density.

Circular polarization Linear polarization
t=20¢| 1n°"‘

i g [t m
s A
: :
E Em"
K] B ‘H.'l‘:
[ ' ,,” | C

MII l"" .'.. == 10 |J

1.5 2 0 3 10 15 20
[IIE\":l E (MaV)
Cold electrons Hot electrons Klimo, PRST-AB, 2008

Circular laser polarization and electron radiation losses are two main
effects to maintain a low electron temperature
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lon acceleration by the laser piston: the piston velocity

Conservation of the momentum (pressure) in the ]las = ,Bf
piston reference frame: stationary propagation 2 N - 2:007f18fc

piston velocity v;= 3;c

ad =ol}
P | ion energy and the efficiency of ion
x acceleration are defined by the
laser piston velocity
I —— e S 23
I I I
1 tx 0 dx 1 _ 222 |- R=—27
~ ~~ - x [c/®] & =2mc 'nyf 1+16f
charge separation

layer
y Naumova et al., PRL, 102, 2009, Robinson et al., PPCF, 51, 2009
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Structure of the charge separation layer:
electrostatic field and ion density distribution

d’® B Zen,

The electrostatic field profile in the charge separation _
layer follows from the Poisson equation (n, = 0) dz"? £,

and the ion energy and mass conservation in the piston reference frame:

C . A%
Ze® +& =mc’ (]/f —1); n, =2n07/f—].p
V.

1

The first integral defines the electric field strength:

Z—?:zﬁm(y;2_1)1/4 Z%O .

C

2
zmax las
1+ p k
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Thickness of the ion charge separation layer

The thickness of the ion charge R e

separation layer is proportional to the sl i

piston velocity = ]

4 ' R0 |

__c ¥ f dy, S :

i , 1/4 04— -

2a)pi IBf 1 ( i2 - 1) - =

if By « 1 J |

Az, =B whileforthe . 26,CH  es——fs——f
30)0 n, immobile ions i o, n, Y,

This time of ion circulation coincides exactly with the period of piston
velocity oscillations found in the PIC simulations
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Structure of the charge separation layer:
laser field and electron density distribution

The electrostatic field profile in the charge separation
layer follows from the Poisson equation

d’® Zn. —n,
= —f —-

€y
and the electron energy and mass conservation in the piston reference frame:

ge
Ve 5, g M| __Zr. ¥
¢’ ! f”lc \/7/62—1—612 y” -1
) 04 c/a)pe . z’
d a n, Z,Bfa 1—,Bf ‘ >
> :27/f ' = a 2 |
dé n \/yj—l—az 1+, (@j L —dg? - B,
=0 — %o
ac )., -~ 1+,
The electron layer thickness c/w, the laser field
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Laser amplitude in the electron charge separation layer

Laser amplitude on the board of the electron charge separation layer
a(0) is adjusted self-consistently in such a way that the ponderomotive
force is equal to the electric force: F=eE, .,

It decreases slowly with the plasma density

= I I B B B B
:: 1L n.... — ':'I.'.P.'c = 50 —]
g+ — 100 -
5 6 u —
= Y . i
E' ~ "-. L
I - T
3 L\ B
% ‘l 0 P c/a)pe R z
E B S 7 < >
= 3+ — — i
= N e A very tight balance between
oL L1 1 [ 1 1 [ 1 | the ponderomotive potential
0 20 40 60 80 100 oL
it fon desssite 1./ and the electrostatic field can
tal ton denstty Mo /7 make the electron

confinement unstable

Schlegel, Phys. Plasmas, 2009
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Electron radiation and slowing down

Thomson scattering is strongly amplified in the relativistic laser field due
to the high order harmonic generation:
if y,<<a if y,>>a

2¢°w’
~ 2 ~ 2 2
a .. =4way; P = y.a

I

max rad —

RY/r:/6
Esarey et al., Phys. Rev. E 48, 1993

Radiation is enhanced if the electron propagates toward the laser beam with
a high energy, 7, >>a>>1.

The photons with the frequencies w,, ~ v a 7.2 are emitted in a narrow cone 6
~ aly, << 1.

The electron radiation stopping length

soz‘ a, = 100 n, = 10nc ]
2 2 60

C 1 1 A° n,
lrad = > 5 = 7 -~ 3 — 5 Hm m;_ P
re a) 76 a 4 O r.ad n ,0}—_. o __

1] i i i |
0 20 ] 60 80 100

for n/n_ = 40, a = 100 electrons are confined behind the piston
Radiation losses can be significant for laser amplitudes a > 100 and for linear polarization
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lon energy spectrum in inhomogeneous plasma

lons are mono-energetic in a homogeneous plasma, in an exponential density
profile the ions are a power spectrum
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Deuteron spectra in a plasma with the density increasing from 1 to 100n,
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Time of hole boring and laser fluence

Analytical formulas provide the scalings for design of the fast ignition parameters

' F, 10 GJ/cm? b

600} a 5
500} 41

3 | y
A i
400 S The |

300 \ Hx'“-n-______q_______ 2 Y

TP H“‘“-a.______ a - 1

200} — @ — a

60 80 100 120 140 20 40 60 80 100 120 140

Fi00 = Iinc T, is the laser flux needed for accelerate ions from the density

increasing from 1 to 100n_ over the length of 1004, F, is the same for the density
range 0.1 to 1n_ over the length of 10001

N o -t G i LA

las \/;
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1D & 2D PIC simulations of ion acceleration & hole boring

Series of 1D simulations was dedicated to validation of the ion acceleration
model in homogeneous and inhomogeneous plasmas

2D simulations in a plasma with exponential profile were dedicated to the

analysis of the ion energy distribution and divergence in function of the laser
intensity distribution

Laser pulse:
a, =100
circularly polarized
I, = 4%1022 W/cm?
=188 1/c
2D: d/A = 20 flat-top
with exp. wings
Plasma: deuterium

exponential profile
L/2=20 nygn.,=5-100

0 20 40 60 80
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Numerical modeling of the electron radiation losses

The code accounts for the electron radiation in the laser field and for the electron

slowing down due to the radiation emission
I.V. Sokolov, Re-normalization in the Lorentz-Abraham-Dirac equation for radiation force in

classical electrodynamics, JETP 108 (2009)
I.V. Sokolov, N.M. Naumova, J.A. Nees, G.A. Mourou, V.P.Yanovsky, Dynamics of Emitting

Electrons in Strong Electromagnetic Fields, arXiv:0904.0405

The electron motion is described by the modified Lorentz-Abraham-Dirac equation, which
conserves electron energy and momentum

P, _ f, —e§ve><B—V§ P, dax, =V, +0V,
dt c dt
f, =—e(E+v,xB) P =y5v, 1

The emission of each electron is supposed to be incoherent, its motion is approximated
by a fraction of a circle at each time step, assuming v, << v,

T, fL—Ve(Ve-fL)/C2 B ,uoez

- = = f|/p
‘ mel+To(Ve'fL)/meC2 ’ o6zrm,c Dro |pe>< L| P.

OV

emission frequency ® ~ ®, 3
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Example of 1D PIC simulation: circular polarization

Lower intensity: a, = 20, I, =1.6x102"W/cm? ny,= 20 n_

Estimates:
eE,/m,o,c =37 p;/mc =0.14
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electric field oscillations

This is a reference case
where we find rather
good agreement of
numerical results with
the theoretical model.
No electrons escape the
piston, small energy
spread of accelerated
ions ~ 10%, small
radiation losses < 0.1%

Schlegel, Phys. Plasmas, 2009
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Example of 1D PIC simulation: circular polarization

High intensity:
1-R=0.425 3, =0.27 T,=93T, eE,/m_w,c =150 p;,/m,c = 0.58

ek, /m 0,5¢

Py o/m,e

150 |-
100

s0f

100

.xflﬂ
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ap =100, /,=4x102"W/cm? ny,=20 n_

& = 300 MeV
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Example of 1D PIC simulation: linear polarization

a, = 2072, I,=1.6x102'W/cm2 n,=20 n, t=100 T,

0.2F 4 :
L&

g O.l -
~§, 0.0¢
=0 F z
& 3 1
-0zt
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=40 —IIIZD D 2;3 4'0 6;3 EIID
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fast propagation of the laser light: induced transparency

Schlegel, Phys. Plasmas, 2009

Physics of laser-assisted ion acceleration, Trieste, August 18, 2009 34



1D PIC simulations with/without radiation reaction

a, = 100, circular polarization, t=1007,, plasma: n, =10n,, m;=2m,

radiation losses : 43% without radiation losses

AD0 = Lo T T T T T 3 1500
@) i I
“ 3 “ 1000 F
» %telectrons 5.7% | L 1000¢
E 200 F § 500 F
LY 3 s ;
= 160 23 O

™ oF = —5005— A
~100 _ :
.ze -0 0 T T gy ] 1.5F
o OF b) - “ b
>~  0.8F . o :
g o6l ions 31.4% ,Ei 0.5E
& a4 :_ Hﬂ Z_
. 0.2F A O
0.0F —0.5F

_19'[3. - I—éﬂ llllllllllllll =100 -50 0 50

At low plasma density some electrons escape the ponderomotive potential if
the ratio ay/(n,/n.) becomes too large. The radiation losses stabilize the piston

) . ) ) ) Schlegel, Phys. Plasmas, 2009
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1D PIC simulations with/without radiation reaction

a, = 1002, linear polarization, t = 100T,, plasma: n, = 10n,, m;= 2m,

radiation losses : 48;4% without radiation losses

BOOF . s

. - (e) ., 1500F

Em 0 relectrons 14.4% ¥ 1000 F

“"H..m 400 — . “"~--.QM 500 F

= 200 = E

R r =5 © :

afF ] ~500 |

—zo0f o ] -1000 E

o 0.2F
¢ oo @ . S

3 ions 16.9% P:

== 0.4 - —02r

~ L. —04F

£ 0.2 ol :

Ry [ R 06 E

0.0 -0.8F
100 -s0 o so —100 50 0 50

x/ho x/ kg

The radiation losses strongly depend on the laser intensity:
for a, = 20 radiation losses are less than 1% Schlegel, Phys. Plasmas, 2009
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2D PIC simulation — channel formation

Flat-top laser intensity profile ?E
<
EXY
lon density distribution -10
demonstrates an efficient hole -20
boring in the plasma, a clean
and a stable channel
Filamentation is strongly
suppressed due to radiation
pressure and radiation losses 20
Velocity of hole boring is in 10
agreement with the 1D model § 0
-10
=20

Naumova, Phys. Rev. Lett., 2009
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2D PIC simulation - ion energy
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Radiation acceleration of ultra-thin films

Light sail regime corresponds to acceleration of the whole foil
under the laser radiation pressure;

The regime of acceleration change when the piston comes out of
the rear side of the target 1, > d/v;

Then the whole target is accelerated by the laser pressure:
very thin films and high laser intensities

10 T T T 10
t=8 To 180

X/ A
=]
=)
o
X/ A
=]

| = 3%x102° W/cm?, d =200 nm ¢, ~ 150 MeV Klimo, PRST-AB, 2008
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Model of the thin foil acceleration

Simple model considers a motion of the solid foil under the radiation pressure

ned apz =2R Ilas 1_lBi axi _ﬁic

ot ¢c 1+ ot
The minimum foil areal mass is defined by the reflectivity R (should be = 1)
R{
Linear case (a; << 1) S — —
§'2 n 08 |
R = > c=—k,d 06 |
l1+¢ 2n, 04 |
Nonlinear case 02 |
1+¢*—a; 1+¢*—a; 1 5 10 15 2 25 306
2ay 2ay & Reflectivity condition depends on

the laser amplitude
Macchi, 2009, Vchivkov, Phys. Plasmas, 1998 P en,d >2¢E,

Physics of laser-assisted ion acceleration, Trieste, August 18, 2009 40



Simulations of the thin foil acceleration

1D simulations show the details of ion acceleration: different ion species are
accelerated to the same velocity

m protons
| m carbon ions

e
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number of ions (MeV™! em'®)
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o
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——carbon ions |
— protons

Intensity 3%x102° W/cm?
Wavelength 800 nm
Duration 80 fs

Foil thickness 32 nm
Composition CH,
Mass density 0.18 g/cc

2D simulations show the development of the foil instability and broadening
of the energy distribution due to the Coulomb explosion

-
=1

. 0 s
o

&hg’é?"'n'.i'hmm

- 1100

ol y " . g " |
1000
0.15/ 1

Physics of laser-assisted ion acceleration, Trieste, August 18, 2009

number of ions (arb .units)

—t=321,1D |
—t=335,2D0
—t=281,20
|—1t=181,2D

50 100 150 200 250 300 350
E (MeV)

Klimo, PRST-AB, 2008 41



Applications of the laser accelerated ions

1000G

\

Specific features of laser
accelerated ions:
short acceleration length
high charge
good emittance
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Analytical models and numerical simulations provide tools to control the ion beam
characteristics, two competitive acceleration processes can be employed

Two European projects aim on the construction of lasers with enhanced capacities
for the ion acceleration at extreme conditions (high intensities, ELI, and high
energies, HIPER)

Smaller scale projects dedicated to the coordination of efforts on the national level
for medical applications are under way in USA, UK, France, Japan, Germany
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Radiography with fast ions

Laser accelerated ions are already demonstrated their potential for radiography of
dense short-lived objects. They provide an access to high areal densities (> 1 g/cc),
high temporal (< 1 ps) and spatial (< 1 yum) resolution of electric and magnetic fields
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CPA, Interaction
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Amendt, 2009

Extremely high electric fields
up to 10'° V/m are measured
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Medical applications

Laser produced ions are the attractive sources for the positron emission
tomography. Production of the isotopes C'! O'5 and F'8 in pn reactions
requires 20 — 30 MeV protons: 10 J, 1 Hz for production of samples with the

activity of 200 — 300 MBq

For the cancer therapy the ions with energies of 250 — 350 MeV are required

with a well controlled spectrum and high reproducibility

Proton beam source

La PET
SCF tFapsmitter
eoode® /
3 =
@ Fatmnt
A=
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Fast ignition with laser accelerated ions

Fusion target can be ignited with ions, they Indirect drive + TNSA ions
are more efficient than electrons because of

a ballistic transport and a localized energy (@)
deposition. ey
Both acceleration methods are considered. -
Required parameters: beam energy 10 kJ, heavy ion g

beam radius at the deposition point 20 pym, v o |
pulse duration < 10 ps e Hopol
Protons (deuterons) ion energy 10 — 20 MeV

Carbons: ion energy 400 — 500 MeV (30 — 40 M.Roth, Phys. Rev. Lett. 2001

MeV/n)
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The end
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