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Eugene Paul Wigner (1902–1995). Nobel Prize in
Physics in 1963 ”for his contributions to the theory
of the atomic nucleus and the elementary particles,
particularly through the discovery and application of
fundamental symmetry principles” (Quantum plasma
physics: Wigner-Moyal transform, Wigner function)

David Joseph Bohm (1917–1992) (Bohm-diffusion, the
Bohm sheath criterion, the quantum Bohm potential.
Also the Aharonov-Bohm effect where a charged particle
is affected by electromagnetic fields in regions from
which the particle is excluded)

David Pines (1924–) Awarded two Guggenheim
Fellowships, the Feenberg Medal, Friemann, Dirac, and
Drucker Prizes. (Theory of many-body systems and
theoretical astrophysics, early works on collective effects
in quantum plasma.) Prof. Em. at University of Illinois at
Urbana–Champaign.
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Introduction

� Quantum plasmas are ubiquitous in:

� ultrasmall electronic devices and micromechanical systems
� intense laser–solid density plasma interaction experiments
� microplasmas
� superdense astrophysical objects (neutron stars and white

dwarfs)

� Quantum mechanical effects can be important when the
de Broglie wavelength of the charge carriers (electrons,
positrons) is comparable to:

� the dimension of the system → tunneling effects
� the mean distance between particles → overlapping of wave

functions, quantum statistics
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Introduction (Continued)

� Classical vs. Quantum plasmas

� Classical plasmas have low density and high temperature.
� Quantum plasmas have high density and low temperature

� Quantum forces due to the

� strong electron/positron (hole) density correlations (the
Bohm potential),

� the quantum statistical description for a Fermi plasma yields
a new pressure law owing to the Fermi-Dirac statistics.

� Nonlinear waves and structures

� dark quantum solitons and vortices
� nonlinear interaction with electromagnetic waves
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Classical Plasmas vs. Quantum Plasmas

� Quantum effects can be measured by the thermal de Broglie
wavelength of the particles composing the plasma

λB =
�

mVT
, VT =

√
kBT

m

which roughly represents the spatial extension of a particle’s
wave function due to quantum uncertainty.

� For classical regimes, the de Broglie wavelength is so small
that particles can be considered as point-like, and therefore
there is no overlapping of the wave functions and no quantum
interference.
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Classical Plasmas vs. Quantum Plasmas (Continued)

Quantum effects start playing a significant role when

� the de Broglie wavelength is similar to or larger than the
average interparticle distance n−1/3, i.e. when

nλ3
B � 1,

or, the temperature is comparable or lower than the Fermi
temperature TF = EF/kB, where

EF =
�

2

2m
(3π2)2/3n2/3

is the Fermi energy for electrons, so that

χ =
TF

T
=

1
2
(3π2)2/3(nλ3

B)2/3 � 1
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Properties of Dense Quantum Plasmas

� The quantum coupling parameter

ΓQ =
Eint

EF
=

2
(3π2)2/3

mee
2

�2n
1/3
e

∼
(

1
nλ3

F

)2/3

∼
(

�ωp

EF

)2

,

where Eint = e2n
1/3
e is the interaction energy, is analogous to the classical

one ΓC = Eint/kBTe when λF → λD, where the Fermi screening
scalelength

λF = VF/ωp

is the quantum analogue of the Debye radius and

VF = (2EF/m)1/2 =
�

m
(3π2n)1/3.

is the speed of an electron at the Fermi surface. We have ΓC, ΓQ < 1 for
weakly collisional and ΓC, ΓQ > 1 for collisional plasmas.
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Plasma diagram

Bonitz et al., J. Phys. A: Math. Gen. 36, 5921 (2003)
Manfredi, Fields Inst. Commun. 46, 263 (2005); arxiv:quant-ph/0505004.
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Equation of state in dense stars

When the mean distance between electrons d = n−1/3 is
comparable to the Compton length λC = h/mec ≈ 2.4× 10−12 m
(or ne � 1035 m−3), then the Fermi energy EF of the electron is
comparable to the electron rest energy mec

2, and the momentum
of an electron at the Fermi surface becomes relativistic. Then the
pressure P is given by the Fermi pressure of the degenerate
electron gas,

P =
πm4

ec
5

3h3
[ξ(2ξ2 − 3)(ξ2 + 1)1/2 + 3arcsinh(ξ)], (1)

where ξ = p0/mec is related to the electron number density by

ξ = (3/8π)1/3n1/3
e λC (2)
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Equation of state in dense stars

In the non-relativistic limit ne � λ−3
C (or ξ � 1), we have

P =
1
20

(
3
π

)2/3
h2

me
n5/3

e =
2
5
EFn0

(
ne

n0

)5/3

, (3)

where EF = (3π2n0)2/3
�

2/2me is the Fermi energy and � = h/2π,
and in the ultra-relativistic limit ne � λ−3

C (or ξ � 1) we have

P =
(

3
π

)1/3
ch

8
n4/3

e . (4)

The decrease of exponent from 5/3 to 4/3 leads to the collapse
of white dwarfs with masses larger than ∼ 1.4 solar masses.

S. Chandrasekhar, The Highly Collapsed Configurations of a Stellar Mass
(second paper), MNRAS 95, pp. 207–225 (1935).
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Anti-symmetric wave function — Pauli exclusion principle

� Model for the quantum N body problem: The Schrödinger
equation for the N-particle wave function ψ(q1, q2, . . . , qN , t)
where qj = (rj, sj) (space, spin) of particle j.
Identical Fermions: The Slater determinant

ψ(q1, q2, . . . , qN , t) =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(q1, t) ψ2(q1, t) · · · ψN(q1, t)
ψ1(q2, t) ψ2(q2, t) · · · ψN(q2, t)

... ... . . . ...
ψ1(qN , t) ψ2(qN , t) · · · ψN(qN , t)

∣∣∣∣∣∣∣∣∣
Anti-symmetric under odd numbers of permutations. The Pauli
exclusion principle: ψ vanishes if two rows are identical.
Example (N = 2):
ψ(q1, q2, t) = 1√

2
[ψ1(q1, t)ψ2(q2, t)− ψ1(q2, t)ψ2(q1, t)] so that

ψ(q2, q1, t) = −ψ(q1, q2, t) and ψ(q1, q1, t) = 0.
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Quantum kinetic model

� The quantum analogue to the Vlasov-Poisson system is the
Wigner-Poisson model

∂f

∂t
+ v · ∇f = − iem3

e

(2π)3�4

×
∫∫

d3λ d3v′eime(v−v′)·λ/�

[
φ

(
x +

λ

2
, t

)
− φ

(
x− λ

2
, t

)]
f(x,v′, t)

and
∇2φ = 4πe

(∫
fd3v − n0

)
.

� Note that the Wigner equation converges to the Vlasov
equation when � → 0

∂f

∂t
+ v · ∇f = − e

me
∇φ · ∂f

∂v
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Quantum Hydrodynamical (QHD) Model

� We take the moments of the Wigner equation and obtain for
the quantum-electron fluid

∂n

∂t
+∇ · (nu) = 0

m

(
∂u
∂t

+ u · ∇u
)

= e∇φ− 1
n
∇P + FQ,

where φ is determined from ∇2φ = 4πe(n− n0), and for the FD
plasma we have

P =
mV 2

F

3n2
0

n3 and FQ =
�

2

2m
∇
(∇2

√
n√

n

)
≡ −∇φB.

Manfredi & Haas, Phys. Rev. B 64, 075316 (2001),
Manfredi, Fields Inst. Commun. 46, 263 (2005); arxiv:quant-ph/0505004.



ICTP, TRIESTE, ITALY, 10–28 AUGUST 2009 14

Electrostatic electron waves

Linearization of the NLS-Poisson Eqs. yields the frequency of
EPOs

ωk =
(
ω2

pe + k2V 2
TF +

�
2k4

4m2
e

)1/2

, VTF =
√
kBTFe

me

Two distinct dispersive effects:

� Long wavelength regime: VTF � �k/2me

� Short wavelength regime: VTF � �k/2me

� Critical wavenumber:

kcrit =
2π
λcrit

=
π�

meVTF
∼ n−1/3

Similar results obtained by Bohm & Pines, Phys. Rev. 92, 609 (1953) and
Pines, J. Nucl. Energy, Part C: Plasma Physics 2, 5 (1961).
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Effective nonlinear Schrödinger equation
Introduce the effective wave function

ψ(r, t) =
√
n(r, t) exp(iS(r, t)/�)

where S is defined according to mu = ∇S and n = |ψ|2. For
this particular case of potential flow, the QHD equations are
equivalent to

i�
∂ψ

∂t
+

�
2

2m
∇2ψ + eφψ − mV 2

F

2n2
0

|ψ|4/Dψ = 0

and

∇2φ = 4πe(|ψ2| − n0)

Manfredi & Haas, Phys. Rev. B 64, 075316 (2001),
Manfredi, Fields Inst. Commun. 46, 263 (2005); arxiv:quant-ph/0505004.
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Nonlinear Structures at Quantum Scale

Normalized system of equations for plasmons

i
∂Ψ
∂t

+A∇2Ψ + ϕΨ− |Ψ|4/DΨ =0 ,

∇2ϕ = |Ψ|2 − 1,
where A represents the quantum coupling strength. Conserved
quantities:

N =
∫
|Ψ|2 d3x

P = −i
∫

Ψ∗∇Ψ d3x

L = −i
∫

Ψ∗r×∇Ψ d3x

E =
∫

[−Ψ∗A∇2Ψ + |∇ϕ|2/2 + |Ψ|2+4/DD/(2 +D)] d3x

Shukla & Eliasson, PRL 96, 245001 (2006)
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1D Quantum Electron Hole (Dark Soliton)

Shukla & Eliasson, PRL 96, 245001 (2006)
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Dynamics of Quantum Electron Holes

Electron density (left) & electrostatic potential (right)

Shukla & Eliasson, PRL 96, 245001 (2006)
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2D Quantum Electron Vortices

Introduce Ψ = ψ(r) exp(inθ − iΩt)

Ωψ +A

(
d2

dr2
+

1
r

d

dr
− n

r2

)
ψ + ϕψ − |ψ|2ψ = 0,

and (
d2

dr2
+

1
r

d

dr

)
ϕ = |ψ|2 − 1,

with Ω =1 (due to ψ = 1 and ϕ = dψ/dr = 0 at r =∞) and
vortex charge states n = 0,±1,±2, . . ..
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2D Quantum Electron Vortices

——– n = 1
- - - - - n = 2
-·-·-·-· n = 3

Shukla & Eliasson, PRL 96, 245001 (2006)
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Interacting 2D Quantum Vortices

Single charge states (n = 1)

Shukla & Eliasson, PRL 96, 245001 (2006)
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Interacting 2D Quantum Vortices

Double charge states (n = 2)

Shukla & Eliasson, PRL 96, 245001 (2006)
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Nonlinear Photon–Plasmon Interactions

� Photons get trapped into quantum electron holes. The
governing dynamical equations are the Schrödinger equations
for the photons and plasmons, which are respectively

2iΩ0

(
∂

∂t
+ Vg

∂

∂x

)
A⊥ +

∂2A⊥
∂x2

−
(

|ψ|2√
1 + |A⊥|2

− 1

)
A⊥ = 0,

and

iHe
∂ψ

∂t
+
H2

e

2
∂2ψ

∂x2
+ (ϕ−

√
1 + |A⊥|2 + 1)ψ = 0,

where He = �ωpe/mec
2, and ϕ follows from the Poisson

equation
∂2ϕ

∂x2
= |ψ|2 − 1

Shukla & Eliasson, PRL 99, 096401 (2007)
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Localized Excitations for Different He

Shukla & Eliasson, PRL 99, 096401 (2007)
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Collapse of Photons into Solitary Structures, He = 0.1.

Shukla & Eliasson, PRL 99, 096401 (2007)
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Collapse of Photons into Solitary Structures, He = 0.5.

Shukla & Eliasson, PRL 99, 096401 (2007)
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Summary & Discussions

� We have summarized some properties of quantum plasmas.

� Transition between classical and quantum plasmas T ≈ TFe.
Maxwell-Boltzmann → Fermi-Dirac statistics.

� Collisional and collisionless quantum plasmas.
� Relativistic density in white dwarf stars.
� Quantum fluid models: Fermi statistical pressure and Bohm

potential.

� Quantum models for collective motion of quantum plasmas.

� Localized electrostatic structures in the form of quantum
electron holes and 2D quantum electron vortices

� Relativistic localization of EM waves in a quantum plasma.


