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Motivation and Outline

A. Lennart’s early contributions to relativistic laser-plasma theory

B. Motivation: Monoenergetic protons have important applications
In medical treatment and inertial confinement fusion

C. Laser acceleration is potentially an affordable alternative to
traditional cyclotron acceleration

D. Comparison between theoretical and numerical results for thin
target Radiation Pressure Acceleration (RPA)

E. 2D results — sheath stability.

F. Conclusions



TRIESTE, ITALY, 23 AUGUST 2009

Early contributions to relat|V|st|c laser-plasma interactions

Physica Scripta. Vol. 14, 320-323, 1976

Influence of a Circularly Polarized Electromagnetic
Wave on a Magnetized Plasma

L. Stenflo
Physica Scripta. Vol. 21, 831-835, 1980.
On the Stability of a Magnetized Plasma
in a Large Amplitude Circularly Polarized Wave

L. Stenflo
Department of Plasma Physics, Ume& University, Umed, Sweden

PHYSICAL REVIEW A VOLUME 24, NUMBER 2 AUGUST 1981

Radiation from a relativistic electron beam in a molecular medium due to parametric pumping by
a strong electromagnetic wave

L. Stenflo
Department of Plasma Physics, Umed University, S-90187 Umed, Sweden

H. Wilhelmsson

Institute for Electromagnetic Field Theory and Euratom-Fusion Research (EUR-NE), Chalmers University of Technology, S-41296
Goteborg, Sweden

Physica Scripta. Vol. 23, 779-780, 1981

Self-Consistent Vlasov Description of a Magnetized Plasma in a
Large Amplitude Circularly Polarized Wave

L. Stenflo

Department of Plasma Physics, Umed University, Umed, Sweden
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Radiation pressure acceleration (RPA) of thin foil

h
)

guasi static
electric field

Protons accelerated together with electron cloud as a whole.
Could lead to mono-energetic ions in excess of 100 MeV.
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Monoenergetic acceleration of protons

1D and 2D PIC simulation results
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Yan et al., PRL 100, 135003 (2008)
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Theory of thin foil monoenergetic proton acceleration

Momentum equation of the foil

d(yv) 21y (1 —v/c
N i =3 Fra ¥7; y
M B <1+v/c

Ny =surface number density of ions
v = (1 —v?%/c?)~ /2 =relativistic gamma factor
Iy=radiation intensity (W/cm?).
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where ag = e|Ap|/mec and wy =laser frequency.
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Theory of thin foil monoenergetic proton acceleration

Equations (1) can be integrated to give

A e
¢ g(t)2+1 )

where

g = {2'2[h(t) + V4 + h(t)2]?/® — 2}/{2?/°[h(t) + /4 + A(1)?]"/?},
NS (6P/TL)t + 4, and P = 2T'1.1y/ Nom;c?. The position z(t) of
the foil is found from dz/dt = v, which can be integrated to give

Ll o

where v is given by (2).

Tripathi et al. Plasma Phys. Control. Fusion 51, 024014 (2009); Eliasson et al.
New J. Phys. 11, 073006 (2009)
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Optimal thickness

Optimal thickness when the radiation pressure is of the same
size as the electrostatic force when all the electrons have been
pushed to the rear end of the proton slab.

w% )\L
Lopt peg aQ
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wge/wg =10 and ap = 5 gives L,,: ~ 0.16Ay.

Tripathi et al. Plasma Phys. Control. Fusion 51, 024014 (2009)
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Proton energy, theory vs. Vlasov simulation
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ap = 5, wy,/wg = 10.

Eliasson et al. New J. Phys. 11, 073006 (2009)
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Viasov-Maxwell simulation model

Proton and electron Vlasov equation
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where the ion and electron relativistic gamma factors are
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Viasov-Maxwell simulation model

Wave equation for the vector potential in Coulomb gauge
V-A=0
0*°A  O*A
ot?2 022

2 o
LOLK )

Circularly polarized laser light
A = (1/2)A(z,t)(X + iy) exp(—iwpt)+C.C. leads to
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Simulation methods and parameters

Eulerian code, using 4th-order difference schemes for z and p
derivatives, and Runge-Kutta scheme for time-stepping.

One-dimensional box size: 32\, resolved with 2000 grid points.

Electron momentum space spanning +£10 m.c, resolved with 60
grid points.

lon momentum space from —30 m.c to +1470 m.c resolved with
6000 grid points.

Physical parameters: amplitude a = 5, ion density n/n. = 10,
widths L = 0.2 Ay, (optimal), L = 0.4 A; and L = 0.1 Ay.

11
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Plasma physics of proton acceleration

1 Laser ponderomotive pressure acts on the electrons. Balance
between electrostatic force and ponderomotive pressure leads
to trapping of the electrons.

1 Effective electric potential for electrons

2

B(2,t) = ¢ — (/14 a2 — 1)

€

1 lons accelerated by the electrostatic force. Balance between
the forward electrostatic force and backward inertial force in an
accelerating frame leads to ion trapping in the potential well.

1 Effective potential for ions in an accelerating frame

Fradz
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Simulation optimal width L = 0.2);..
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Simulation twice the optimal width L = 0.4);.
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Simulation half the optimal width L. = 0.1);.

p/m.c

Laser burns through. Poor acceleration.
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Fraction of monoenergetic ions

08" 2 A

ir 0
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Due to the acceleration, some ions are untrapped and spread out
iIn energy. When the electric force of ion acceleration is less than
the inertial force in an accelerating frame, then ions are
untrapped. Approximate formula:

2wt .
No (2m)2wh, 12

Gives ~ 70% for L = 0.2 and ~ 95% for L = 0.4.
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Multiple dimensions ?

1 Multiple dimensions: the Rayleigh-Taylor instability —
fracturing of the foil and burn through of the laser light.

A s it possible to find parameter regimes where the RT instability
is stable enough?

1 We have found regimes where protons are accelerated
monoenergetically up to 200 MeV.

(2D PIC simulations: Thanks to Galina Dudnikova, U. Maryland.)
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Rayleigh-Taylor instability destroys the folil
A= 8 ma= T
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Wide energy spectrum

A= 8 ma= T
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Rayleigh-Taylor instability stabilized ?

Higher intensity and larger density.
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2D PIC simulation

: Acceleration to 200 MeV.
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Summary

More theory, simulation and experiment needed!

... and last but not least ...

Happy Birthday!
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