

2053-16

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa

17 - 28 August 2009

Present-day strain rates and large-scale dynamics of the East African Rift

Sarah Stamps Purdue University, West Lafayette USA

Strada Costiera 11, 34151 Trieste, Italy - Tel.+39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa, ICTP, Trieste, August 17, 2009

Present-day Strain Rates and Large-Scale Dynamics of the East African Rift

D. Sarah Stamps (*Purdue University, IN, USA*) Eric Calais (*Purdue University, IN, USA*) Lucy Flesch (*Purdue University, IN, USA*)

Africa and the East African Rift

- Africa
 - continental mass breaking up
 - mostly surrounded by ridges
- East African Rift
 - 5000 km long
 - Moderate seismicity
 - High topography
- Intraplate stress field
 - buoyancy forces
 - mantle tractions
- Open questions:
 - Kinematics?
 - Forces?
 - Role of melt?

Present-day plate velocities with respect to Nubia

Role of lithospheric buoyancy forces?

- extensional state of stress Coblentz and Sandiford (1994)
 - geoid constrained lithospheric density structure
 - stress indicators from World Stress Map
- dynamic uplift + thermal erosion = rupture Davis and Slack (2002)
 - ex. Kenya dome
 - long-wavelength gravity and topography
 - tomography
 - small-scale convection
- Problems
 - cratonic rifts?

Role of mantle tractions?

- The African Superplume
 - positive shear velocity anomaly
 - divergent mantle flow
 - consistent with surface motions
- Problems:
 - Is the African Superplume buoyant?
 - Coupling?

Role of melt?

after Buck (2004)

- Tectonic vs. Magmatic Stretching
- East African Rift:
 Seismic tomography melt conditions are present (e.g. Keranen et al. 2006)
 - Seismic anisotropy consistent with melt lenses (e.g. Kendall et al., 2006)
 - Recent diking event (2007) youthful and barely extended Natron rift (Calais et al., 2008)
- Problems:
 - Not all rifts are very magmatic early on Western Branch

Kinematics

Previous kinematic models

Gordon and Stein, 1991: a diffuse plate boundary Hartnady, 2002: 4 rigid plates embedded within Nubia-Somalia plate boundary

Chorowicz, 2005: oblique NW-SE rifting

Two more recent models

Calais et al., 2006:

- GPS + slip vectors
- Somalia-Nubia plate motion
- 2 additional plates: Victoria (quantified) and Rovuma (not quantified)

Horner-Johnson et al., 2007:

- 3.2 Ma average spreading rates and transform azimuths
- Somalia-Nubia plate motion
- 1 additional plate: Lwandle

- 1. Three data sets processed independently → position/velocity solution
- 2. Independent solutions combined (14parameter transformation into ITRF2005) → position and velocities in ITRF2005
- 3. Velocities transformed into Nubia-fixed frame using "best-fit" 14 sites on Nubia:
 - Reduced chi2 = 1.5
 - RMS = 0.7 mm/yr

- Three data sets processed independently → position/velocity solution
- 2. Independent solutions combined (14parameter transformation into ITRF2005) → position and velocities in ITRF2005
- 3. Velocities transformed into Nubia-fixed frame using "best-fit" 14 sites on Nubia:
 - Reduced chi2 = 1.5
 - RMS = 0.7 mm/yr

- Model:
 - rigid plate motions
 - Nubia, Somalia, Victoria, Rovuma, Lwandle
- Data:
 - GPS velocities, assigned to a plate
 (+ 12 GPS velocities on Antarctic plate)
 - Earthquake slip vector directions, assigned to a plate boundary
 - 3.2 My average data on the SWIR = transform fault azimuths + spreading rates.
- Solve for block angular velocities by joint inversion of GPS, ESV, and SR data.
- Use F-test statistics to quantify significance of chi2 difference between various scenarios

- Final model: 3 plates embedded in EAR
 - Reduced chi2 = 1.4
 - GPS RMS = 0.8 mm/yr
 - ESV RMS = 14 degrees
 - Spreading rates RMS = 0.6 mm/yr
- Predicted extension rates
 - increase from S to N
 - up to ~6.5 mm/yr in the northern MER
 - qualitatively consistent with expression of faulting (incl. Mad. Ridge)
- Extension directions ~E-W but vary slightly as a function of the plates involved.
- Spatial density of geodetic sites still very low.

Stamps, D.S., et al. (2008), A kinematic model for the East African Rift, Geophys. Res. Lett., 35, L05304, doi:10.1029/2007GL032781.

Dynamics

Question: What forces drive the observed kinematics?

- Known/Observations
 - Buoyancy stresses: from lateral gradients in density
 - Strain rate: from GPS measurements + earthquakes
- We solve for the buoyancy stresses such that the total deviatoric stress field best matches the observed strain rates
- Africa surrounded by oceanic ridges:
 - Minimal role of traction along plate sides
 - Boundary stresses = should mostly reflect mantle tractions

Strain Rate Field

STEP 1 :

convert velocities to strain rates

- Data:
 - GPS-derived model velocities (Stamps et al., 2008; Sella et al., 2002)
 - Earthquake moment tensors CMT catalog (M>3.5)
- Results:
 - localized deformation
 - low strain in EAR
 - high strain along ridges
 - high strain at subduction zone

GPE stresses

STEP 2:

compute deviatoric stresses associated with lateral gradients in GPE

- Method:
 - Thin-viscous sheet approximation (Flesch et al, 2001)
 - Crust 2.0 (Bassin et al., 2000)
 - Estimate gravitational potential energy

$$\overline{\sigma}_{zz} = \frac{1}{L} \int_{0}^{L} \int_{0}^{z'} \rho(z')gdz'dz$$

 Lateral gradients in GPE drive the lateral gradients in deviatoric stress

GPE Stresses vs. Strain Rates

STEP 3:

- quantitative comparison between GPE stresses and strain rates
- Misfit function compares principal directions and "style" of strain and stress:

$$\mathbf{M} = \frac{1}{2} \left(1 - \frac{\varepsilon . \tau}{\mathrm{ET}} \right)$$

- Result:
 - Poor fit overall
 - Better in areas with strain data
 - Worse in areas w/o strain data

Stress Field Boundary Conditions STEP 4

Stress Field Boundary Condition

RESULTS

- Extensional boundary stresses
- Magnitude ~1-10 MPa: smaller, but comparable to GPE stresses
- Source of these stresses:
 - relative plate motions?
 - minimal due to ridges
 - response of mantle tractions

Comparison with a Mantle Flow Model

Total Deviatoric Stress Field

- Combination of buoyancy and boundary forces
- Results:
 - Up to ~20 MPa in East Africa
 - E-W tension over most of Africa
 - Largest stresses in MER
 - Higher stresses correlate with trace of the EAR, with magnitudes decreasing southward.
 - Stress magnitudes high outside of the EAR in southern Africa: may explain off-rift seismicity?

Total Stresses vs. Strain Rates

• Result:

- Improved fit overall
- Better in areas with strain data
- Worse in areas w/o strain data
- E-W extension improves fit across EAR and ridges
- Large misfit in southern EAR

Comparison with World Stress Map

- \rightarrow World Stress Map (2008)
 - SH_max maximum horizontal compressive component
- \rightarrow Red = WSM AB normal faulting
- \rightarrow Black = WSM AB undefined
- \rightarrow Purple = this work
- Style and directions of deviatoric stresses consistent with focal mechanisms and SHmax direction

Stamps et al., (in review) Lithospheric buoyancy forces in Africa from a thin sheet approach, International Journal of Earth Sciences special edition on Continental Rifting

Comparison with Lithospheric Strength

• GPE Stresses ~10 MPa in EAR

~1.5 TN/m 150 km lithosphere ~1.0 TN/m 100 km lithosphere

Total Stresses ~15 MPa in EAR

~2.3 TN/m 150 km lithosphere ~1.5 TN/m 100 km lithosphere

- Integrated lithospheric strength
 - Bogoria segment (warm) ~4 TN/m
 - Balangida segment (cold) ~9 TN/m
- Buoyancy + boundary stresses
 - Not sufficient to rupture cold EAR
 - Sufficient if mantle lithosphere "removed"

Conclusions

- A first-order kinematic model for the EAR consistent with:
 - 3 plates between Nubia and Somalia: Victoria, Rovuma, Lwandle
 - EAR motions consistent over past 3.2 Ma
 - Localized strain along narrow rift structures that isolate large, mechanically strong, lithospheric blocks.
 - Requires confirmation from more detailed geodetic studies.
- A new total deviatoric stress field for Africa:
 - Dominated by GPE, with ~30% contribution from mantle flow
 - Tensional, ~E-W over most of Africa, ~15 MPa in EAR
 - Good agreement with independent stress and strain observations
 - GPE + mantle flow not sufficient to rupture cold lithosphere in East Africa...
- Additional contribution from magma buoyancy (+ heat advection), cf. Buck, 2002?

Differences in Misfits

- Improved fit:
 - 1. western branch
 - 2. eastern branch
 - 3. Congo basin
 - 4. Main Ethiopian Rift
- Better in areas with strain data
- Worse in areas w/o strain data
- E-W extension improves fit across EAR and ridges

