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Remote Sensing
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This is passive remote sensing where the Sun provides a natural
source of illumination.

Active remote sensing involves illuminating the ground from the
observing platform in some way, e.g. with radar or lasers.
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Active Remote Sensing with Microwaves
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Radar = RAdio Detection And Ranging




Side-Looking Airborne Radar




Side-Looking Airborne Radar

V; TRAJECTORY
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ANGLE, 1 W =10 m
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If at 800 km height,
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Trick — the Synthetic Aperture

All the radar echoes that
Illuminate a given patch of
ground are used to construct a
synthetic larger antenna




Synthetic Aperture Radar (SAR)

Spacecraft

A SAR makes use of measurements of the range and
Doppler shift of the radar returns to locate ground points. The

signals from many returns are analysed together to image Equi-Doppler

ground elements ~5x20m in size, much smaller than would Lines of
be possible with a stationary antenna of the same size - Equidistance
hence the Synthetic Aperture. lluminated

Area



INSAR — how It works

* Actively illuminate ground with radar waves.

» Operates day and night, can see through clouds

 ERS-1 (1991): very stable orbits and pointing =
INSAR

» Followed by ERS-2 (1995) and EnV|sat (2003) for
~ 17 year time series i@ etal. 1993 :




INSAR — how It works

Round trip ~ 30 million wavelengths

BUT we don’'t know the exact number




INSAR — how It works
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INSAR — how It works




INSAR — how It works




Image A - 12 August 1999
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Image A - 12 August 1999

Interferogram =
Phase A - Phase B

Remove phase from
topography
satellite positions
earth curvature
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17 August 1999, Izmit earthquake (Turkey)

(-20) 567 mm range decrease

(-10) 283 mm range decrease

(-2) 57 mm range decrease

(

-1) 28 mm range decrease

(0) 0 mm range change
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Components of interferometric phase
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Components of interferometric phase

A¢|nt = T A¢topo T A¢atm T A¢noise t A¢def

*Calculate phase ramp from satellite orbits

~500 fringes across typical frame

72117
727247
7241/
ZZ 22 1/

*Subtract from interferogram

*Residual orbital errors:
~0.3 mm/km (north, ERS)
~0.1 mm/km (east, ERS)

(better for Envisat)
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Components of interferometric phase

A¢|nt = A¢geom t A¢topo t

+ A¢noise T A¢def

A foggy morning,

near ancient Mycenae,

Greece




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T T A¢noise t A¢def

Layered atmosphere

to 29/7/1997 to 29/7/1997 Topography




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T T A¢noise t A¢def

Layered atmosphere

Path delay
Path delay




Components of interferometric phase

A¢|nt = A¢geom t A¢topo t

+ A¢noise T A¢def

Turbulent atmosphere

o) June - December ~
ha = -659 M

June to December July to December

Athens Earthquake — September 1999

a) June - July
Na =-1356 M

June to July




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T T A¢noise t A¢def

» Size of Ag,,, (at sea level) ~+ 10 cm

» Methods for dealing with Ag,,,

Ignore (most common)

Quantify

Model based on other observations

(e.g. GPS, meteorology...)

Increase SNR by stacking or time series analysis




Components of interferometric phase

A@n = A¢geom T A¢topo + A@pym +

+ A¢def

* Biggest source of noise is due to changing
ground surface

e Coherence is convenient measure

A%




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T A¢atm t T A¢def

Biggest source of noise is due to changing
ground surface

Coherence is convenient measure

% T —

e = | =

% [

Coherence=b/a




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T A¢atm t T A¢def

Coherent surface types

» Bare Rock
* Buildings esp. towns/cities

» Grassland
 Agricultural fields
e Ice

Incoherent surface types

» Leafy Trees
» Water




Components of interferometric phase

A¢|nt = A¢geom T A¢topo T A¢atm t T A¢def

. Incoherence

Changes in the ground cover cause a random
phase shift for each pixel

Large baselines

. Unwrapping errrors

Phase in interferograms is wrapped (each fringe
IS 2 ©t radians).

Discontinuities or data gaps can cause phase
unwrapping errors




Components of interferometric phase

A¢|nt = A¢geom t A¢topo t A¢atm t A¢noise T

INSAR ONLY MEASURES THE COMPONENT OF SURFACE
DEFORMATION IN THE SATELLITE'S LINE OF SIGHT

‘Ar:-n.u ‘

where n is a unit vector pointing
from the ground to the satellite

Adhyer= (Am /1) Ar|

l.e. 1 fringe = 28.3 mm l.0.s. deformation for
ERS




Earthquakes

1. Coseismic Deformation

Current Capability

* Map deformation fields for most damaging
earthquakes.

e |dentify responsible faults

e Estimate slip models.

* Assess impact on future hazard .

What could be done?

* Routine analysis of ALL damaging earthquakes, c.f.
Harvard CMT.

* Real-time assessment of causative fault and likely
damage area.

* Near-real time assessment of future hazard
(aftershocks + triggered quakes).

Why are we not doing this already?
* Data.

* Method Development.

* Manpower.



Earthquakes

Current Capability

e Measure interseismic strain rates on suitable,
targeted faults.

 Use these to constrain slip rate and hence assess
future hazard.

What could be done?

* Routine measurement of strain across whole
regions.

* Assessment of slip rates and relative hazard of
multiple faults (including unidentified faults).

Why are we not doing this already?
* Data.

* Method Development.

* Manpower.

2. Interseismic Strain
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Wang, Wright and Biggs., GRL 2009



Volcanoes

0 range displacement 14cm
1992 yoar 2001




Biggs, J., Anthony, E.Y., Ebinger, C.J.
Figure 1. biggs_fig1.jpg
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Current Capability
* Time-series analysis for suitable, targeted volcanoes

* Snapshot regional surveys.
* Integration with other data sets.

What could be done?

* Routine monitoring of ALL volcanoes worldwide (or
in a region).

* Target application of ground monitoring in countries
where resources are limited.

Why are we not doing this already?
* Data.

* Method Development.

* Manpower.



Launched or Planned Radar Satellites
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The Future

"‘l-s

Sentmel 1 (ESA GI\/IES)
. Operatlonal C-band INSAR
 Funded, Launch 2012




The Future

' DESDan

atio E )system Structu
n:lD‘n,r of Ice

NASA: L-band, INSAR + LIDAR

e Funding not yet confirmed
e Proposed launch 2010-2013




" “InSAR everywhere,
all the time”




Searching the Data Archive

s =N\/|SAT, ERS,

..... S ==Ly Landsat, IKONOS,
SRR 3@ DMC, ALOS, SPOT,
— k + § Kompsat, Proba, JERS
‘ IRS, Nimbus, NOAA,
SCISAT, SeaStar,

Terra/Aqua.
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http://earth.esa.int/EOLI/EOLIi.html|

Select option: ‘connect as anonymous user’



Ordering Data

http://eopl.esa.int/esa/esa?cmd=aodetail&aona
me=Catl

Submit a category 1 proposal to ESA - entitles you to data at
reproduction costs only

Category 1: research and applications development use Iin
support of the mission objectives, including research on long term
Issues of Earth system science...

Data Costs

For Envisat/ERS. per scene (~100km x 100km)

Archive -25€

Programming - 80 €

But costs may be waved for scientists from developing countries






Using the predictions and research
of leading experts it portrays

nature's rarest and most
cataclysmic event...
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