

2053-44

Advanced Workshop on Evaluating, Monitoring and Communicating Volcanic and Seismic Hazards in East Africa

17 - 28 August 2009

The seismic cycle 1. Co-seismic deformation

Tim Wright University of Leeds U.K.

The Earthquake Cycle 1: Coseismic Deformation Tim Wright, School of Earth and Environment, University of Leeds Juliet Biggs, Department of Earth Sciences, University of Oxford

Outline

- The Earthquake Cycle
- Elastic Dislocation Modelling
- Coseismic Deformation
 - •Strike-Slip earthquakes
 - •Dip-Slip earthquakes (Normal and Thrust)
- Case Study the 2003 Bam (Iran) Earthquake

The Earthquake Cycle

The Earthquake Cycle

The Earthquake Cycle

Note: Numbers vary for different faults

17 August 1999, Izmit Earthquake

The Izmit earthquake displacement field

17 August 1999, Izmit earthquake (Turkey)

Elastic Dislocation Modelling

Y. Okada, 1985. Surface deformation due to **shear** and tensile faults in a half-space. *Bull. Seism. Soc. Am.*, 75, 1135-1154

[1]

[3]

To define a rectangular fault dislocation, need 10 parameters:

- Location of fault x,y,z (x=y=0, z = -d)
- Length, Width and dip of the fault (L, W, δ)
- Slip components (u_1 = strike-slip; u_2 = dip-slip; u_3 = tensile) [3]

• 3D Displacements can be calculated for a point (x_{obs}, y_{obs}) in the fault-centred reference frame, where the x-axis points along strike. [3]

Elastic Dislocation Modelling

Code in today's practical takes 9 'friendly' fault parameters:

• x, y-position of centre of fault's surface projection in a map projection [2]

[3]

[3]

[1]

[3]

[3]

- Strike, Dip and Rake of fault (Aki, and Richards convention)
- Magnitude of earthquake slip vector ($u_3 = 0$, i.e. no opening) [1]
- Top and Bottom Depths (measured vertically), Fault Length

To define a rectangular fault dislocation, need 10 parameters:

- Location of fault x,y,z (x=y=0, z = -d)
- Length, Width and dip of the fault (L, W, δ)
- Slip components ($u_1 = strike-slip$; $u_2 = dip-slip$; $u_3 = tensile$)

• 3D Displacements can be calculated for a point (x_{obs}, y_{obs}) in the fault-centred reference frame, where the x-axis points along strike. [3]

Earthquake Type	Rake
Thrust	+90°
Left-lateral	0°
Normal	-90°
Right-lateral	±180°

Strike measured as earing from North, Dip o right hand side when ooking along the fault

> Rake measured anti-clockwise from strike = +290 or -70 in this case

Slip Vecto

Earthquake Magnitudes and Moments

Surface displacements of strike-slip faults

Displacements of normal faults

Distance (km)

Depth (km)

Determining best-fit elastic models

- Calculating the predicted displacements from a specified fault geometry (forward modelling) is relatively easy.
- The inverse problem (finding the model that fits a given set of displacements) is harder:
 - Finding the fault geometry is a non-linear inversion problem.
 - Determining slip distributions for a fixed fault geometry is a linear problem.

Surface Displacements and Source Parameters of the 2003 Bam (Iran) Earthquake from Envisat ASAR Imagery

Gareth Funning¹, Barry Parsons¹, Tim Wright², Eric Fielding³, James Jackson⁴ and Morteza Talebian⁵

¹ COMET, Department of Earth Sciences, University of Oxford, UK
² COMET, School of Earth and Environment, University of Leeds, UK
³ COMET, Department of Earth Sciences, University of Cambridge, UK
⁴ Jet Propulsion Laboratory, Caltech, USA
⁵ Geological Survey of Iran, Tehran, Iran
SEE Talebian et al, GRL 2004; Funning et al., UGR 2005;

26th December 2003, *M*_w 6.6

Nayband fault

Nayband fault

Gowk fault

SRTM shadedrelief topography

Nayband fault

Gowk fault

Sabzevaran fault

The Bam area

Main geomorphic features of the Bam area:

The Bam area

Main geomorphic features of the Bam area:

1: Alluvial fans from the Jebal Barez mountains to the SW

LANDSAT-7 ETM 541 false colour green=vegetation

The Bam area

Main geomorphic features of the Bam area:

2: The Bam fault – a prominent ridge running between Bam and Baravat

LANDSAT-7 ETM 541 false colour green=vegetation

The Bam fault

Post-earthquake field surveys found only minor cracking at the foot of the ridge...

The Bam fault

...and fault ruptures observed in the north were also minor (< 5 cm offset)

The Bam fault ?

BUT...

More damage in Bam than Baravat

Peak vertical acceleration of ~1g in central Bam

Very small surface rupture on Bam fault

LANDSAT-7 ETM 541 false colour green=vegetation

Preliminary InSAR data

First Bam interferogram (each colour cycle=2.8cm of deformation)

Constructed from Envisat ASAR data released for free by ESA

Preliminary InSAR data

There is a prominent band of incoherence running S of Bam

First Bam interferogram (each colour cycle=2.8cm of deformation)

Constructed from Envisat ASAR data released for free by ESA

The Bam earthquake main fault

Low coherence indicates vegetation and surface damage

Interferometric coherence Red = high Blue = low

Constructed from Envisat ASAR data released for free by ESA

The Bam earthquake main fault

ASAR data for the Bam earthquake

Descending track interferogram

Track 120, beam mode I2, 03/12/2003 - 07/02/2004

Unwrapped

Ascending track interferogram

Track 385, beam mode 12, 16/11/2003 – 25/01/2004

Wrapped

Unwrapped

Azimuth offsets

Ascending

Descending

Bam earthquake 3D displacements

Single fault, uniform-slip model

About 2m slip on 12 km long fault in top 10 km of crust

Ascending model

Descending model

Single fault model

Large residuals, especially in SE quadrant (rms = 25 mm)

Ascending residual

Descending residual

Two fault model

Two fault model (uniform slip)

Ascending model

Descending model

Two fault model (uniform slip)

Improved fit in SE quadrant (rms = 17 mm)

Ascending residual

Descending residual

Ascending model

Descending model

Significantly improved fit (rms = 13 mm)

Ascending residual

Descending residual

Two fault model

Secondary fault appears to be a southward continuation of the Bam fault

Geodesy 🗸

Seismology 🗸

Geomorphology 🗸

LANDSAT-7 ETM 541 false colour green=vegetation

Arg-e Bam citadel stood for over 300 years and the human history of Bam extends back for ~ 2000 years

In all of that time, there had been no reports of earthquakes in the Bam area (Ambraseys & Melville, 2002)

avit is at here

Arg-e Bam citadel stood for over 300 years and the human history of Bam extends back for ~ 2000 years

In all of that time, there had been no reports of earthquakes in the Bam area (Ambraseys & Melville, 2002)

1st rupture for this fault OR Geomorphic signature of the fault is buried by flood deposits

Coseismic deformation - Summary

Current Capability

• Map deformation fields for most damaging earthquakes on the continents.

- Identify responsible faults
- Estimate slip models.
- Assess impact on future hazard .

What could be done?

• Routine analysis of **ALL** damaging earthquakes, c.f. Harvard CMT.

• Real-time assessment of causative fault and likely damage area.

• Near-real time assessment of future hazard (aftershocks + triggered quakes).

Why are we not doing this already?

- Data.
- Method Development.
- Manpower.