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The Problem

• Even Excellent experiments can lead to 
ambiguous interpretation

• We use multi-condition X-ray and neutron 
diffraction (usually single crystal), including 
high resolution X-ray

• But we can still have ambiguities

• We also constrain our systems to be in 
the solid state

• Can modern computational 
chemistry methods help us to 
understand better our experiments?

Schmidtmann et al, CrystEngComm, 2007, 9, 743



One Concept: Evolving Molecules in the Hall of Mirrors

Structural Evolution
• Materials whose structure or properties change with 

external variables

Materials
• Molecules or molecular complexes with “tuneable”

atoms – often protons

Our “Laboratory”
• We work in the solid-state – periodic 

crystalline arrays – The Hall of Mirrors
Techniques
• Crystallisation – self-assembly in the 

solid-state
• Variable condition diffraction – X & n
• Solid-state quantum chemical 

calculations



Pushing the Limits of Diffraction Techniques

• X-ray single crystal diffraction
Strong focus on variable temperature for 
examining evolving structures

• Neutron Single crystal diffraction
Multiple condition, shorter data collection 
times

• High throughput X-ray diffraction
Powder and single crystal

• High throughput neutron single crystal
Exploiting new instrumentation

• Neutron powder diffraction
Just becoming possible for these materials



Motifs with Predictable (and tuneable?) HB Properties?

• COOH dimers – Disorder 

• Short, strong HB – Transfer, Migration

• Proton sponges –
Proton Transfer

• “bifurcated” motifs



An old favourite* - proton migration in urea-phosphoric acid
150K

Δ~0.07Å

350K
Δ~0, centred

“H…O”

“O–H”

VT neutron diffraction

Neutron, 15K O-H, 1.158Å O...O, 2.41Å H…O, 1.267Å

Plane-wave DFT O-H, 1.105Å O...O, 2.42Å H…O, 1.329Å
Isolated molecule O-H, 1.004Å O...O, 2.65Å H…O, 1.604Å

Computational Chemistry of the short HB

* But still not fully understood!
Wilson & Morrison, 
Chem Phys Letters, 2002, 362, 85



Raise the stakes, raise the Temperature (MD-DFT)

UPA PW-DFT MD
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Morrison et al, JACS, 2005, 127, 4042



Imaging Hydrogen Bonds in UPA: added value from X/n

Joint X-n Analysis
of proton/electron density 

evolution in hydrogen bonds

Parkin, Harte, Goeta & Wilson
New J Chem, 2004, 28, 718-721

Migration can also be followed by XRD 
- and additional information obtained 

about the nature of the electron 
density in the HB
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Position of proton in the 
short N-H…O HB tuned by 

chemistry 
and by 

temperature

Designing Molecular Complexes for proton migration

Pentachlorophenol: Methylpyridines

Steiner, Majerz & Wilson, 
Chem Comm, 2000, 1231
Angewandte Chemie, 2001, 40, 2651 



First observed 
centred N-H-O HB
obtained by thermal 
tuning at 95K

Temperature tuning of proton migration

Steiner, Majerz & Wilson, 
Angewandte Chemie, 2001, 40, 2651 
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A continuum in the hydrogen bond of a proton sponge complex

1,8-bis(dimethylamino)naphthalene 
and 4,5-dichlorophthalic acid

From proton disorder to proton migration?



and “migration”?

DMAN:DCP – only X-ray data so far – ambiguous!

Disorder/transfer?

Tempting, but 
unproven and 

unsubstantiated – VT 
neutron collected



O1

C1

N7

I8

C2

N2

O22O21

C6O62

1.2

1.45

T = 340K

Picric acid forms charge transfer 
complexes with many organic 
compounds, some of which also 
exhibit thermochromism

2-iodoanilinium picrate: 
colour change at ~320K

Application to physical changes
T = 300K
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Only obvious 
structural 
change on 
thermochromic
PT is an 
apparent H 
migration..



Look for disorder, find migration – isonicotinamidium formate



Potassium hydrogen maleate – centred HB

p

T

200K

50K

2kbar 4kbar

125K

300K

Wilson, Thomas & Morrison, 
Chem Phys Letters, 2003, 381, 102



Crystal Engineering – Predictable HB Motifs?

• COOH dimers; carboxylic acids

• Bifurcated HB

• HB-matching – Etter, Aakeroy
• [Short, strong HB]
• Metal-mediated
• Supramolecular synthons



Designing Molecular Complexes for HB proton transfer

Chloranilic acid:Methylpyridines
(lutidines, picolines)

• Supramolecular motifs 
(different in 1:1 & 2:1 complexes)

Adam et al, 
CrystEngComm, in press



Chloranilic acid:n.Methylpyridine complexes

Adam et al, 
CrystEngComm, in press

Hydrogen bonded hydrogen almost always 
transferred – charge/resonance assisted HB



Designing Molecular Complexes: pKa matching?

Pentachlorophenol:Lutidine
• pKa matching to “predict proton transfer?
• Pattern difficult to discern in solid-state

Schmidtmann & Wilson
CrystEngComm, 2008, 10, 177



Designing Molecular Complexes for proton disorder in HB

Tuning proton disorder 
• 4-dimethylaminobenzoic acid (4DMBA)

• Proton disorder in native structure

Parkin et al
Cryst Growth Design
2007, 7, 531



4-dimethylaminobenzoic acid (4DMBA)

Different disorder patterns in molecular 
complexes 4DMBA-4DMBA:35DNB-35DNB

with 3,5-dinitrobenzoic acid
4DMBA NO disorder

BUT the 3,5-dinitrobenzoic 
acid DOES show disorder



Asymmetry only introduced in the solid 
state - in the local crystalline environment

H disorder/transfer in solid-state HB dimers



Modelling Disordered Protons: from T dependence to ΔE

Modelling of HB H 
atom in carboxylic 
acid dimers clearly 
breaks down at 
higher T– second 
(disordered, 
tautomeric) site

Clearly a 
split site



Modelling Disordered Protons: from T dependence to ΔE

Site occupancies 
can be modelled in 
simple Van’t Hoff 

model and Energy 
Asymmetry 
extracted

This allows us to establish a 
Tautomerism energy scale in HB 

carboxylic acid dimers

Experimentally, and...

Wilson et al, Chem Phys Letts, 1996, 253, 103 
& New J Chem, 2006, 30, 979

BA - Energy asymm -
ΔH=–0.50(4)kJmol-1

Fully ordered <20K 

Cl-BA - Asymm
ΔH=–1.3kJmol-1

Fully ordered <80K 



100K 170K

240K 295K

VT XRD: 2,4,6-trimethylbenzoic acid

tmba, ΔH = –2.5(3) kJ.mol–1

Wilson & Goeta
Angew Chemie, 2004, 43, 2095



Computing the Asymmetry in H-transfer tautomerisation

Benzoic Acid
Computed asymmetry = 0.46 kJ.mol-1
cf NMR 0.4-0.65; neutron diffraction 0.50 kJ.mol-1
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Middlemiss et al, CrystEngComm, 2007, 9, 777

Can solid state, periodic 
computation do the same?



A second example of promising agreement

Middlemiss et al, CrystEngComm, 2007, 9, 777
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Co-operative hydrogen bonding?

Relative Energies of 
tautomeric forms

Form I
0 kJ.mol–1

Form II
~+50 kJ.mol–1

Form III
+8.6 kJ.mol–1

Parkin et al, Acta Cryst, 2007, B63, 303



Screening for subtle proton behaviour – VT neutron

Potential tautomerism / cooperative hydrogen 
bonding in dihydroxybenzoic acids

Adam et al, New J Chem, in press

Neutron diffraction 
supports the computational 

conclusion that only one 
tautomer should be 

expected in these T ranges



Neutron and Theoretical Deformation

Adam et al, New J Chem, in press
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An energy scale for polymorphism

Schmidtmann et al, CrystEngComm, 2007, 9, 743
& J Phys Chem A, in press

CRYSTAL03
B3PW91, 6-31G**
Energy difference, Form I favoured 
over form II by 3.41 kJ.mol–1

Serious 
ambiguity in 
“good” SX X-ray

“cis”

“trans”

Polymorphism in molecular complexes of isonicotinamide and 
oxalic acid



Conclusions – Next Steps

• Modern computational methods can underpin our 
careful multi-condition X-ray, neutron, etc experiments

• Interrogating both experiment and calculations allows 
questions not accessible by each alone to be asked

So… it’s all solved - No
• Still must benchmark any models through reproducing 

experimental findings
• Still “semi-empirical” choice of theoretical method, 

functional, etc
• Some answers still “wrong”, some models 

inconsistent between good theoretical methods
• Eventual aim – towards prediction of property in the 

molecular solid-state from structure – proton transfer, 
conduction, optical activity, colour, etc.
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Ferromagnetism and spin transitions in Prussian Blue

Middlemiss & Wilson, Phys Rev B, 2008, 77, 155129

Previous ferromagnetic coupling 
model based on J2, ignores J1



Calculation of spin densities

CRYSTAL03
Hybrid functionals

Varying HF content 
– vary F0 from 30 to 
100%

Middlemiss & Wilson, Phys Rev B, 2008, 77, 155129



Critical Temperatures and Coupling Constants

Middlemiss & Wilson, Phys Rev B, 2008, 77, 155129

J1, more 
significant 
contribution to FM 
coupling than J2



Hydrogen-bonded copper pyrazine coordination polymer

Middlemiss et al, Chem Phys Letters, 2008, 459, 119

[CuII(HF2)(pyz)2]BF4 (pyz = pyrazine)
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