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• Quality of DFT approximations
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Isotope effects in the structure of solids: KDP Isotope effects in the structure of solids: KDP vsvs
DKDPDKDP

• Huge isotope effect in ferroelectric Tc: 
TKDP=123 K vs TDKDP=230 K (Isherwood and 
James, 1972) 

• Structural modifications (Ubbelohde
effect): O-O distances (Ichikawa 1978) and 
lattice constants (Nelmes, Tun and Kuhs 1987) 

• Large family of H-bonded molecular 
crystals, including ferro and antiferroelectric
materials (ADP, Squaric acid, LHP, ice, …)

• Organic crystals, polymorphism is very 
important for Pharmaceutical industry

H-bondsDistributions reconstructed from elastic neutron 
scattering do not show the potential minima



Neutron scattering
[Nelmes, Ferroelectrics 71, 87 (1987)]



CrOOH(DCrOOH(D): Structure and thermodynamics): Structure and thermodynamics
(Keith (Keith RefsonRefson, next talk), next talk)

Structural modifications upon deuteration
[Christensen, Hansen and Lehmann, J. Solid State Chem. 21, 325 (1977)]

CrOOHCrOOH CrOODCrOOD

Space GroupSpace Group R3m (cR3m (csym)sym) R3mR3m

c (c (ÅÅ)) 13.3713.37 13.4813.48

a (a (ÅÅ)) 2.9792.979 2.9852.985

d[Od[O--O] (O] (ÅÅ)) 2.472.47 2.572.57

Phase transition in CrOOD at 320K
[Matsuo et al., J. Mol. Struc. 790, 129 (2006)] 
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QuestionsQuestions
1. What is the origin of quantum (isotope) effects in d[O-O] and lattice parameters?

• Tunneling or geometric effect?

2. When are these important?

3. Can we deal with this in an inexpensive, efficient way?

4. What level of approximation is acceptable?

O OD

O OH

The The UbbelohdeUbbelohde effecteffect



Structural and dynamical properties of Structural and dynamical properties of 
crystals: classical approachcrystals: classical approach

• Born-Oppenheimer approximation for electrons (E)

• Classical equilibrium configuration (minimize E), or classical lattice parameters and 
equilibrium configuration (minimize H=E+σ.τ)

• Force constants and dynamical matrix (second derivatives of the potential @ 
classical equilibrium structure)

• Phonon dispersion relations and vibrational normal modes.

CrOOHCrOOH ExpExp ClassicalClassical

c (c (ÅÅ)) 13.3713.37 13.4413.44

a (a (ÅÅ)) 2.9792.979 3.0363.036

D[OD[O--O] (O] (ÅÅ)) 2.472.47 2.4952.495

Theory level (functional)

Quantum nuclei

Problem

Quantization of vibrations (Zero-point-motion - ZPM) not taken into account.

1. Lattice parameters (e.g. volume) are incorrect (ZP pressure shifts equilibrium)

2. Internal geometry can also be incorrect.

3. Mechanical and thermodynamic properties, e.g. phase transitions.



Introducing zeroIntroducing zero--pointpoint--motionmotion

• Express Hamiltonian in terms of {Qi}, a set of orthogonal vibrational
coordinates:               , with q=mass-scaled coordinates:

• Harmonic approximation: expand potential to 2nd order in {Qi} around a
stationary point :

• Periodic solids: Brillouin zone averaging

qAQ 1−=

),,(
2

),,( 31

3

1
2

22

31 Ntot

N

i i
N QQV

dQ
dQQH ∑

=

+−=

∑
=

+=
N

i
iHA EE

3

1
0 2

ω∑
=

+≈
N

i
iiNtot QEQQV

3

1

22
01 2

1),,( ω

∑∫
=

+=
M

i
iHA dgEE

3

1
0 )()(

2
kkk ω g(k) = phonon density of states

Within HA, 
<Qi>=0

Internal geometry 
not modified



QuasiQuasi--harmonic approximation (QHA)harmonic approximation (QHA)

• Quasi-harmonic approximation (QHA): frequencies depend on lattice 
parameters.

• Free energy: includes quantum and thermal effects.

• Minimization with respect to V gives finite-temperature, quantum-corrected 
equilibrium volume and internal geometry.
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Limitations of the QHA

• Vibrations still treated as a collection of non-interacting harmonic oscillators.

• Anharmonicity only through V-dependence of ZPE.

• Excluded in QHA:

• Intra-mode anharmonicity: higher orders in the same mode (e.g. Q 4)

• Mode coupling: products of modes (e.g. Qi
2 Qj )



The other extreme: exact solutionThe other extreme: exact solution

1. Express Hamiltonian in terms of {Qi}, a set of orthogonal vibrational
coordinates:               . Rigid translations eliminated. No rigid rotations.

2. Map potential energy surface (PES):

3. Solve (3N-3)-dimensional vibrational Schrödinger equation:

4. Calculate mean values of vibrational coordinates:

5. Obtain quantum-averaged internal geometry via: 
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Approximations: VSCFApproximations: VSCF
[For molecules: [For molecules: RatnerRatner and Gerber, J. Phys. Chem. and Gerber, J. Phys. Chem. 9090, 20 (1986)], 20 (1986)]

1. Vibrational self-consistent field (VSCF/Hartree): Approximate total wave 
function as product of single-mode wave functions. Modes uncorrelated.

2. Solve a set of (3N-3) coupled one-dimensional Schrödinger equations:

3. With:

4. And energy: 
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Further approximationsFurther approximations

1. Anharmonic: Approximate wave function as product of single-mode wfn: 

2. And the single-mode potentials as: 

3. Solve the (3N-3) uncoupled one-dimensional Schrödinger equations:

4. with energy given by: 

5. Zero-order:                                                   is like VSCF but …

single-mode wave functions ≈ δ-functions centered at the mean values.
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Summary of MethodsSummary of Methods

1. Quasi-harmonic approximation (QHA): €

a. Recovers anharmonic effects mediated by volume changes.

b. Ignores intra-mode and mode-coupling anharmonicity

2. Anharmonic approximation (ANH): €€ Zero-order (ZO): €€

a. Recovers intra-mode anharmonicity. Recovers some mode-coupling anh.

b. Ignores mode-coupling anharmonicity. Double-well potentials tricky.

3. Vibrational self-consistent field (VSCF): €€€

a. Recovers intra-mode anharmonicity.

b. Recovers mode-coupling anharmonicity in mean-field.

c. Ignores correlation between modes.

4. Partially correlated schemes [e.g. P+(3N-3-P)]: €€€€

5. Exact: €€€€€ (unfeasible for more than 6 modes)



MonoatomicMonoatomic linear chainlinear chain
I. I. ScivettiScivetti, N. , N. GidopoulosGidopoulos and J. and J. KohanoffKohanoff, Phys. Rev. B , Phys. Rev. B 7878, 224108 (2008), 224108 (2008)

For a periodic linear chain:

ω increases upon compression

Expansion due to quantum effects (ZPE)
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( )[ ]2
0 )(exp1)( xxbDxV −−−=Morse potential:

The relevant quanticity parameter is: γ=mD
with m=mass of the particles

Within the QHA

• 10 k-points: a is fully converged

• 4 k-points: a is excellent

• 2 k-points, a is 1% too low at γ=135 

Number of cells = number of k-points

k

ω

π/a-π/a 0-π/2a π/2a

MonoatomicMonoatomic anharmonicanharmonic chain: chain: 
BrillouinBrillouin zone samplingzone sampling



MonoatomicMonoatomic anharmonicanharmonic chain: chain: 
comparison of approximationscomparison of approximations

4 cells (3 vibrational d.o.f.)

Exact and VSCF: Solve Schrödinger using 
DVR in the form of Lagrange meshes
[Baye and Heenen, J. Phys. A 19, 2041 (1986)]

[Varga, Zhang and Pentelides, PRL 93, 196403 (2004)]

• Anharmonic: 0.1% below QHA

• Exact: 0.3% below QHA

• VSCF: within 0.05% of exact value

Differences with respect to the QHA

QHA lattice constant is extremely good

( )[ ]2
0 )(exp1)( xxbDxV −−−=Morse potential:



Model HModel H--bonded chainbonded chain
[[YanovitskiiYanovitskii, , VlastouVlastou--TsinganosTsinganos and and FlytzanisFlytzanis, PRB , PRB 4848, 12645 (1993)], 12645 (1993)]

kFF kHH

For H-bonds, ω decreases upon compression.

Therefore, the lattice constant reduces

• H-atoms move in a double-well potential

• kHH spring enforces ice rules.

• kFF spring disfavors [FHF]-

• Morse on F-F distance (dependence on a)

E

EZPM

E0

E0+EZPM

aClaQuantum



Model HModel H--bonded chainbonded chain
QHA QHA vsvs exact solutionexact solution

I. I. ScivettiScivetti, N. , N. GidopoulosGidopoulos and J. and J. KohanoffKohanoff, Phys. Rev. B , Phys. Rev. B 7878, 224108 (2008), 224108 (2008)

QHA underestimates the contraction

Secondary (spurious) minimum appears upon H centering



Model HModel H--bonded chain: bonded chain: 
comparison of approximationscomparison of approximations

• QHA only from minimum (can’t be done 
from saddle point)

• ANH using normal modes at minimum.

• ANH using saddle point modes is poor.

• QHA and ANH converge to same a for 
large N

•1 cell (2 atoms) gives already a decent a.

2 cells (4 atoms): ANH, Exact and VSCF:

• ANH non-monotonic. OK for two cells

• aVSCF is 0.04 Bohr smaller than aQHA

• aExact is only 0.002 Bohr from aVSCF

aCl = 4.368 Bohr



FirstFirst--principles (DFTprinciples (DFT--GGA) linear HF chainGGA) linear HF chain
I. I. ScivettiScivetti, N. , N. GidopoulosGidopoulos and J. and J. KohanoffKohanoff, Phys. Rev. B , Phys. Rev. B 7878, 224108 (2008), 224108 (2008)

• aQHA goes half way (Decrease 0.05 Å, but still 0.04 Å to go):  Anharmonicity is important

• aANHA appears to be quite good, and it is cheap! but ... is it reliable? (remember model)

• aExact and aVSCF are indistinguishable: Correlation between modes not very important

Level a (Å)

Class. 2.413

QHA 2.361

ANHA 2.321

VSCF 2.323

Exact 2.324



FirstFirst--principles (DFTprinciples (DFT--GGA) linear HF chainGGA) linear HF chain
Choice of Choice of vibrationalvibrational coordinatescoordinates

• Small a ⇒ no barrier  ⇒ single anharmonic well ⇒ SP=Min are good.

• Large a ⇒ high barrier ⇒ wfn localized in Min ⇒ Min good, SP poor.

• Intermediate a ⇒ None is very good. Static correlation ⇒ Multiconfig. 

Min
SP

Exact



FirstFirst--principles linear HF chain principles linear HF chain 
Isotope effectIsotope effect

• Increasing m, a approaches the classical value

Lattice parameters are corrected

• Quantum-averaged F-H distance depends on m

Internal geometry is also corrected

• QHA overestimates lattice parameters

s=1

s=5

ZC and ZB optical modes

s dFH (Å)

∞ 0.98

10 1.05

5 1.07

2 1.09

1 1.10

Internal Geometry



Is DFTIs DFT--GGA good enough for HGGA good enough for H--bonding?bonding?

-

A model H-bond: O2H3
-

• GGA severely underestimates barrier and finds 
minima too close to center

• MP2 underestimates and CCSD overestimates, 
but they are quite good

• Hybrid B3LYP is in between.

• Tweaked hybrid HF-DFT (MPWB1K) or 
Screened exchange can do a good job. 

[Zhao and Truhlar,  J. Phys. Chem. A 108, 6908 
(2004)]

[Heyd, Scuseria and Ernzerhof, JCP 118, 8207 
(2003)]

GGA
Hybrid

CCSD



ConclusionsConclusions

1. QHA quite safe to obtain quantum-corrected lattice parameters in 
covalently-bonded systems.

• Coarse BZ sampling (4 or even 2 cells) is sufficient

2. QHA does not correct internal geometry at fixed cell. 

• Therefore, it does only half of the job in H-bonded systems.

3. ANHA seems quite good, but could be a size effect!

4. VSCF is an excellent approximation for structural properties.

• Anharmonicity is important, 

• Correlation between modes is not necessarily relevant.

5. Careful with functionals for H-bonded systems!!


