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Isotope effects in the structure of solids: KDP vs
DKDP

« Huge isotope effect in ferroelectric T.:
Tpp=123 K vs Ty pp=230 K (Isherwood and
James, 1972)

e Structural modifications (Ubbelohde
effect): O-O distances (Ichikawa 1978) and
lattice constants (Nelmes, Tun and Kuhs 1987)

e Large family of H-bonded molecular
crystals, including ferro and antiferroelectric
materials (ADP, Squaric acid, LHP, ice, ...)

e Organic crystals, polymorphism is very
important for Pharmaceutical industry

H-bonds

Distributions reconstructed from elastic neutron

scattering do not show the potential minima



Neutron scattering
[Nelmes, Ferroelectrics 71, 87 (1987)]
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FIGURE 9 Sections through the refined H distribution in KDP at (a) T. +2K, (b) T. - 1.3 K, (c)
T.- 10K and (d) T, —20K, from Reference 53. In each case the section passes through the two H
sites, and contains (i) the line H—H joining the sites and (ii) the line at constant z perpendicular to
H—H. The contours are all equally spaced on a common arbitrary scale. (Note that these are secrions
through refined mode! distributions, rather than projections of Fourier syntheses as in Figures 3 and

8.)




CrOOH(D): Structure and thermodynamics

(Keith Refson, next talk)

Structural modifications upon deuteration
[Christensen, Hansen and Lehmann, J. Solid State Chem. 21, 325 (1977)]

CrOOH CrOOD
Space Group R3m (csym) R3m
c (R) 13.37 13.48
a (A) 2.979 2.985
d[0-0] (&) 2.47 2.57

Phase transition in CrOOD at 320K
[Matsuo et al., J. Mol. Struc. 790, 129 (2006)]
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Questions

What is the origin of quantum (isotope) effects in d[O-O] and lattice parameters?
. Tunneling or geometric effect?

When are these important?

Can we deal with this in an inexpensive, efficient way?

What level of approximation is acceptable?

The Ubbelohde effect




Structural and dynamical properties of
crystals: classical approach

Born-Oppenheimer approximation for electrons (E)

Classical equilibrium configuration (minimize E), or classical lattice parameters and
equilibrium configuration (minimize H=E+o.7)

Force constants and dynamical matrix (second derivatives of the potential @
classical equilibrium structure)

Phonon dispersion relations and vibrational normal modes.

1.
2.
3.

Problem

Quantization of vibrations (Zero-point-motion - ZPM) not taken into account.
Lattice parameters (e.g. volume) are incorrect (ZP pressure shifts equilibrium)
Internal geometry can also be incorrect.

Mechanical and thermodynamic properties, e.g. phase transitions.




Introducing zero-point-motion

Express Hamiltonian in terms of {Q}, a set of orthogonal vibrational
coordinates: Q = A™q, with g=mass-scaled coordinates:

H(Qli'“’QSN) :_hz ch(l?; +Vtot(Q1"“’Q3N)

Harmonic approximation: expand potential to 2" order in {Q;} around a
stationary point :

ey h N Within HA,
Vtot(Qli""QN)zE0+EZa)i Q EHA:EO—I_EZwi <Q,>=0
i=1 i=1
Internal geometry
not modified

Periodic solids: Brillouin zone averaging

3M
EHA = E0 +%ZI g (k) @, (k) dk g(k) = phonon density of states
i=1




Quasi-harmonic approximation (QHA)

Quasi-harmonic approximation (QHA): frequencies depend on lattice

parameters.

Free energy: includes quantum and thermal effects.

FnV) =E, (V) +2 3 [ gk (V) kT | g(k)ln[l—exp[—

ha (K,V)

B

J

Minimization with respect to V gives finite-temperature, quantum-corrected

equilibrium volume and internal geometry.

Limitations of the QHA

Vibrations still treated as a collection of non-interacting harmonic oscillators.

Anharmonicity only through V-dependence of ZPE.
Excluded in QHA:

 Intra-mode anharmonicity: higher orders in the same mode (e.g. Q %)

*  Mode coupling: products of modes (e.g. Q¢ Q,)



The other extreme: exact solution

Express Hamiltonian in terms of {Q}, a set of orthogonal vibrational
coordinates: Q =A™q . Rigid translations eliminated. No rigid rotations.

Map potential energy surface (PES): |V (Q, -+, Qsy_3)

Solve (3N-3)-dimensional vibrational Schrodinger equation:

n o d? L
{_ 2 Z inZ e (Q1’°“’Q3N3):|\P(Q1’“"Q3N3) =EY(Q, Qus)

Calculate mean values of vibrational coordinates:

Q)= [Q¥(Q-+, Qus)| Q-+ dQyy

Obtain quantum-averaged internal geometry via: <CI> = A<Q>




Approximations: VSCF

[For molecules: Ratner and Gerber, J. Phys. Chem. 90, 20 (1986)]

Vibrational self-consistent field (VSCF/Hartree): Approximate total wave
function as product of single-mode wave functions. Modes uncorrelated.

3N-3

‘PVSCF (Ql’ v "Q3N—3) T HQ(Q')

Solve a set of (3N-3) coupled one-dimensional Schrodinger equations:

[ sl +ViVSCF(Qi):|¢i(Qi)=8i 4,(Q.)

2 dQ?
L ViVSCF (Q.) = J. ’ ‘J.V (Ql’ e Q3N—3) H‘¢J (QJ )‘Zde
= Mean values:
And energy:  E = 35~ (3N -I)[V,(Q)AQ) IR (Q) =]l Q)
_ T Internal geometry can
Double counting change in VSCF




5.

Further approximations

Anharmonic: Approximate wave function as product of single-mode wfn:

3N-3

LIJVSCF (Ql’ ) ”’Q3N—3) . H¢|(Qu)

And the single-mode potentials as:

ViANH (Qi)=V(O,"',Qi,"',O)

Solve the (3N-3) uncoupled one-dimensional Schrdodinger equations:

[ K2 d2 +ViANH (Q,)} 4(0) =2 4(Q) Mean values:

2 dQ?

3N-3

with energy given by: Eaw = Z_l}?i

Zero-order: [V°(@Q)=V({(Q) Q. (Qus))

<Qi > v IQ. ‘¢| (Q.)‘Z in

Internal geometry can
change in ANH and ZO

IS like VSCF but ...

single-mode wave functions ~ d-functions centered at the mean values.



Summary of Methods

Quasi-harmonic approximation (QHA): €

a. Recovers anharmonic effects mediated by volume changes.

b. Ignores intra-mode and mode-coupling anharmonicity

Anharmonic approximation (ANH): €€ Zero-order (Z0O): €€

a. Recovers intra-mode anharmonicity. Recovers some mode-coupling anh.

b. Ignores mode-coupling anharmonicity. Double-well potentials tricky.

Vibrational self-consistent field (VSCF): €€€

a. Recovers intra-mode anharmonicity.
b. Recovers mode-coupling anharmonicity in mean-field.

c. Ignores correlation between modes.

Partially correlated schemes [e.q. P+(3N-3-P)]: €€€€

Exact: €€€€€ (unfeasible for more than 6 modes)



For a periodic linear chain: 020

Monoatomic linear chain

|. Scivetti, N. Gidopoulos and J. Kohanoff, Phys. Rev. B 78, 224108 (2008)

----------------------------------------
----------
“““““
04 .

- : -
: [~
- K 0.14f "~ <
g .s® -
LB N LR N LR N o0 - -

0181

0.16-

=]
—
[

1D

Energy / Hartree
=]
S
I

(@)~ E @)+ Y 0,(a)

L

QHA

— Classical nuclei []
-—- ZPE (Harmonic) [

.___‘1

00gl

132 134 136 138

1.4
a/ Bohr

142 144 146 148

® Increases upon compression

Expansion due to quantum effects (ZPE)




Monoatomic anharmonic chain:
Brillouin zone sampling

Morse potential: V (x) = D [1— eXp(— b(x - Xo))]2

L.46 —————— ey

1.45
AY

— 2cells
== 3cells

4 cells
-=+ 10 cells
— 2000 cells

L.44

143

a/ Bohr

142

Number of cells = number of k-points

L4l

L40 - =

1.39—

1000 10000 Within the QHA

Y=MD / amu Hartree

e 10 k-points: a s fully converged

The relevant quanticity parameter is: y=mp | | = #Ponts: als excellent

with m=mass of the particles e 2 k-points, ais 1% too low at y=135




Monoatomic anharmonic chain:
comparison of approximations

Morse potential: V (x) = D[1—exp(=b(x - x,))]’

4 cells (3 vibrational d.o.f.)

Differences with respect to the QHA

Exact and VSCF: Solve Schrodinger using
DVR in the form of Lagrange meshes

[Baye and Heenen, J. Phys. A 19, 2041 (1986)]

= [Varga, Zhang and Pentelides, PRL 93, 196403 (2004)]

0

-0.001

@ 0002} i * Anharmonic: 0.1% below QHA
é I:'fof — Anhar g
- vseF « Exact: 0.3% below QHA
if =+ Exact
e i « VSCF: within 0.05% of exact value
0% B T T

¥=MD /au H QHA lattice constant is extremely good




Model H-bonded chain

[Yanovitskii, Vlastou-Tsinganos and Flytzanis, PRB 48, 12645 (1993)]

- H-atoms move in a double-well potential
* ki, spring enforces ice rules.

* ke spring disfavors [FHF]

» Morse on F-F distance (dependence on a)

v

aQuantum aC|

For H-bonds, o decreases upon compression.

Therefore, the lattice constant reduces




Model H-bonded chain

QHA vs exact solution
I. Scivetti, N. Gidopoulos and J. Kohanoff, Phys. Rev. B 78, 224108 (2008)

0.08 T T T T T T 0.08
07 . = 07 . _
0.07 — C(lassical 0.0 — C(lassical
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QHA underestimates the contraction

Secondary (spurious) minimum appears upon H centering




Model H-bonded chain:
comparison of approximations

ac = 4.368 Bohr

4.38
4.37
436
4.35

2434

o
=433
4.32
431
4.30

429

Exact
+—¢ VSCF
—u ANHA
+—» QHA

— - (lassical

» QHA only from minimum (can’t be done
from saddle point)

e ANH using normal modes at minimum.

e ANH using saddle point modes is poor.

* QHA and ANH converge to same a for
large N

1 cell (2 atoms) gives already a decent a.

2 cells (4 atoms): ANH, Exact and VSCEF:

I/N

0.8

e ANH non-monotonic. OK for two cells
* ayscr 1S 0.04 Bohr smaller than aq,,

® g, IS only 0.002 Bohr from a, o




First-principles (DFT-GGA) linear HF chain

I. Scivetti, N. Gidopoulos and J. Kohanoff, Phys. Rev. B 78, 224108 (2008)

-49.584

-49.585

Level a (A
49586 Class. 2.413
QHA 2.361

-49.587

ANHA 2.321
VSCF 2.323
Exact 2.324

Energy / Hartree

-49.588

-49.589

-49.590

a/Bohr

* agya goes half way (Decrease 0.05 A, but still 0.04 A to go): Anharmonicity is important

* annpa APpears to be quite good, and it is cheap! but ... is it reliable? (remember model)

* ar,.c aNd 8, are indistinguishable: Correlation between modes not very important




First-principles (DFT-GGA) linear HF chain

Choice of vibrational coordinates

Energy / Hartree
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« Small a = no barrier = single anharmonic well = SP=Min are good.
e Large a = high barrier = wfn localized in Min = Min good, SP poor.

 Intermediate a = None is very good. Static correlation = Multiconfig.




First-principles linear HF chain
Isotope effect
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» Quantum-averaged F-H distance depends on m LT s ﬁ\A
Internal geometry is also corrected T s
: : ZC and ZB optical modes
« QHA overestimates lattice parameters 2




Is DFT-GGA good enough for H-bonding?

A model H-bond: O,H;’

0.01

\
0.008 |-,
\

0.006
\
0.004

0.002

-0.002

I L I ! I

— Hamnree-Fock
-+ BLYP
B3LYP
— MP2
- CCSD
= CCSD(T)

0.004 5

» GGA severely underestimates barrier and finds
minima too close to center

» MP2 underestimates and CCSD overestimates,
but they are quite good

* Hybrid B3LYP is in between.

» Tweaked hybrid HF-DFT (MPWB1K) or
Screened exchange can do a good job.

[Zhao and Truhlar, J. Phys. Chem. A 108, 6908
(2004)]

[Heyd, Scuseria and Ernzerhof, JCP 118, 8207
(2003)]




Conclusions

QHA quite safe to obtain quantum-corrected lattice parameters in
covalently-bonded systems.

. Coarse BZ sampling (4 or even 2 cells) is sufficient

QHA does not correct internal geometry at fixed cell.
. Therefore, it does only half of the job in H-bonded systems.

ANHA seems quite good, but could be a size effect!

VSCF is an excellent approximation for structural properties.
. Anharmonicity is important,
. Correlation between modes is not necessarily relevant.

Careful with functionals for H-bonded systems!!




