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Incoherent cross section of ice Incoherent cross section of ice IhIh

For a harmonic crystal For a harmonic crystal Debye Waller factorDebye Waller factor

S(Q,S(Q,ωω~0)=~0)=σσincinc/4/4ππ*a*a00exp(exp(--QQ22<<ΔΔxx22(T)>)(T)>)

Principal building units: buckled hexagons with O at 
corners and 2 H-sites in between (average occupation ½)

Protons occupy randomly the two possible sites

Hexagonal ice: the prototype of Hexagonal ice: the prototype of ice disorderice disorder

Incoherent neutron scatteringIncoherent neutron scattering

Measure the FT of the spatial probability 
density function of a single proton :
‘elastic’ ω~0 long time scale configurations are 
probed 
‘quasi-elastic’ as a function of time (ps-ns) 

High visibility of H: σinc=81 barns

Wavelength ~ atomic distances



Non harmonic behavior of ice Non harmonic behavior of ice IhIh! [IN13! [IN13--ILL]ILL]

The elastic intensity can 
not be fitted by a Q- Gaussian function :

nonnon--harmonic motion of protons!harmonic motion of protons!

20 K
100 K
180 K
240 K

Normalized elastic intensityNormalized elastic intensity

Previous 
experiments
Q range

Oscillatory trend at least one special 
distance in the single-proton probability 
density function

Coherence effectsCoherence effects

Incoherent cross sectionIncoherent cross section

15 temperatures from 20 K to 260K

Number of protons involved Number of protons involved ~%~% L.E.B. et al, in publication



A single protons cannot jump from one site to 
the other without producing defects :
High activation barrier ~ 10-6 events

How can a proton move in a cyclic network?How can a proton move in a cyclic network?

«.. .a jump of a H atom from one 
position to another in ordered loops 
causes all the connected H bonds to 
change in a cooperative concerted 
mechanism (domino effect) »

Brougham et al., Nature 397 (1999)
Coordinated proton tunneling in cyclic array 
of 4 H- bonds (calix[n]arene)

Saenger et al., Nature 296 (1992) 
Flip-Flop H bonding in a partially disordered 
Cyclodextrin

R1

In the ordered loops 6 protons can 
move with no change of the total Ecrist

Coordinate motion highly favored:
Most likely lower activation barrier

L. Pauling, J Am. Chem. Soc. 57 (1935)

Ordered hexagonal loops: the H 
occupies the same site in the six bonds



The best fit is obtained using two distances parameters only:

RR11=0.75+=0.75+--0.03 0.03 ÅÅ H sites along one O-O side; weight factor 0.9; slightly T dependent

RRavav=3.4+=3.4+--0.05 0.05 ÅÅ average of all others distances?; weight factor 0.1, T independent
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Concerted proton jump modelConcerted proton jump model

R1=0.75 ÅÅ

R3=3.42 ÅÅ

R2=1.63 ÅÅ
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L.E.B. et al, in publication



Non-harmonic motion of H in ice Ih, faster than our t-window (0.5 ns)

Coherence effects in the incoherent cross section on a main distance of 0.75 ÅÅ

H involved ~% low energy barrier 

Quasielastic Neutron Scattering experiment on a shorter time scale

Comparison with a H-ordered ice form (Ice VIII) and with a different 
H-disordered form (Ice Ic)

Partial deuteration to broke the loop symmetry

Time scale? T-behaviour of the associated time

Which kind of motion? Associated with H-disorder?

Concerted mechanism? Role of the ordered loops?

First conclusions and new challenges:First conclusions and new challenges: R1
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Ice ordered and disordered structures:Ice ordered and disordered structures:

Ice VIII
H- ordered

At 145K Ice Ic
metastable
H-disordered

At 190K->Ice Ih
H-disordered

Mutual transformation of the 3 phases
Minimize the possible spurious differences



Paris-Edinburgh Press (50 kg)

Increase load to
4 GPa to produce ice VII

10 mm

40 mm3/loading
1 loading/day
25 loadings:
1 cm3/month

Making large quantities of H2O ice VIIIMaking large quantities of H2O ice VIII
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S.Klotz, L.E.B. et al. Nature Materials 8, 405 (2009)



Ice Ice VIIIVIII IceIce IhIh conversionconversion

movie




Incoherent QuasiIncoherent Quasi--Elastic Neutron Scattering [IRISElastic Neutron Scattering [IRIS--ISIS]:ISIS]:
Probes motions of single proton: ΔE=15 μeV dynamics faster than 100 ps

L0, t0
fixed L1, t1 

« tunable »

LSD variable

Collect scattered neutrons I(θ,t)

in a large θ range around θ=0 

DETECTOR

k1, v1

θ

isotropic
sample

flux Φ

Neutron spallation

source  or chopper

k0

( ) ( )EQS
k
kkNEI ,~)( , 
0

1
1εθ Φ=

FWHM QENS signal t scale

FWHM Q-dependence which kind of motion

EISF high Q limit number of protons involved

QISF Q-bevavior distances involved

QISF T-behaviour E barrier
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QuasiQuasi--elastic contribution in  Helastic contribution in  H--disordered ice downdisordered ice down to 5K!to 5K!



QuasiQuasi--elastic contribution in  Helastic contribution in  H--disordered ice downdisordered ice down to 5K!to 5K!
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Proton dynamics in ice Proton dynamics in ice IhIh active at 5Kactive at 5K

The dynamics is absent in the HThe dynamics is absent in the H--
ordered phase Ice VIIIordered phase Ice VIII

Dynamics connected to HDynamics connected to H--disordered structure!disordered structure!

The dynamics is present in the The dynamics is present in the 
other Hother H--disordered phase Ice disordered phase Ice IcIc

L.E.B. et al, PRL 103, 165901 (2009)
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Q-independent FWHM : localized 
mode

Multiple

T independent FWHM non Arrhenius

Quasi-elastic

+S1τc/π(1+ω2τc
2)]S(Q,ω)=e -2/3<Δx2(T)>Q2 [S0δ(ω)

elastic

Temperature and wavevector characterizationTemperature and wavevector characterization



Time scales:Time scales:

τc ~3.6+-0.3 ps in ice Ih
τc ~2.9+-0.3 ps i ice Ic

The inverse correlation time in the low 
T limit determines the hopping rate k0
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Excludes classical hopping or cage motion 
of the proton and stepwise tunneling

L.E.B. et al, PRL 103, 165901 (2009)



Length scales and number of protons involved:Length scales and number of protons involved:

~3% H involved in ice Ih
~2% H involved in ice Ic

EISF anomalous decay
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EISF: energy integrated elastic contribution 
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L.E.B. et al, PRL 103, 165901 (2009)

Low Ebarrier~meV



6 protons can move with no change of the total Ecryst lower E 
barrier

Ordered loops 1/32 of total loops~ number of H involved

The results obtained so far are inconsistent with any known The results obtained so far are inconsistent with any known 
sequential or stepwise motion of the protons, a mechanism that sequential or stepwise motion of the protons, a mechanism that 
would have an Ewould have an E--barrier at least one order of magnitude higher:barrier at least one order of magnitude higher:
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What happens if we break the symmetry?  DEUTERATION!
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time scale ~3 ps; localized motion~0.75 ÅÅ
Non-Arrhenius time rate no classical hopping, neither cage motion
It occurs in the proton disordered phases only linked to proton disorder
High time rate (2.7 1011 s-1), low E-barrier ~meV quantum concerted proton tunnelling
Disappears with partial deuteration most likely associated with ordered loops

Conclusions II and future work:Conclusions II and future work:

Non-harmonic motion of H in ice Ih
Main distance involved of 0.75 ÅÅ
Number of protons involved: ~ %

R1

.. Work in progress

Detailed characterization at low temperatures (1-20 K) Ebarrier
Higher resolution measurements check if the process is really stochastic
Measurements on a single crystal better definition of the geometry

Elastic experiment:

QENS experiment:

..we need full path integral calculations!!!Thank you!
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a1 increases with T, fitted by a Bose factor at fixed energy of 10.3+-0.5 meV: 
phonon assisted process
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a2(T)
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Two oscillators model:Two oscillators model:

ai proportional to papb
(equilibrium population 
of the two tautomeres)

<Δx2(T)> in agreement with diffraction data (Kuhs and Lehmann, J. Phys. C 48 (1987) ) 
Fitted with 2 isolated oscillators at 10.6 and 4.3 meV

a2 ~ T independent: intrinsic feature of the ground-state H wavefunction

R1

R2



The best fit is obtained with a distance of d=0.75+-0.05 Å (H sites along one O-O bond 
R1=0.78 Å )
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•a1=2p1p2 increases with T, fitted by a Bose factor at fixed energy of 10.3 meV: phonon assisted 
process

•<Δx2(T)> was fitted by a two isolated oscillators model: best fit energies 4.3 meV and 10.6 meV
in agreement with diffraction data (Khuss and Lemann,.....) 

Two oscillators model:Two oscillators model:

p1, p2 equilibrium 
population of the two 
tautomeres
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Within the instrumental energy window of 
IN13 (ILL) the scattered intensity is produced the scattered intensity is produced 
by an elastic processby an elastic process (resolution 9 μeV) 
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