

2054-6

Structure and Dynamics of Hydrogen-Bonded Systems

26 - 27 October 2009

Concerted Proton Tunneling in Ice Ih?

Livia BOVE Univ. Pierre et Marie Curie Paris VI 140 rue Lourmel, 75015 Paris FRANCE

Concerted proton tunneling in Ice Ih?

<u>L.E.Bove¹, S. Klotz¹, A. Paciaroni², F. Sacchetti²</u>

¹ Physique des Milieux Denses, TMPMC, Université Pierre et Marie Curie, Paris ² Dipartimento di Fisica, Università di Perugia, Perugia

Incoherent cross section of ice Ih

✓Hexagonal ice: the prototype of *ice disorder*

Principal building units: buckled hexagons with O at corners and 2 H-sites in between (average occupation $\frac{1}{2}$)

Protons occupy randomly the two possible sites

\checkmark Incoherent neutron scattering

Measure the FT of the spatial probability density function of a single proton : 'electic' and long time scale configurations are

'elastic' $\omega \text{--}0$ long time scale configurations are probed

'quasi-elastic' as a function of time (ps-ns)

For a harmonic crystal \rightarrow Debye Waller factor

 $S(Q,\omega\sim 0)=\sigma_{inc}/4\pi^*a_0exp(-Q^2<\Delta x^2(T)>)$

High visibility of H: σ_{inc} =81 barns

Wavelength ~ atomic distances

The elastic intensity can not be fitted by a Q- Gaussian function : non-harmonic motion of protons! Oscillatory trend \rightarrow at least one special distance in the single-proton probability density function

Coherence effects

Number of protons involved ~%

L.E.B. et al, in publication

 $^{2}0$

How can a proton move in a cyclic network?

A single protons cannot jump from one site to the other without producing defects : High activation barrier ~ $\rightarrow 10^{-6}$ events

Saenger et al., Nature 296 (1992) Flip-Flop H bonding in a partially disordered Cyclodextrin

Brougham et al., Nature 397 (1999) Coordinated proton tunneling in cyclic array of 4 H- bonds (calix[n]arene) Ordered hexagonal loops: the H occupies the same site in the six bonds

In the ordered loops 6 protons can move with no change of the total $\rm E_{crist}$

Coordinate motion highly favored: Most likely lower activation barrier

«...a jump of a H atom from one position to another in ordered loops causes all the connected H bonds to change in a cooperative concerted mechanism (domino effect)»

L. Pauling, J Am. Chem. Soc. 57 (1935)

Concerted proton jump model

The best fit is obtained using two distances parameters only:

 R_1 =0.75+-0.03 Å → H sites along one O-O side; weight factor 0.9; slightly T dependent R_{av} =3.4+-0.05 Å → average of all others distances?; weight factor 0.1, T independent L.E.B. et al, in publication

First conclusions and new challenges:

✓Non-harmonic motion of H in ice Ih, faster than our t-window (0.5 ns)

Time scale? T-behaviour of the associated time

Quasielastic Neutron Scattering experiment on a shorter time scale

✓Coherence effects in the incoherent cross section on a main distance of 0.75 Å Which kind of motion? Associated with H-disorder?

Comparison with a H-ordered ice form (Ice VIII) and with a different H-disordered form (Ice Ic)

 \checkmark H involved \sim % \rightarrow low energy barrier

Concerted mechanism? Role of the ordered loops?

Partial deuteration to broke the loop symmetry

Making large quantities of H2O ice VIII

S.Klotz, L.E.B. et al. Nature Materials 8, 405 (2009)

Ice VIII \rightarrow Ice Ih conversion

Incoherent Quasi-Elastic Neutron Scattering [IRIS-ISIS]:

Probes motions of single proton: $\Delta E=15 \ \mu eV \rightarrow dynamics$ faster than 100 ps

Quasi-elastic contribution in H-disordered ice down to 5K!

Quasi-elastic contribution in H-disordered ice down to 5K!

 \checkmark Proton dynamics in ice Ih active at 5K

✓ The dynamics is absent in the Hordered phase Ice VIII

 The dynamics is present in the other H-disordered phase Ice Ic

Dynamics connected to H-disordered structure!

L.E.B. et al, PRL 103, 165901 (2009)

Temperature and wavevector characterization

Time scales:

The inverse correlation time in the low T limit determines the hopping rate k_0

 \checkmark FWHM (T) \rightarrow non Arrhenius

 $\overline{\mathbb{O}}$ $\overline{\mathbb{O}}$ Φ 100 150 200 250 T [K]

> $k_0 \sim 2.7 \times 10^{11} \text{ s}^{-1} \text{ T}$ independent in 5-100 K range

Excludes classical hopping or cage motion of the proton and stepwise tunneling

L.E.B. et al, PRL 103, 165901 (2009)

Length scales and number of protons involved:

✓EISF anomalous decay

✓QISF wavevector evolution

Low E_{barrier}~meV Distance d= 0.75+-0.05 Å

L.E.B. et al, PRL 103, 165901 (2009)

The results obtained so far are inconsistent with any known sequential or stepwise motion of the protons, a mechanism that would have an E-barrier at least one order of magnitude higher:

Ordered loops \rightarrow 1/32 of total loops ~ number of H involved

6 protons can move with no change of the total $\mathsf{E}_{\mathsf{cryst}} { \rightarrow } \mathsf{lower} \ \mathsf{E}$ barrier

What happens if we break the symmetry? \rightarrow DEUTERATION!

Elastic experiment:

- ✓Non-harmonic motion of H in ice Ih
 - ✓ Main distance involved of 0.75 Å
 - $\checkmark Number of protons involved: ~ \%$

QENS experiment:

✓ time scale → ~3 ps; localized motion~0.75 Å
✓ Non-Arrhenius time rate→ no classical hopping, neither cage motion
✓ It occurs in the proton disordered phases only →linked to proton disorder
✓ High time rate (2.7 10¹¹ s⁻¹), low E-barrier ~meV→quantum concerted proton tunnelling
✓ Disappears with partial deuteration →most likely associated with ordered loops

.. Work in progress

✓ Detailed characterization at low temperatures (1-20 K) → $E_{barrier}$ ✓ Higher resolution measurements → check if the process is really stochastic ✓ Measurements on a single crystal → better definition of the geometry

...we need fpharik istagial calculations!!!

What about ice Ic?

Two oscillators model:

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{inc}}{4\pi} \left[a_0 \exp\left[-\langle \Delta x^2(T) \rangle Q^2 \right] + a_1 \cos(Q \cdot R_1) + a_2 \cos(Q \cdot R_2) \right]$$

✓a1 increases with T, fitted by a Bose factor at fixed energy of 10.3+-0.5 meV: phonon assisted process

 $\sqrt{a2}$ ~ T independent: intrinsic feature of the ground-state H wavefunction

 \checkmark ($\Delta x^2(T)$) in agreement with diffraction data (Kuhs and Lehmann, J. Phys. C 48 (1987)) Fitted with 2 isolated oscillators at 10.6 and 4.3 meV

Fitting with a coordinated proton jump model

The best fit is obtained with a distance of d=0.75+-0.05 Å (H sites along one O-O bond R1=0.78 Å)

Two oscillators model:

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{inc}}{4\pi} e^{-<\Delta x^2 > Q^2} [1 - 2p_1 p_2 (1 - \sin(Qd)/(Qd))]$$

•a1=2p₁p₂ increases with T, fitted by a Bose factor at fixed energy of 10.3 meV: phonon assisted process

•< $\Delta x^2(T)$ > was fitted by a *two isolated oscillators* model: best fit energies \rightarrow 4.3 meV and 10.6 meV in agreement with diffraction data (Khuss and Lemann,....)

