Structure and Dynamics of Hydrogen-Bonded Systems

26-27 October 2009

Concerted Proton Tunneling in Ice Ih?

Livia BOVE

Univ. Pierre et Marie Curie Paris VI

Concerted proton tunneling in Ice Ih?

Incoherent cross section of ice Ih

\checkmark Hexagonal ice: the prototype of ice disorder
Principal building units: buckled hexagons with O at corners and 2 H -sites in between (average occupation $\frac{1}{2}$)

Protons occupy randomly the two possible sites

\checkmark Incoherent neutron scattering

Measure the FT of the spatial probability density function of a single proton:
'elastic' $\omega \sim 0$ long time scale configurations are probed
'quasi-elastic' as a function of time (ps-ns)
For a harmonic crystal \rightarrow Debye Waller factor
$S(Q, \omega \sim 0)=\sigma_{\text {inc }} / 4 \pi^{\star} a_{0} \exp \left(-Q^{2}<\Delta x^{2}(T)>\right)$

High visibility of $\mathrm{H}: \sigma_{\mathrm{inc}}=81$ barns

Wavelength ~ atomic distances

Non harmonic behavior of ice Ih! [IN13-ILL]

Normalized elastic intensity

Q range
The elastic intensity can not be fitted by a Q-Gaussian function : non-harmonic motion of protons!

Incoherent cross section

15 temperatures from 20 K to 260 K

Oscillatory trend \rightarrow at least one special distance in the single-proton probability density function

Coherence effects

How can a proton move in a cyclic network?

A single protons cannot jump from one site to the other without producing defects: High activation barrier $\sim \rightarrow 10^{-6}$ events

Saenger et al., Nature 296 (1992) Flip-Flop H bonding in a partially disordered Cyclodextrin
Brougham et al., Nature 397 (1999)
Coordinated proton tunneling in cyclic array of 4 H -bonds (calix[n]arene)

Ordered hexagonal loops: the H occupies the same site in the six bonds

In the ordered loops 6 protons can move with no change of the total $E_{\text {crist }}$ Coordinate motion highly favored: Most likely lower activation barrier
> «.. . a jump of a H atom from one position to another in ordered loops causes all the connected H bonds to change in a cooperative concerted mechanism (domino effect)»
L. Pauling, J Am. Chem. Soc. 57 (1935)

Concerted proton jump model

The best fit is obtained using two distances parameters only:
$R_{1}=0.75+-0.03 \AA \rightarrow$ H sites along one $0-0$ side; weight factor 0.9 ; slightly T dependent
$R_{\text {av }}=3.4+-0.05 \AA \rightarrow$ average of all others distances?; weight factor 0.1, T independent
L.E.B. et al, in publication

First conclusions and new challenges:

\checkmark Non-harmonic motion of H in ice Ih, faster than our t-window (0.5 ns)
Time scale? T-behaviour of the associated time
\square
Quasielastic Neutron Scattering experiment on a shorter time scale
\checkmark Coherence effects in the incoherent cross section on a main distance of $0.75 \AA$
Which kind of motion? Associated with H-disorder?
\downarrow
Comparison with a H-ordered ice form (Ice VIII) and with a different H-disordered form (Ice Ic)
\checkmark H involved $\sim \% \rightarrow$ low energy barrier
Concerted mechanism? Role of the ordered loops?

Partial deuteration to broke the loop symmetry

Ice ordered and disordered structures:

Making large quantities of H 2 O ice VIII

$40 \mathrm{~mm}^{3} /$ loading 1 loading/day 25 loadings: $1 \mathrm{~cm}^{3} /$ month

S.Klotz, L.E.B. et al. Nature Materials 8, 405 (2009)

Ice VIII \rightarrow Ice Ih conversion

Incoherent Quasi-Elastic Neutron Scattering [IRIS-ISIS]:

Probes motions of single proton: $\Delta E=15 \mu \mathrm{VV} \rightarrow$ dynamics faster than 100 ps

Quasi-elastic contribution in H -disordered ice down to 5 K !

Quasi-elastic contribution in H -disordered ice down to 5 K !

\checkmark Proton dynamics in ice Ih active at 5 K
\checkmark The dynamics is absent in the H ordered phase Ice VIII
\checkmark The dynamics is present in the other H-disordered phase Ice Ic

Dynamics connected to H -disordered structure!
L.E.B. et al, PRL 103, 165901 (2009)

Temperature and wavevector characterization

Time scales:

The inverse correlation time in the low T limit determines the hopping rate k_{0}
\checkmark FWHM $(T) \rightarrow$ non Arrhenius

$\mathrm{k}_{0} \sim 2.7 \times 10^{11} \mathrm{~s}^{-1} \mathrm{~T}$ independent
in 5-100 K range
Excludes classical hopping or cage motion of the proton and stepwise tunneling
L.E.B. et al, PRL 103, 165901 (2009)

Length scales and number of protons involved:
\checkmark EISF anomalous decay

EISF: energy integrated elastic contribution
$\sim 3 \% \mathrm{H}$ involved in ice Ih
$\sim 2 \% \mathrm{H}$ involved in ice Ic
\checkmark QISF wavevector evolution

Double well model: $2 C(T)[1-\sin (Q d) / Q d]$
Low $E_{\text {barrier }} \sim \mathrm{meV}$
Distance $d=0.75+-0.05 \AA$
L.E.B. et al, PRL 103, 165901 (2009)

The results obtained so far are inconsistent with any known sequential or stepwise motion of the protons, a mechanism that would have an E-barrier at least one order of magnitude higher:

Ordered loops $\rightarrow 1 / 32$ of total loops \sim number of H involved 6 protons can move with no change of the total $\mathrm{E}_{\text {cryst }} \rightarrow$ lower E barrier

What happens if we break the symmetry? \rightarrow DEUTERATION!

Conclusions II and future work:

Elastic experiment:

\checkmark Non-harmonic motion of H in ice $I h$
\checkmark Main distance involved of $0.75 \AA$
\checkmark Number of protons involved: $\sim \%$

QENS experiment:

\checkmark time scale $\rightarrow \sim 3 \mathrm{ps}$; localized motion $0.75 \AA$
\checkmark Non-Arrhenius time rate \rightarrow no classical hopping, neither cage motion
\checkmark It occurs in the proton disordered phases only \rightarrow linked to proton disorder
\checkmark High time rate ($2.710^{11} \mathrm{~s}^{-1}$), low E -barrier $\sim \mathrm{meV} \rightarrow$ quantum concerted proton tunnelling
\checkmark Disappears with partial deuteration \rightarrow most likely associated with ordered loops

.. Work in progress

\checkmark Detailed characterization at low temperatures $(1-20 \mathrm{~K}) \rightarrow \mathrm{E}_{\text {barrier }}$
\checkmark Higher resolution measurements \rightarrow check if the process is really stochastic
\checkmark Measurements on a single crystal \rightarrow better definition of the geometry

What about ice Ic?

Two oscillators model:

$$
\frac{d \sigma}{d \Omega}=\frac{\sigma_{\text {inc }}}{4 \pi}\left[a_{0} \exp \left[-<\Delta x^{2}(T)>Q^{2}\right]+a_{1} \cos \left(Q \cdot R_{1}\right)+a_{2} \cos \left(Q \cdot R_{2}\right)\right]
$$

\checkmark a1 increases with T, fitted by a Bose factor at fixed energy of $10.3+-0.5 \mathrm{meV}$:
phonon assisted process
$\checkmark \mathrm{a} 2 \sim T$ independent: intrinsic feature of the ground-state H wavefunction
$\checkmark<\Delta x^{2}(T)>$ in agreement with diffraction data (Kuhs and Lehmann, J. Phys. C 48 (1987))
Fitted with 2 isolated oscillators at 10.6 and 4.3 meV

Fitting with a coordinated proton jump model

The best fit is obtained with a distance of $\mathrm{d}=0.75+-0.05 \AA$ (H sites along one $\mathrm{O}-\mathrm{O}$ bond $\mathrm{R} 1=0.78$ A)

Two oscillators model:

$$
\frac{d \sigma}{d \Omega}=\frac{\sigma_{i n c}}{4 \pi} e^{-<\Delta x^{2}>Q^{2}}\left[1-2 p_{1} p_{2}(1-\sin (Q d) /(Q d))\right]
$$

$\mathrm{p}_{1}, \mathrm{p}_{2} \rightarrow$ equilibrium
population of the two
tautomeres
$-a 1=2 p_{1} p_{2}$ increases with T, fitted by a Bose factor at fixed energy of 10.3 meV : phonon assisted
process
$\cdot\left\langle\Delta x^{2}(T)>\right.$ was fitted by a two isolated oscillators model: best fit energies $\rightarrow 4.3 \mathrm{meV}$ and 10.6 meV in agreement with diffraction data (Khuss and Lemann,.....)

Within the instrumental energy window of IN13 (ILL) the scattered intensity is produced by an elastic process (resolution $9 \mu \mathrm{eV}$)

