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Abstract

1) Congruences and p-adic numbers. Hensel's lemma. The Tate field

2) Continuous and p-adic analytic functions. Mahler’s criterion. Newton polygons
Zeroes of analytic functions. The Weierstrass preparation theorem and its generalizations.

3) Distributions, measures, and the abstract Kummer congruences.
The Kubota and Leopoldt p-adic L-functions and the Iwasawa algebra

4) Modular forms and L-functions.
Congruences and families of modular forms.

5) Method of canonical projection of modular distributions.
Examples of construction of p-adic L-functions
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Related topics (for discussions, not included in the text of
these materials)

6) Other approaches of constructing p-adic L-functions by
Mazur-Tate-Teitelbaum, J.Coates, P.Colmez, H.Hida ... (using modular
symbols by Manin-Mazur and their generalizations; Euler systems, work of
D.Delbourgo, T.Ochiai, L.Berger, ..., overconvergent modular symbols by
R.Pollack, G.Stevens, H.Darmon, ...)

7) Relations to the lwasawa Theory
8) Applications of p-adic L-functions to Diophantine geometry
9) Open questions and problems in the theory of p-adic L-functions

(Basic sources: Coates 60th Birthday Volume, Bourbaki talks by P.Colmez,
J.Coates ...)
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Lecture N°1. p-adic numbers and congruences

Originally p-adic numbers were invented by Hensel as a tool of solving congruences
modulo powers of a prime number p.

Example. p = 7. Solve the congruence x? = 2 mod 7".

Solution. If n =1, put xp = £3 then x5 =2 mod 7.

If n =2, put x; = xo0 + 7t1,xp = 3 then (xp + 7t1)?> =2 mod 72 gives:
9+6-7t1+72t1252 mod72=90+64=0 mod7=1¢t =1

=x1 =3+7-1=10.

If n =3, put xp = x1 + 7%ty, x1 = 10 then (10 + 721_“2)2 =2 mod 73 gives:
100+ 20-7%t, + 7*t5 =2 mod 7° = tp = —2/20 mod 7= t, =2 mod 7
= xp=3+7-1+2-7%=108.

In this way we obtain a sequence xp, x1, X2, ..., so that x, = x,.+1 mod p".
This is in strong analogy with approximation of a real number by rationls, for
example:

V2 = 1.414213562373095048801688724 - - -
—14+4-10014+1-107%24+4-10734+2-107%+---
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p-adic numbers as a completion of rationals

The idea of extending the field Q appears in algebraic number theory in
various different guises. For example, the embedding Q C R often gives
useful necessary conditions for the existence of solutions to Diophantine
equations over Q or Z. The important feature of R is its completeness:
every Cauchy sequence {a,} ~ 1 in R has a limit « (a sequence is called
Cauchy if for any € > 0 we have |a, — am| < € whenever n and m are
greater than some large N = N(g)). Also, every element of R is the limit
of some Cauchy sequence {a,},2; with a, € Q.

An analogous construction exists using the p—adic absolute value |- |, of Q:

’-‘pZQ%RZOZ{XER‘X ZO}

a/b|p = poriePmorde? 0], =0,

where ord,a is the highest power of p dividing the integer a.
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This general construction of “adjoining the limits of Cauchy sequences” to
a field k with an absolute value | - | leads to a completion of k. This
completion, often denoted k, is complete, and contains k as a dense
subfield with respect to the extended absolute value | - |, [BS85], [Kob80].
As was noted at the end of §2, all absolute values of Q are equivalent
either to the usual Archimedean absolute value, or to the p—adic absolute
value. Thus any completion of Q is either R, or Q,, the field of p-adic
numbers, i.e. the completion of the field of rational numbers QQ with
respect to the p-adic absolute value. Using the embeddings @ — R and
Q — Qp (for all primes p) many arithmetical problems can be simplified.
An important example is given by the following Minkowski—Hasse theorem

[BS85], Ch.1. the equation
Q(x1,x2,...,%xp) =0, (2.1)

given by a quadratic form Q(x1,x2,...,xp) = Zi,j ajixixj, aj € Q has a
non-trivial solution in rational numbers, iff it is non—trivially solvable over
R and over all Qp. There are very effective tools for finding solutions in Q.
These tools are somewhat analogous to those for R such as the “Newton -
Raphson algorithm”, which in the p—adic case becomes Hensel's lemma.

Alexei PANCHISHKIN (Grenoble)
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The simplest way to define the p—adic numbers is to consider expressions of
the type

o= amp™ + amp™t + .., (2.2)

where a; € {0,1,....p — 1} are digits to the base p, and me Z. It is

convenient to write down « as a sequence of digits, infinite to the left:

( m—1 zeros

N\

a=1{ " 3m1am000...0(,, if m>0,

018180-3-1° dAm(p), if m < 0.

These expressions form a field, in which algebraic operations are executed
in the same way as for natural numbers n = ag + a1p +...a,p", written as
sequences of digits to the base p. Consequently, this field contains all the
natural numbers and hence all rational numbers. For example,

_1:T;:(p—l)—|—(p—1)p—|—(p—1)P2—|—"':"'(P_l)(P_l)(P);
—ag
p—1

For n € N the expression for —n = n- (—1) of type (2.2) is obtained if we
ICTP, September,2009 7 / 56
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For example, if p = 5,

9 5 5 - 2232
S =2--= c=2a=5 b=1,
7 7 1 — 56
so that
2232 = 324125y =3-5* +2-5°+ 4.5 +1-5+42,
thus 0 N R
~ = ++324120324120324122 ).

It is easy to verify that the completion of Q with respect to the p—adic
metric | - |, can be identified with the described field of p—-adic expansions
(2.2), where |a|, = p™ for a as in (2.2) with a, # 0 (see Koblitz N.
(1980)).
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It is curious to compare the expansions (2.2) infinite to the left with the
ordinary expansions of real numbers o € R, infinite to the right:

O = amam—1---dap.a—_1 " = am10™+a, 1107 4. .. ao+a_110_1+- e

where a; € {0,1,---,9} are digits, a,, # 0. These expansions to any
natural base lead to the same field R. Also, a given o can possess various
expressions of this type, e.g. 2.000--- =1.999---. However, in the p—adic
case the expressions (2.2) are uniquely determined by a. This fact provides
additional comfort when calculating with p—adic numbers.
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Computation with PARI/GP (see [BBBCO])

gp > forprime(p=2,131,print("p="p,",""9/7="9/7+0(p"6)))

p=2,9/7=1 + 2 + 272 + 2°3 + 2°5 + 0(2°6)

p=3,9/7=3"2 + 33 + 2*%3°5 + 0(376)

p=5,9/7=2 + 2%5 + 52 + 4x5~3 + 2x5~4 + 3%5°5 + 0(5°6)
p=7,9/7=2%7"-1 + 1 + 0(7°6)

p=11,9/7=6 + 9%11 + 7%11-2 + 4%11~3 + 9*x11-4 + 7*11-5 + 0(11°6)
p=13,9/7=5 + 9%13 + 3%13°2 + 9%13~3 + 3%13°4 + 9%13°5 + 0(13°6)
p=17,9/7=11 + 14x%17 + 4%17-2 + 7*17-3 + 2*x17-4 + 12x17-5 + 0(17°6)
p=19,9/7=4 + 8%19 + 5*19°2 + 16%19°3 + 10%19-4 + 13%19-5 + 0(19°6)

p=23,9/7=21 + 9%23 + 16%23~2 + 19%23~3 + 9%23-4 + 16x%23~5 + 0(2376)
p=29,9/7=22 + 20%29 + 20%29°2 + 20%29°3 + 20%29°4 + 20%29°5 + 0(2976)
p=31,9/7=19 + 26%31 + 8%31~2 + 13%31~3 + 4%31-4 + 22%31-5 + 0(31°6)
p=37,9/7=33 + 15%37 + 26%37"2 + 31x37"3 + 15x37"4 + 26x37"5 + 0(37°6)
p=41,9/7=13 + 29%41 + 11%41-2 + 29%41-3 + 11%41-4 + 29*41-5 + 0(41-6)
p=43,9/7=32 + 30%43 + 30%43"2 + 30%43"3 + 30%43"4 + 30%43"5 + 0(43°6)

p=47,9/7=8 + 20%47 + 13%47-°2 + 40%47"3 + 26%47"4 + 33%47°5 + 0(47°6)

p=53,9/7=24 + 45%53 + 37x53°2 + 22x53~3 + 45x53~4 + 37x53°5 + 0(53°6)
p=59,9/7=35 + B0*59 + 16%x59~2 + 25x59~3 + 8x59~4 + 42x59-5 + 0(59°6)
p=61,9/7=10 + 26%61 + 17*61~2 + 52*61~3 + 34*61-4 + 43*61-5 + 0(61°6)
p=67,9/7=30 + B7*67 + 47x67"2 + 28%67"3 + 57*x67"4 + 47675 + 0(67°6)
p=71,9/7=52 + 50%*71 + 50*71~2 + 50*71~3 + 50*71~4 + 50*71-5 + 0(71°6)
p=73,9/7=43 + 62%73 + 20%73"2 + 31%73"3 + 10*73"4 + 52x73"°5 + 0(73°6)
p=79,9/7=69 + 33%79 + 56x79°2 + 67x79°3 + 33x79°4 + 56x79°5 + 0(79°6)
p=83,9/7=25 + 59*83 + 23%83"2 + 59*83~3 + 23%83"4 + 59%83~5 + 0(83°6)
p=89,9/7=14 + 38%89 + 25x89~2 + T76x89~3 + 50%x89~4 + 63x89-5 + 0(89°6)
p=97,9/7=29 + 69%97 + 27x97"2 + 69%97"3 + 27*97"4 + 69*97°5 + 0(97°6)
p=101,9/7=59 + 86%101 + 28%101-2 + 43%101-3 + 14%101-4 + 72%x101-5 + 0(101-6)
p=103,9/7=16 + 44%103 + 29*103"2 + 88%103~3 + 58%103~4 + 73%103~5 + 0(103-6)
p=107,9/7=93 + 45%107 + 76*107-2 + 91%107~3 + 45*%107~4 + 76*107~5 + 0(107"6)
p=109,9/7=48 + 93%109 + 77*109"2 + 46%109~3 + 93*%109~4 + 77%109~5 + 0(109-6)
p=113,9/7=82 + 80%*113 + 80%*113-2 + 80%113~3 + 80%113~4 + 80%113~5 + 0(113-6)
p=127,9/7=92 + 90%127 + 90%127-2 + 90%127-3 + 90%127~4 + 90*127~5 + 0(127-6)
p=131,9/7=20 + 56%131 + 37*131-2 + 112%131~3 + 74%131-4 + 93%131-5 + 0(131-6)
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Topology of p-adic numbers

The field Q, is a complete metric space with the topology generated by the
“open discs':

Uas(r)={x||x—al<r} (x, ae€Qp, r>0)

(or “closed discs” D,(r) = {x | [x — a| < r}). From the topological point of
view, the sets U,(r) and D,(r) are both open and closed in Q.

An important topological property of Q, is its local compactness: all discs of
finite radius are compact. The easiest way to show this is to consider any
sequence {ap} - ; of elements o, € D,(r) and to construct a limit point. Such a
point may be found step—by—step using the p—adic digits (2.2). One knows that
the number of digits “after the point” is bounded on any finite disc. In particular,
the disc

ZPID()(]_):{X‘ ‘leg1}:{X:ao_|—alp_|_32p2_|_...}

is a compact topological ring, whose elements are called p-adic integers. Z; is
the closure of Z in Q,. The ring Z, is local, i.e. it has only one maximal ideal
pZp = Up(1) with residue field Z,/pZ, = F,. The set of invertible elements
(units) of Z, is

Z; =Zp\PZLp ={x | |x|p =1} = {x = a0 + a1p+ ap” + -+ | ag # 0}.
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Applications of p—adic Numbers to Solving Congruences.

The first appearances of p—adic numbers, in papers by Hensel, were related
to the problem of finding solutions to congruences modulo p"”. An
application of this method by his student H.Hasse to the theory of
quadratic forms has lead to an elegant reformulation of this theory, without
the use of considerations over the residue rings Z/p"7Z. These
considerations are tiring because of the zero—divisors in Z/p"Z. From the
above presentation of Z, as the projective limit

imZ/p"Z

n

it follows that for f(x1,...,xn) € Zp|[x1, ..., xn|, the congruences
f(x1,...,x,) =0(mod p")
are solvable for all n > 1 iff the equation
f(x1,...,xn) =0

is solvable in p—adic integers. Solutions in Z, can be obtained using the
following p—adic version of the “Newton - Raphson algorithm”.
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Theorem (Hensel's Lemma)

Let f(x) € Zp[x] be a polynomial in one variable x, f'(x) € Zp[x] its
formal derivative, and suppose that for some ag € Z, the initial condition

[f(a0)/f'(a0)?]p < 1 (2.3)

Is satisfied.
Then there exists a unique o € Z,, such that

f(a) =0, |a—ap| <1.

We prove this by induction using the sequence of “successive
approximations':

f(Oz,—,_l)

f’(ozn_l)'

Taking into account the formal Taylor expansion of f(x) at x = a,—1 one
shows that this sequence is Cauchy, and its limit o has all the desired
properties (cf. [BS85], [Serre70]).

For example, if f(x) = xP~1 — 1, then any ag € {1,2,...,p — 1} satisfies
the condition |f(ap)|p < 1 At the same time

'(ag) =(p — 1)04{[)’_2 =% 0 mod p, hence the initial condition (2.3) is
satisfied. The root « coincides then with the uniquely defined Teichmiiller
representative of ag: o = w(ayp).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms
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4. Q

So far we’ve been dealing only with algebraic extensions of Q,. But, as
mentioned before, this is not yet enough to give us the p-adic analogy of the
complex numbers.

Theorem 12. @, is not complete.

ProoF. We must give an example of a Cauchy sentence {a;} in Q, such that
there cannot exist a number a € @, which is the limit of the a;.

Let b, be a primitive (p2* — 1)th root of 1 in @,, i.e., b7* - = I, but
b™ # 1if m < p? — 1. Note that b*" - = 1if i’ > i, because 2/|2" implies
p* — 1| p* — 1. (In fact, instead of 2! we could replace the exponent of p
by any increasing sequence whose ith term divides its (i + 1)th, e.g., 3!, i!,
etc.) Thus, if i > i, b, is a power of b,.. Let

1
a = Z b;p"s,
i=0
where 0 = Ny < N; < N, < --- is an increasing sequence of nonnegative
integers that will be chosen later. Note that the b,,j = 0, 1, ..., i, are the

digits in the p-adic expansion of g, in the unramified extension Q,(b,), since
the b; are Teichmiiller representatives. Clearly {a;} is Cauchy.

We now choose the ¥,, j > 0, by induction. Suppose we have defined N,
for j < i, so that we have our a; = J}_,b,p". Let K = Q,(b). In §3 we
proved that K is a Galois unramified extension of degree 2'. First note that
Q,(a;) = K, because otherwise there would be an automorphism o of K which
leaves a; fixed (see paragraph (11) in §1). But o(a,) has p-adic expansion
2to0a(b)ps, and o(b,) # b;, so that o(a;) # a, because they have different
p-adic expansions.

Next, by exercise 9 of §III.1, there exists N;,; > N, such that a, does not
satisfy any congruence

(lna‘n + an_la?_l + -+ ayd; + oy = O(mOde‘+1)

for n < 2'and «; € Z, not all divisible by p.
This gives us our sequence {a;}.
Suppose that a € Q, were a limit of {a,}. Then a satisfies an equation

wnd" + o 1@" 7+ a + oo =0,

where we may assume that all of the «; € Z, and not all are divisible by p.
Choose i so that 2! > n. Since @ = a; (mod p"i+1), we have

@™ + an_af "t + -+ a; + oo = 0 (mod pNi+r),

a contradiction. This proves the theorem. dJ

71



III  Building up Q

Note that we have actually proved that Q™2™ not only 0, = Q& is
not complete.

So we now want to “fill in the holes,” and define a new field Q to be the
completion of Q,. Strictly speaking, this means looking at equivalence classes
of Cauchy sequences of elements in J, and proceeding in exactly the same
way as how Q, was constructed from Q (or how R was constructed from Q,
or how a completion can be constructed for any metric space). Intuitively
speaking, we’re creating a new field Q by throwing in all numbers which are
convergent infinite sums of numbers in Q,, for example, of the type considered
in the proof of Theorem 12.

Just as in going from Q to Q,, in going from @, to Q we can extend the
norm | |, on @, to a norm on Q be defining |x|, = lim,_ ,|x|,, where {x;}
is a Cauchy sequence of elements in @, that is in the equivalence class of x
(see §1.4). As in going from Q to Q,, it is easy to see that if x # O this limit
|x|, is actually equal to |x,|, for i sufficiently large.

We also extend ord, to Q:

ord, x = —log,|x|,.

Let A = {xeQ|x|, <1} be the “valuation ring” of Q, let M =
{xeQ||x|, < 1} be its maximal ideal, and let A™ = {xeQ||x], =1} =
A — M be the set of invertible elements of A. Suppose that xe 4™, ie.,
|x|, = 1. Since @, is dense in Q, we can find an algebraic x’ such that
x —x'eM, ie, |x — x|, < 1. Since then |x'[, = 1, it follows that x" is
integral over Z,,, i.e., it satisfies a monic polynomial with coefficients in Z,,.
Reducing that polynomial modulo p, we find that thecosetx + M = x" + M
is algebraic over F . i.e., lies in some [ ;. Now let a(x) be the (p/ — 1)th root
of 1 which is the Teichmiiller representative of x + M € F,,, and set {x) =
x/w(x). Then {(x>€ 1 + M. In other words, any xe A~ is the product of a
root of unity w(x) and an element {(x) which is in the open unit disc about 1.
(If x € Z,, has first digit a,, this simply says that x is the product of the Teich-
miiller representative of a, and an element of 1 + pZ,.) Finally, an arbitrary
nonzero x € Q can be written as a fractional power of p times an element
x; €Q of absolute value 1. Namely, if ord, x = r = a/b (see Exercise 1
below), then let p” denote any root of X” — p*=0. Then x = p'x, =
pra(x,){x,)> for some x, of norm 1. In other words, any nonzero element of Q
is a product of a fractional power of p, a root of unity, and an element in the open
unit disc about 1.

The next theorem tells us that we are done: Q will serve as the p-adic
analogue of the complex numbers.

Theorem 13. Q is algebraically closed.

Proofr. Let: f(X) = X"+ a,_ X" '+ - + a, X + ay a,€ Q. We must
show that f(X) has a root in Q. Foreachi = 0,1, ...,n — I, let{a,}, be a
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Exercises

sequence of elements of Q, which converge to a;. Let g(X) = X" +
@y 1, X" '+ -+ a, ;X + ao; Letr; be therootsof g(X) (i = 1,2, ...,
n). We claim that we can find i; (1 < i; < n) forj=1,2,3, ... such that
the sequence {r;, ;} is Cauchy. Namely, suppose we have r; ; and we want to
findr,,, ;+1.Letd; = [g; — g1, = max(|a;; — a;,+.[,) (Whichapproaches
0 as j —o0). Let 4, = max(l, |r;,,|,"). Clearly there is a uniform constant 4
such that 4; < A for all j (see Exercise 3 below). Then we have

H I’i,.i = el = |g;'+1(ri,,f)|p
= |gj+1("t,.i) - gi("i,.;‘)lp
S S,A-

Hence at least one of the |r;, ; — r, .1, on the left is <V/'8,A. Let Fi,q.j+1 DE
any such r; ;. Clearly this sequence of r, ; is Cauchy.

Now let r = lim;_ o r;,; € Q. Then f(r) = lim,_, f(ry ;) = lim;_, g,(r,.;)
= 0. O

Summarizing Chapters I and III, we can say that we have constructed Q,
which is the smallest field which contains Q and is both algebraically closed
and complete with respect to | |,. (Strictly speaking, this can be seen as
follows: let Q' be any such field; since Q’ is complete, it must contain a field
isomorphic to the p-adic completion of @, which we can call Q,; then, since
Q' contains Q, and is algebraically closed, it must contain a field isomorphic
to the algebraic closure of Q,, which we can call @,; and, since Q' contains
@, and is complete, it must contain a field isomorphic to the completion of
@,, which we call Q. Thus any field with these properties must contain a
field isomorphic to Q. The point is that both completion and algebraic
closure are unique processes up to isomorphism.)

Actually, Q should be denoted €2, so as to remind us that everything we’re
doing depends on the prime number p we fixed at the start. But for brevity of
notation we shall omit the subscript p.

The field Q is a beautiful, gigantic realm, in which p-adic analysis lives.

EXERCISES

1. Prove that the possible values of | |, on @, is the set of all rational powers
of p (in the positive real numbers). What about on Q? Recall that we let the
ord, function extend to Q by defining ord, x = —log, |x|, (i.e., the power
1/p is raised to get |x|,). What is the set of all possible values of ord, on Q?
Now prove that @, and Q are not locally compact. This is one striking
difference with C, which is locally compact under the Archimedean metric
(the usual definition of distance on the complex plane).
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Lecture N°2. Continuous and analytic functions over a non-Archimedean tield

Let K be a closed subfield of the Tate field C,. For a subset W C K we
consider continuous functions f : W — C,. The standard examples of
continuous functions are provided by polynomials, by rational functions (at
points where they are finite), and also by locally constant functions. If W is
compact then for any continuous function f : W — C, and for any € > 0
there exists a polynomial h(x) € Cp[x] such that |f(x) — h(x)|, < € for all
x e W. If f(W) C L for a closed subfield L of C, then h(x) can be chosen
so that h(x) € L[x] (see [Kob80], [Wash82]).

Interesting examples of continuous p-adic functions are provided by
interpolation of functions, defined on certain subsets, such as W = Z or N
with K = QQp. Let f be any function on non-negative integers with values in
Qp or in some (complete) Qp,-Banach space. In order to extend f(x) to all
X € Z, we can use the interpolation polynomials

(x> _x(x=1)-(x—n+1)

n nl

Then we have that (;;) is a polynomial of degree n of x, which for x € Z,

x > 0 gives the binomial coefficient. If x € Z, then x is close (in the p-adic
topology) to a positive integer, hence the value of (’,;) is also close to an
integer, therefore (’;) € Zp.
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Mahler's criterion

The classical Mahler’s interpolation theorem says that any continuous
function f : Z, — Q, can be written in the form (see [Hi91], [Wash82]):

f(x) = i a, (’;) (3.4)

n=0

with a, — 0 (p-adically) for n — oo. For a function f(x) defined for x € Z,
x > 0 one can write formally

= X
f(x) =
5
n=0
where the coefficients can be founded from the system of linear equations
! n
f(n) = m :
=33 (")

that is

o = J_f;(—l)'"f ()70
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The series for f(x) is always reduced to a finite sum for each x € Z, x > 0.
If a, — 0 then this series is convergent for all x € Z,. As was noticed
above, the inverse statement is also valid (“Mahler’s criterion”). If
convergence of a, to zero is so fast that the series defining the coefficients
of the x-expansion of f(x) also converge, then f(x) can be extended to an
analytic function. Unfortunately, for an arbitrary sequence a, with a, — 0
the attempt to use (3.4) for continuation of f(x) out of the subset Z, in
C, may fail. However, in the sequel we mostly consider anlytic functions,
that are defined as sums of power series.
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CHAPTER IV

p-adic power series

1. Elementary functions

Recall that in a metric space whose metric comes from a non-Archimedean
norm | |, a sequence is Cauchy if and only if the difference between adjacent
terms approaches zero; and if the metric space is complete, an infinite sum
converges if and only if its general term approaches zero. So if we consider
expressions of the form

e
f(X): Zaan’ anGQ,
n=0
we can give a value > 7., a,x" to f(x) whenever an x is substituted for X for
which |a,x"|, — 0.
Just as in the Archimedean case (power series over R or C), we define the
“radius of convergence”

1
"= fim sup|a, |3’

where the terminology ““1/r = lim sup|a,|;”’ means that 1/r is the least real
number such that for any C > 1/r there are only finitely many |a,|}™ greater
than C. Equivalently, 1/r is the greatest ““point of accumulation,” i.e., the
greatest real number which can occur as the limit of a subsequence of
{|a.|3"}. If, for example, lim,_, ,|a,|3™ exists, then 1/r is simply this limit.

We justify the use of the term ‘‘radius of convergence’ by showing that
the series converges if | x|, < rand divergesif |x|, > r. First, if |x|, < r, then,
letting |x|, = (1 — &)r, we have: |a,x"|, = (r]|a,|3/™)"(1 — &)". Since there are
only finitely many n for which |a,|}™ > 1/(r — }er), we have

. n 1 (1—_6)Ln—. l_en—
lim |a,x Ipsggn;((l =3or) o\t x) =°
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1 Elementary functions

Similarly, we easily see that if | x|, > r, then a,x"does notapproachOasn — co.

What if |x|, = r? In the Archimedean case the story on the boundary of
the interval or disc of convergence can be a little complicated. For example,
log(l + x) = 2., (—1)***x"/n has radius of convergence 1. When |x| = 1,

it diverges for x = —1 and converges (*‘conditionally,” not ““absolutely ") for
other values of x (i.e., for x = 1 in the case of the reals and on the unit circle
minus the point x = —1 in the case of the complexes).

But in the non-Archimedean case there’s a single answer for all points
|x|, = r. This is because a series converges if and only if its terms approach
zero, i.e., if and only if |a,|,| x|} — 0, and this depends only on the norm |x|,
and not on the particular value of x with a given norm—there’s no such thing
as ““conditional” convergence (3 + a, converging or diverging depending on
the choices of +°s).

If we take the same example >, (= 1)***X"/n, we find that |a,|, =
p°re ™, and lim,_ . |a,|;'™ = 1. The series converges for |x|, < 1 and diverges
for |x|, > 1. If |x|, = I, then |a,x"|, = p°™%™ > |, and the series diverges
for all such x.

Now let’s introduce some notation. If R is a ring, we let R[[X]] be the ring
of formal power series in X with coefficients in R, i.e., expressions > - 0@, X",
a, € R, which add and multiply together in the usual way. For us, R will
usually be 7, Q, Z,, Q,, or Q. We often abbreviate other sets using this
notation, for example,

1 + XR[[X]] =

def

{f € R[[X]] | constant term q, of f'is 1}.
We define the ““closed disc of radius r € R about a point a € Q" to be
Dy(r) g {xeQ||x —al, <r},
and we define the ““open disc of radius r about a” to be
Dy(r7) z{xeQ||x —a|, <r}

We let D(r) =, Do(r) and D(r~) = Do(r~). (Note: whenever we refer to the
closed disc D(r) in Q, we understand r to be a possible value of | |,, i.e., a
rational power of p; we always write D(r~) if there are no x e Q with
[x[, = r.)

(A word of caution. The terms “closed” and “open” are used only out of
analogy with the Archimedean case. From a topological point of view the
terminology is bad. Namely, the set C, = {x€ Q| |x — a|, = ¢} is open in
the topological sense, because every point x € C, has a disc about it, for
example D,(c™), all points of which belong to C.. But then any union of C.’s
is open. Both D,(r) and D,(r ), as well as their complements, are such unions:
for example, D (r~) = Uc<a C.. Hence both D,(r) and D,(r~) are simul-
taneously open and closed sets. The term for this peculiar state of affairs in Q
is “totally disconnected topological space.”)

Just to get used to the notation, we prove a trivial lemma.
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IV p-adic power series

Lemma 1. Every f(X) € Z,[[X]] converges in D(17).

PrOOF. Let f(X) = >0 a, X", a, € Z,, and let xe D(1~). Thus, |x|, < 1.
Also |a,|, < 1 for all n. Hence |a,x"|, < |x|," = 0 as n — co. O

Another easy lemma is

Lemma 2. Every f(X) = 2 2-0a, X" € Q[[X]] which converges in an (open or
closed) disc D = D(r) or D(r~) is continuous on D.

PRrROOF. Suppose |x" — x|, < 8, where & < |x|, will be chosen later. Then
x|, = |x|,. (We are assuming x # 0; the case x = 0 is very easy to check
separately.) We have

o
/() = /()] = | D (ax" — ax™)
n=0 p
< max,|a,x" — a,x™|,
= max,(|a,|,|(x — x)(x""* + x" 723" + .-
+ xxm"2 4 X)),
But [x"7! 4+ x"72x" 4+ - 4+ xx™72 4 X7 < max; g <Xt XY, =

[x|3~ 1. Hence

A

|/(x) = f(x)

p = maxn(|x - xliv!an|lelzgl)

A

8
W maxn(|an'p|x|pn)-
14
Since |a,|,|x|," is bounded as n - co, this |f(x) — f(x")|, is <e for suit-
able 8. U

Now let’s return to our series > >~ ,(— 1)**1X™/n, which, as we’ve seen, has
disc of convergence D(17). That is, this series gives a function on D(17)
taking values in Q. Let’s call this function log,(1 + X'), where the subscript p
reminds us of the prime which gave us the norm on Q used to get €, and
also remind us not to confuse this function with the classical log(l + X)
function—which has a different domain (a subset of R or C) and range
(R or C). Unfortunately, the notation log, for the “p-adic logarithm™ is
identical to classical notation for ““log to the base p.”” From now on, we shall
assume that log, means p-adic logarithm

logy(1 + X):D(17) = Q,  log(l + x) = > (=1)"*x"/n,
n=1
unless explicitly stated otherwise.

The dangers of confusing Archimedean and p-adic functions will be
illustrated below, and also in Exercises 8-10 at the end of §1.
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1 Elementary functions

Anyone who has studied differential equations (and many who haven’t)
realize that exp(x) = e* = > ., x"/n! is about the most important function
there is in classical mathematics. So let’s look at the series > _, X"/n!
p-adically. The classical exponential series converges everywhere, thanks to
the n! in the denominator. But while big denominators are good things to
have classically, they are not so good p-adically. Namely, it’s not hard to
compute (see Exercise 14 §1.2)

Sn

ord,(n!) = ’;-—“_——

0 (S, = sum of digits in n to base p);

| l/n! |p — p(n—Sn)/(p— n
Our formula for the radius of convergence r = 1/(lim sup|a,|}™) gives us
ord, r = lim inf(’ll ord, a,,) ,

(where the “lim inf” of a sequence is its smallest point of accumulation). In
the case a, = 1/n!, this gives
N n—S,\.
ord,, r = lim lnf(—m) N
but lim,. (=" — S,)/(n(p — 1))) = —1/(p — 1). Hence >2., x"/n! ‘con-
verges if |x|, < p~Y®-V and diverges if |x|, > p~V®~V. What if |x|, =
p P Y ie, ord, x = 1/(p — 1)? In that case

n n — Sn n _ Sn
Ordp(anx)—_p_l+p_l——p_l
If, say, we choose n = p™ to be a power of p, so that S, = 1, we have:

ord,(a,»x*") = 1/(p — 1), |a,»x*"|, = p~Y®~Y_ and hence a,x™ »» 0 asn—
co. Thus, >, X"/n! has disc of convergence D(p~'/®~V~) (the — denoting
the open disc, as usual). Let’s denote exp,(X) = >7-0 X"/n! € Q,[[X]).

Note that D(p~Y®-Y-) =« D(17), so that exp, converges in a smaller
disc than log,!

While it is important to avoid confusion between log and exp and log,
and exp,, We can carry over some basic properties of log and exp to the p-adic
case. For example, let’s try to get the basic property of log that log of a
product equals the sum of the logs. Note that if x € D(17) and y € D(17), then
also (1 + x)(I + y) =1+ (x +y + xy)el + D(I7). Thus, we have:

logo[(1 + (1 + )] = > (=17*Xx + y + )

n=1

Meanwhile, we have the following relation in the ring of power series over Q
in two indeterminates (written Q[[X, Y]]):

D)X S (=) Y = D (= D)X+ Y + XY)n,
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IV p-adic power series

This holds because over R or C we have log(l + x)(1 + y) = log(1 + x) +
log(l + y), so that the difference between the two sides of the above equality—
call it F(X, Y)—must vanish for all real values of X and Y in the interval
(=1, 1). So the coefficient of X™ Y™ in F(X, Y) must vanish for all m and n.

The argument for why F(X, Y) vanishes as a formal power series is
typical of a line of reasoning we shall often need. Suppose that an expression
involving some power series in X and Y—e.g., log(l + X), log(l + Y), and
log(l + X + Y + XY)—vanishes whenever real values in some interval are
substituted for the variables. Then when we gather together all X™ Y ™-terms in
this expression, its coefficient must always be zero. Since this is a general fact
unrelated to p-adic numbers, we won’t digress to prove it carefully here.
But if you have any doubts about whether you could prove this fact, turn to
Exercise 21 below for further explanations and hints on how to prove it.

Returning to the p-adic situation, we note that if a series converges in €,
its terms can be rearranged in any order, and the resulting series converges
to the same limit. (This is easy to'check—it’s related to there being no such
thing as ‘“conditional” convergence.) Thus, log,[(1 + x)(1 + y)] = >,
(=D"*Y(x 4+ y + xp)*/n can be written as >, _,Cn.x"y™ But the
“formal identity”” in Q[[X, Y]] tells us that the rational numbers c,, , will be
Ounlessn = 0 or m = 0, in which case: ¢o., = €0 = (= 1)**/n(co0 = 0).
In other words, we may conclude that

log,[(1 + (1 + )1 = > (=17 n + > (~1)1*2y7n

= log,(1 + x) + log,(1 + »).

As a corollary of this formula, take the case when 1 + xis a p™throot of 1.
Then |x|, < 1 (see Exercise 7 of §III.4), so that: p™log,(1 + x) = log,
(I + x)" = log, 1 = 0. Hence log,(1 + x) = 0.

In exactly the same way we can prove the familiar rule for exp in the p-adic
situation:if x, y € D(p~Y?~D7) thenx + ye D(p Y@ Y7), and exp,(x + »)
= exp, X- exp, J.

Moreover, we also find a result analogous to the Archimedean case as far
as log, and exp, being inverse functions of one another. More precisely,
suppose x € D(p~Y®?~V=) Thenexp, x = 1 + >7., x"/n!, and ord, (x"/n!) >
nf(p—1)—m-=3S)/(p—1) =S,/(p —1)> 0. Thus, exp, x — 1 € D(17).
Suppose we take

Il
W%E

(= 1)**(exp, x — 1)"/n

(—1)n+1( i xm/m!)n/n.

m=1

log,(1 + exp, x — 1)

3
I
-

Il
NMs

1
But this series can be rearranged to get a series of the form >2_, ¢,x". And
reasoning as before, we have the following formal identity over Q[[X, Y]]:

721(—-1)"”( i X’"/m!)"/n = X,

\m=1

3
]
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1 Elementary functions

coming from the fact that log(exp x) = x over R or C. Hence c; = 1, ¢, = 0
forn > 1, and

log,(1 + exp, x — 1) = x forxe D(p~t®-b-),

To go the other way—i.e., exp,(log, (1 + x))—we have to be a little
careful, because even if x is in the region of convergence D(17) of log,(1 + X),
it is not necessarily the case that log,(1 + x) is in the region of convergence
D(p~1*-1-) of exp, X. This is the case if x € D(p~**~V~), since then for
n>1:

(ord x"/n)—;>—n——ord n———l——=§—:—l—ord n
? p—1"p-1 Top ’
which has its minima at n = 1 and n = p, where it’s zero. Thus, ord, log,
(I + x) = min, ord, x*/n > 1/(p — 1). Then everything goes through as
before, and we have:

exp,(log,(1 + x)) = 1 + x for xe D(p~1V®-b-),

All of the facts we have proved about log, and exp, can be stated succinctly
in the following way.

Propeosition. The functions log, and exp, give mutually inverse isomorphisms
between the multiplicative group of the open disc of radius p~''®~V about |
and the additive group of the open disc of radius p~'*-1 about 0.
(This means precisely the following: log, gives a one-to-one correspondence
between the two sets, under which the image of the product of two numbers
is the sum of the images, and exp, is the inverse map.)

This isomorphism is analogous to the real case, where log and exp give
mutually inverse isomorphisms between the multiplicative group of positive
real numbers and the additive group of all real numbers.

In particular, this proposition says that log, is injective on D,(p~Y®~ =),
i.e.,, no two numbers in D;(p~Y®-V~) have the same log,. It’s easy to see
that D,(p~Y®-1-)is the biggest disc on which this is true: namely, a primitive
pth root £ of 1 has [{ — 1|, = p~¥®~1 (see Exercise 7 of §l11.4), and also
log, { = 0 = log, I.

We can similarly define the functions

sing: D(p~HP D7) > 0, sing X = D (= 1)XHYQn + DY
n=0

cos,: D(p~ 1P "17) > Q. cos, X = > (= 1)"X?(2m)!.
n=0
Another function which is important in classical mathematics is the

binomial expansion By(x) = (1 + x)* = >7_ga(a — 1)---(@a—n+ 1)/n! x"
For any a € R or C, this series converges in R or C if |x| < | and diverges
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IV p-adic power series

if |x| > 1 (unless a is a nonnegative integer); its behavior at [x| =1 1is a
little complicated. and depends on the value of a.
Now for any a € Q let’s define

©

Boo(X) 5, >

n=0

aa—1)---(a—n+1) ,,
n! X

5

and proceed to investigate its convergence. First of all, suppose |a|, > 1. Then
la — i|, = |a|,, and the nth term has | |, equal to |a»|,"/|n!|,. Thus, for
la], > 1, the series B, ,(X) has region of convergence D((p~Y®~Y)/|a|,”).

Now suppose |a|, < 1. The picture becomes more complicated, and
depends on a. We won’t derive a complete answer. In any case, for any such a
we have|a — i|, < l,andso |a(a — 1)---(a — n + 1)/n!x"|, < |x"/n!],, so
that at least B, ,(X) converges on D(p~Y®-1-),

We'll soon need a more accurate result about the convergence of B, ,(X)
in the case when a € Z,. We claim that then B, ,(X) € Z,[[X]] (and, in particu-
lar, it converges on D(17) by Lemma 1). Thus, we want to show that

a@—=1)---(a—n+ 1)/nteZ, Let a, be a positive integer greater than n
such that ord,(¢ —as) > N (N will be chosen later). Then
aglag — 1)---(ag — n + 1)/n! = ()eZ < Z,. It now suffices to show
that for suitable N the difference between ao(a, — 1) --(@p — n + 1)/n! and
a@ = 1)---(@a—n+ l)/n! has | |, < 1. But this follows because the

polynomial X(X — 1)---(X — n + 1) is continuous. Thus,
B.J(X)eZ[[X]ifacZ,

As an important example of the case a € Z,, suppose that a = 1/m,
me Z, ptm. Let x € D(17). Then it follows by the same argument as used to
prove log,(lI + x)(I + y) = log,(1 + x) + log,(1 + y) that we have

[Bijm ()" =1 + x.
Thus, By, »(x) is an mth root of 1 + x in Q. (If p|m, this still holds, but now
we can only substitute values of x in D(|m|,p~**~1=).) So, whenever a is an
ordinary rational number we can adopt the shorthand: B, ,(X) = (I + X)=

But be careful! What about the following “paradox™? Consider 4/3 =
(1 + 7/9)*2;1in Z, we have ord, 7/9 = 1, and so for x = 7/9 and n > 1:

1202 = 1y--- (12 = n + ])x"

n!

< 7 Y|nlls < 1.
7

Hence
L> [0+ =1, =15 -1, =3, =1
What’s wrong??

Well, we were sloppy when we wrote 4/3 = (1 + 7/9)*2. In both R and
Q- the number 16/9 has two square roots +4/3. In R, the series for (1 + 7/9)*2
converges to 4/3, i.e., the positive value is favored. But in @Q,, the square
root congruent to | mod 7, i.e., —4/3 = 1 — 7/3, is favored. Thus, the exact
same series of rational numbers

& 1/2(1/2 = 1)---(1/2 — n + 1) (T\"
2 5)

n=0 n!
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Exercises

converges to a rational number both 7-adically and in the Archimedean
absolute value; but the rational numbers it converges to are different! This is
a counterexample to the following false ““theorem.”

Non-theorem 1. Let 5., a, be a sum of rational numbers which converges to a

rational number in | |, and also converges to a rational number in | |,. Then
the rational value of the infinite sum is the same in both metrics.

For more ‘““paradoxes,” see Exercises 8-10.

EXERCISES

1. Find the exact disc of convergence (specifying whether open or closed) of the
following series. In (v) and (vi), log, means the old-fashioned log to base p,
and in (vii) { is a primitive pth root of 1. [ ] means the greatest integer
function.

@ Snlxm (i) IpXT (W) ZpReTX (viD) 3 (- DXl
(i) 3 p0FXT (i) 3 phX (Vi) 3 pUors X

. Prove that, if > a, and > b, converge to a and b, respectively (where a,, b,, a,
b e Q), then > c,, where ¢, = >0 aib, -, converges to ab.

. Prove that 1 + XZ,[[X]] is a group with respect to multiplication. Let D be
an open or a closed disc in Q of some radius about 0. Prove that {fe 1 +
XQ[[X]] | fconverges on D} is closed under multiplication, but is not a group.
Prove that for fixed A, the set of f(X) = 1 + >{%; a; X' such thatord, ¢, — Ai
is greaterthan O foralli = 1, 2, ... and approaches c as i — oo, is a multipli-
cative group. Next, let f;e 1 + XZ,[[X]],j =1,2,3, ... .Let f(X) = [ [}~
f,(X7). Check that f(X)e 1 + XZ,[[X]]. Suppose that all of the f; converge
in the closed unit disc D(1). Does f(X) converge in D(1) (proof or counter-
example)? If all of the nonconstant coefficients of all of the f; are divisible by
p, does that change your answer (proof or counterexample)?

. Let {a,} = Q be a sequence with |a,|, bounded. Prove that

s n!

,Zoa"x(x + Dx+2)---(x+ n)

converges for all x € Q not in Z,. What can you say if xe€Z,?

. Let i be a square root of —1 in @, (actually, i lies in Q, itself unless p = 3
mod 4). Prove that: exp,(ix) = cos, x + isin, x for x e D(p~1®~-1~),

. Show that 2! =1 (mod p?) if and only if p divides Y ?Z{ (—1)//j (of course,
meaning that p divides the numerator of this fraction).
. Show that the 2-adic ordinal of the rational number
2 4-22/2 + 23/3 + 2%/4 + 25/5 + --- + 2%n
approaches infinity as n increases. Get a good estimate for this 2-adic ordinal
in terms of n. Can you think of an entirely elementary proof (i.e., without

using p-adic analysis) of this fact, which is actually completely elementary
in its statement ?
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IV p-adic power series

86

By the minimal total degree deg f of a nonzero power series f' we mean the
least d such that some r, ..., with i, + iy +--- 4+ i, = d is nonzero. We
can define a topology, the ** X-adic topology,” on R[[X]] by fixing some
positive real number p < | and defining the * X-adic norm” by

[fly = pies/ (10| is defined to be 0).

(1) Show that | |¢ makes R[[X]]into a non-Archimedean metric space (see
the first definition in §1.1; by **non-Archimedean,” we mean, of course, that
the third condition can be replaced by: d(x, y) < max(d(x, 2), d(z, y))). Say
in words what it means for |/|y to be <.

(2) Show that R[[X]] is complete with respect to | |x.

(3) Show that an infinite product of series f, € R[[X]] converges if and
only if |f; — I|x — 0 (where 1 is the constant power series {r,, ...} for
ichry o = 1 and all other r; _; = 0). We will use this in §2 to see that the
horrible power series defined at the end of that section makes sense.

(4) If fe R[[X]], define f; to be the same as f but with all coefficients
ry...i, With iy + --- + i, > d replaced by 0. Thus, f; is a polynomial in n
variables. Let g, ..., g, € R[[X]]. Note that f,(g,(X), g2(X), ..., g.(X)) is
well-defined for every d, since it’s just a finite sum of products of power series.
Prove that {f(g,(X),..., g(X))}a=0.1.2.... is a Cauchy sequence in R[[X]] if
lgjlx < 1forj=1,...,n In that case call its limit f o g.

(5) Now let R be the field R of real numbers, and suppose that f, f,, g1, ...,
g. are as in (4), with |g,|x < 1. Further suppose that for some « > 0 the
series fand all of the series g, are absolutely convergent whenever we substi-
tute X, = x, in the interval [—e¢, e]< R. Prove that the series f o g is absolutely
convergent whenever we substitute X, = x, in the (perhaps smaller) interval
[—¢, ¢] for some & > 0.

(6) Under the conditions in (5), prove that if fo g(xy, ..., x,) has value 0
for every choice of xy, ..., x, € [—¢’, €], then f> g is the zero power series
in R{[X]].

(7) As an example, let n = 3, write X, Y, Z instead of X, X,, X3, and let

f(X, Y, Z2) = § (=) YXYi + Yi = ZYi),

&(X, ¥, 72) = X,
gAX, ¥V, Z) =Y,
g X, Y, Z)= X+ Y + XY.

As another example, let n = 2,
fX) = (S ) -

QX V) = S xyi,

i=1

g(X, YY) = X

Explain how your result in (6) can be used to prove the basic facts about the
elementary p-adic power series. (Construct the fand g, for one or two more
cases.)



3 Newton polygons for polynomials

14. Prove that exp, X, (sin, X)/X, and cos, X have no zeros in their regions of
convergence, and that E,(X) has no zeros in D(1 7).

15. Find the coefficients up through the X* term in E,(X) for p = 2, 3.

16. Find the coefficients in E,(X) through the X?~! term. Find the coefficient of
X?. What fact from elementary number theory is reflected in the fact that the
coefficient of X7 lies in Z,?

17. Use Dwork’s lemma to give another proof that the coefficients of E,(X)
are in Z,.

18. Use Dwork’s lemma to prove: Let f(X) = exp(52o b X?"), b€ Q,. Then
f(X)el + XZ,[[X]] if and only if b,_y — pbyepZ, for i =0,1,2, ...
(where b_, = 0).

3. Newton polygons for polynomials

Let f(X) =1+ >, aX' €l + XQ[X] be a polynomial of degree n with
coefficients in Q and constant term [. Consider the following sequence of
points in the real coordinate plane:

0, 0), (1, ord, ay), (2, ord, ay), ..., (i, ord, @), ..., (n, ord, a,).

(If a; = 0, we omit that point, or we think of it as lying “infinitely” far
above the horizontal axis.) The Newton polygon of f(X) is defined to be the
“convex hull” of this set of points, i.e., the highest convex polygonal line
joining (0, 0) with (n, ord, a,) which passes on or below all of the points
(i, ord, a;). Physically, this convex hull is constructed by taking a vertical
line through (0, 0) and rotating it about (0, 0) counterclockwise until it hits
any of the points (i, ord, a;), taking the segment joining (0, 0) to the last such
point (i}, ord, a;,) that it hits as the first segment of the Newton polygon,
then rotating the line further about (i}, ord, a;,) until it hits a further point
(i, ord, @;) (i > i), taking the segment joining (i}, ord, a;,) to the last such
point (iy, ord, a,,) as the second segment, then rotating the line about
(iz, ord, a;,) and so on, until you reach (n, ord, a,).

As an example, Figure 1 shows the Newton polygon for f(X) =1 +
X2 + 3X°% + 3X*in Qg[X].

By the vertices of the Newton polygon we mean the points (i, ord, a;)
where the slopes change. If a segment joins a point (i, m) to (i’, m’), its slope is
(m' — m)/(i" — i); by the “length of the slope” we mean i’ — i, i.e., the
length of the projection of the corresponding segment onto the horizontal
axis.

Lemma 4. In the above notation, let f(X) = (1 — X/oy)--- (1 — X/e,) be the
factorization of f(X) in terms of its roots o; € Q. Let \; = ord, 1/«;. Then,
if X is a slope of the Newton polygon having length |, it follows that precisely |
of the A are equal to .
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4.1)

3.—D

Figure 1V.1

In other words, the slopes of the Newton polygon of /(X) “are” (counting
multiplicity) the p-adic ordinals of the reciprocal roots of f(X).

PrOOF. We may suppose the o, to be arranged so that A; < A, < --- < A,. Say
A=A =---= ) < A,,;. We first claim that the first segment of the
Newton polygon is the segment joining (0, 0) to (r, rA,). Recall that each g; is
expressed in terms of 1/a;, 1/ay, ..., 1/a, as (—1)! times the ith symmetric
polynomial, i.e., the sum of all possible products of i of the 1/«’s. Since the
p-adic ordinal of such a product is at least iA,, the same is true for a,. Thus, the
point (i, ord, a,) is on or above the point (i, iA,), i.e., on or above the line
joining (0, 0) to (r, rA,).

Now consider a,. Of the various products of r of the 1/a’s, exactly one has
p-adic ordinal rA,, namely, the product 1/(aye,---«a,). All of the other
products have p-adic ordinal > rA, since we must include at least one of the
Aits Arsas - -5 Ap. Thus, a, is a sum of something with ordinal r; and
something with ordinal >rA;, so, by the “isosceles triangle principle,”
ord, a, = rA,.

Now suppose i > r. In the same way as before, we see that all of the
products of i of the 1/a’s have p-adic ordinal >iA,. Hence, ord, a; > iA,. If
we now think of how the Newton polygon is constructed, we see that we
have shown that its first segment is the line joining (0, 0) with (r, ra;).

The proof that, if we have A, < A;y; = Ajyp = -+ = Ajyy < Agyra1, then
the line joining (s, A; + Ay + - + A)to(s + r, Ay + Ay + -+ - + A +rXgyy)
is a segment of the Newton polygon, is completely analogous and will be
left to the reader. O

4. Newton polygons for power series

Now let f(X) =1+ 3%, a,X"el + XQ[[X]] be a power series. Define
(X)) =14+ 3", aX el + XQ[X] to be the nth partial sum of f(X).
In this section we suppose that f(X) is not a polynomial, i.e., infinitely many
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4 Newton polygons for power series

Figure 1V.2

a; are nonzero. The Newton polygon of f (X)) is defined to be the “limit” of the
Newton polygons of the f,(X). More precisely, we follow the same recipe as in
the construction of the Newton polygon of a polynomial: plot all of the points
0, 0), (1, ord, @), ..., (i,ord, a), ...;rotate the vertical line through (0, 0)
until it hits a point (i, ord, g;), then rotate it about the farthest such point it
hits, and so on. But we must be careful to notice that three things can happen:

(1) We get infinitely many segments of finite length. For example, take
f(X) =1+ 32, p”X!, whose Newton polygon is a polygonal line inscribed
in the right half of the parabola y = x2 (see Figure 2).

(2) At some point the line we're rotating simultaneously hits points
(i, ord, a,) which are arbitrarily far out. In that case, the Newton polygon
has a finite number of segments, the last one being infinitely long. For example,
the Newton polygon of f(X) = 1 + >2, X' is simply one infinitely long
horizontal segment.

(3) At some point the line we’re rotating has not yet hit any of the (i, ord, a,)
which are farther out, but, if we rotated it any farther at all, it would rotate
past such points, i.e., it would pass above some of the (i, ord, a,). A simple
example is f(X) = 1 + 52, pX". In that case, when the line through (0, 0)
has rotated to the horizontal position, it can rotate no farther without passing
above some of the points (i, 1). When this happens, we let the last segment of
the Newton polygon have slope equal to the least upper bound of all possible
slopes for which it passes below all of the (i, ord, a;). In our example, the
slope is 0, and the Newton polygon consists of one infinite horizontal segment
(see Figure 3).

A degenerate case of possibility (3) occurs when the vertical line through
(0, 0) cannot be rotated at all without crossing above some points (i, ord, a;).
For example, this is what happens withf(X) = > 2, X'/p”.In that case, f (X)
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IV p-adic power series

Figure 1V.3

is easily seen to have zero radius of convergence, i.e., f(x) diverges for any
nonzero x. In what follows we shall exclude that case from consideration and
shall suppose that f(X) has a nontrivial disc of convergence.

In the case of polynomials, the Newton polygon is useful because it
allows us to see at a glance at what radii the reciprocal roots are located. We
shall prove that the Newton polygon of a power series f(X) similarly tells
us where the zeros of f(X) lie. But first, let’s make an ad hoc study of a
particularly illustrative example.

Let

2 i

X X
SO =1+ 5+ 5+ + 7

1

The Newton polygon of f( X) (see Figure 4, in which p = 3) is the polygonal line
joining the points (0,0), (p — I, = 1), (p2 =1, =2),....(p' = 1, —=)),...;
it is of type (1) in the list at the beginning of this section. If the power series
analogue of Lemma 4 of §3 is to hold, we would expect from looking at this
Newton polygon that f(X) has precisely p’*! — p’ roots of p-adic ordinal
L't = p).

But what are the roots of —1/X log,(1 — X)? First, if x = 1 — {, where
{is a primitive p’ * 'th root of 1, we know by Exercise 7 of §111.4 that ord, x =
1/(p’** — p’); and we know by the discussion of log, in §IV.1 that log,
(I — x) = log, £ = 0. Since there are p’*' — p? primitive p’*'th roots of 1,
this gives us all of the predicted roots. Are there any other zeros of f(X) in
D(17)?

Let x € D(17) be such a root. Then for any j, x, = 1 — (1 — x)”’ € D(17)

is also a root since log,(1 — x,) = p’ log,(I — x) = 0. But for j sufficiently
large, we have x, € D(p~Y®-V=). For x,€ D(p~Y?~V7), we have | — x, =
exp,(log,(1 — x,)) = exp, 0 = 1. Hence (I — x)” = 1, and x must be one

Figure 1V.4
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4 Newton polygons for power series

of the roots we already considered. Thus, the appearance of the Newton
polygon agrees with our knowledge of all of the roots of log,(1 — X).

We now proceed to prove that the Newton polygon plays the same role for
power series as for polynomials. But first we prove a much simpler result:
that the radius of convergence of a power series can be seen at a glance from
its Newton polygon.

Lemma 5. Let b be the least upper bound of all slopes of the Newton polygon of
X)) =1+ 32 ,aX €l + XQ[[X]]. Then the radius of convergence is
p° (b may be infinite, in which case f(X) converges on all of Q).

Proor. First let |x|, < p° i.., ord,x > —b. Say ord, x = —b’, where
b" < b. Then ord,(a,x') = ord, a; — ib’. But it is clear (see Figure 5) that,
sufficiently far out, the (i, ord, a;) lie arbitrarily far above (i, bi), in other
words, ord,(a,x') — oo, and f(X) converges at X = x.

Figure IV.5

Now let |x|, > p° i.e., ord, x = —b" < —b. Then we find in the same
way that ord,(a;x’) = ord, a; — b’i is negative for infinitely many values of i.
Thus f(x) does not converge. We conclude that f(X) has radius of conver-
gence exactly p°. OJ

Remark. This lemma says nothing about convergence or divergence
when |x|, = p®. It is easy to see that convergence at the radius of convergence
(““on the circumference””) can only occur in type (3) in the list at the beginning
of this section, and then if and only if the distance that (i, ord, a;) lies above
the last (infinite) segment approaches oo as i—co. An example of this
behavior is the power series f(X) = 1 + 32, p'X?', whose Newton polygon
is the horizontal line extending from (0, 0). This f(X) converges when
ord, x = 0.

One final remark should be made before beginning the proof of the power
series analogue of Lemma 4. If c € Q, ord, ¢ = A, and g(X) = f(X/c), then
the Newton polygon for g is obtained from that for f by subtracting the line

101



IV p-adic power series

y = Ax—the line through (0, 0) with slope A—from the Newton polygon for 1.
This is because, if f(X) =1+ YaX' and g(X) =1 + > b.X", then we
have ord, b, = ord,(a,/c') = ord, a, — Ai.

Lemma 6. Suppose that )\, is the first slope of the Newton polygon of f(X) =
I+ 32 aXel + XQ[[X]]. Let ceQ, ord, ¢ = A < A,. Suppose that
F(X) converges on the closed disc D(p") (by Lemma 5, this automatically
holds if X < A, or if the Newton polygon of f(X) has more than one segment).
Let

g(X) = (1 — cX)f(X)el + XQ[X]I.

Then the Newton polygon of g(X) is obtained by joining (0, 0) to (1, X) and
then translating the Newton polygon of [(X) by | to the right and X upward.
In other words, the Newton polygon of g(X) is obtained by ** joining’ the
Newton polygon of the polynomial (I — ¢X) to the Newton polygon of the
power series f(X). In addition, if {(X) has last slope A, and converges on
D(p’7). then g(X) also converges on D(p’7). Conversely, if ¢(X) converges on
D(p*). then so does f(X).

Proor. We first reduce to the special case ¢ = 1, A = 0. Suppose the lemma
holds for that case, and we have f(X) and g(X) as in the lemma. Then f1(X) =
f(X/c) and g,(X) = (I — X)fi(X) satisfy the conditions of the lemma with
¢, A, A, replaced by 1,0, A; — A, respectively (see the remark immediately
preceding the statement of the lemma). Then the lemma, which we’re assum-
ing holds for f; and g, gives us the shape of the Newton polygon of g,(X) (and
the convergence of g, on D(p*s~*) when f converges on D(p’)). Since g(X) =
gi(cX), if we again use the remark before the statement of the lemma, we
obtain the desired information about the Newton polygon of g(X). (See
Figure 6.)

Thus, it suffices to prove Lemma 6 with ¢ = I, A = 0. Let g(X) =1 +
>, b.X". Then, since g(X) = (I — X)f(X), we have b,,, = a,,, — a, for
i > 0 (with a4, = 1), and so

ord, b,,, > min(ord, a,,,, ord, a,),

with equality holdingiford, a,,, # ord, a, (by the isosceles triangle principle).
Since both (i, ord, a,) and (i, ord, a,,,) lie on or above the Newton polygon
of f(X), so does (i, ord, b,,,). If (i, ord, a,) is a vertex, then ord, a,,, >
ord, a,, and so ord, b,,, = ord, a,. This implies that the Newton polygon of
g(X) must have the shape described in the lemma as far as the last vertex of
the Newton polygon of f(X). It remains to show that, in the case when the
Newton polygon of f(X) has a final infinite slope A,, g(X) also does; and, if
f(X)converges on D(p*/), then so does g(X) (and conversely). Since ord, b, ,
> min(ord,, a;, ;, ord,, a;), it immediately follows that g(X) converges wher-
ever f(X) does. We must rule out the possibility that the Newton polygon of
g(X) has a slope 4, which is greater than A,. If the Newton polygon of g(X)

102



4 Newton polygons for power series

N 81

Figure IV.6

did have such a slope, then for some large i, the point (i 4 1, ord, a;) would
lie below the Newton polygon of g(X). Then we would have ord, b; >
ord, a; for all j > i + 1. This first of all implies that ord, a;,, = ord, a;,
because a;,; = b;,; + a;; then in the same way ord, ¢;,, = ord, a;, ;, and
so on: ord, a; = ord, a; for all j > i. But this contradicts the assumed con-
vergence of f(X) on D(1). The converse assertion (convergence of g implies
convergence of f) is proved in the same way. O

Lemma 7. Let f(X) =1+ 32, aX' €l + XQ[[X]] have Newton polygon
with first slope A,. Suppose that f(X) converges on the closed disc D(p™),
and also suppose that the line through (0, 0) with slope A, actually passes
through a point (i, ord, a,). (Both of these conditions automatically hold if
the Newton polygon has more than one slope.) Then there exists an x for
which ord, x = —A, and f(x) = 0.

Proor. For simplicity, we first consider the case A; = 0, and then reduce the
general case to this one. In particular, ord, a; > 0 for all i and ord, a, —> o©
as i—oo0. Let N > 1 be the greatest i for which ord, a, = 0. (Except in the
case when the Newton polygon of f(X) is only one infinite horizontal line,
this N is the length of the first segment, of slope A; = 0.) Let f(X) =
1 + >~ a X" By Lemma 4, for n > N the polynomial f,(X) has precisely N
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roots X, i, ..., X,y with ord, x,; = 0. Let xy = xy,;, and for n > N let
X,,, beanyof the x, 11, ..., Xo1.n With |x,,,,, — X,|, minimal. We claim
that {x,} is Cauchy, and that its limit x has the desired properties.

For n > N let S, denote the set of roots of f,(X) (counted with their
multiplicities). Then for n > N we have

l/;Hl(xn) "'fn(xn)lp = Ifn+l(xn)|p (Sincefn(xn) = 0)
[1 =

X€Sp 41

X |p

I

ﬁ |1 — Xo/Xpe1.4]p (sinceifxe S,,,hasord, x < 0,
o we then have |1 — x,/x|, = 1)
= ﬁ [Xnt1.6 — Xa|p (since [Xpi1.4lp = 1)
2 |xp i1 — Xalp",
by the choice of x,, ;. Thus,
[Xn o1 = Xal,¥ < [fac1(xn) = fa(x)lp = @12 = [Gnsalp

Since |a, 1|, — 0 as n — oo, it follows that {x,} is Cauchy.
If x, — x € Q, we further have f(x) = lim,_, , f,(x), while

N L
2 a5
=1 X~ Xalp
since |a,], < land |(x' — x.)/(x — x )|, = [x'7' + x'"2x, + x' " 3x,2 + - -
+ xt71|, < 1. Hence, f(x) = lim,_ , f,(x) = 0. This proves the lemma when
A = 0.

Now the general case follows easily. Let = € Q be any number such that
ord, m = A;. Note that such a = exists, for example, take an ith root of an
a; for which (i, ord, a,) lies on the line through (0, 0) with slope A;. Now let
g(X) = f(X/m). Then g(X) satisfies the conditions of the lemma with A; = 0.
So, by what’s already been proved, there exists an x, with ord, x, = 0 and
g(xo) = 0. Let x = xo/m. Thenord, x = —A; and f(x) = f(xo/7) = g(x,) = 0.
O

< |x = xp

(] = [fa(x) = falx)ls = [x = xal,

Lemma8. Let f(X)=1+ S2,aX el + XQ[[X]] converge and have
value 0 at «. Let g(X) =1 + 22, b X" be obtained by dividing f(X) by
1 — X/a, or equivalently, by multiplying f(X) by the series 1 + X/« +
X2%[a? 4+ .- + X'[o! + - . Then g(X) converges on D(|«|,).

Proor. Let f,(X) = 1 + >7.; a, X' Clearly,

by = l/e! + ayfe!™" + ap/e! ™2 + - + a;_y/a + a,,
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4 Newton polygons for power series

so that
bt = fi(«).
Hence |b,¢|, = | fi(«)|, = 0 as i — oo, because f(«) = 0. O

Theorem 14 (p-adic Weierstrass Preparation Theorem). Let f(X) =1 +
S2iaX el + XQ[[X]] converge on D(p). Let N be the total horizontal
length of all segments of the Newton polygon having slope < X if this horizontal
length is finite (i.e., if the Newton polygon of f(X) does not have an infinitely
long last segment of slope X). If, on the other hand, the Newton polygon of
S(X) has last slope A, let N be the greatest i such that (i, ord, a;) lies on that
last segment (there must be a greatest such i, because f(X) converges on
D(p")). Then there exists a polynomial (X)) e 1 + XQ[X] of degree N and
a power series g(X) = 1 + 22, b; X" which converges and is nonzero on
D(p"), such that

h(X) = f(X)-g(X).

The polynomial h(X) is uniquely determined by these properties, and its
Newton polygon coincides with the Newton polygon of f(X) out to (N,
ord, ay).

ProOF. We use induction on N. First suppose N = 0. Then we must show
that g(X), the inverse power series of f(X), converges and is nonzero on
D(p"). This was part of Exercise 3 of §IV.1, but, since this is an important
fact, we’ll prove it here in case you skipped that exercise. As usual (see the
proofs of Lemma 6 and 7 and the remark right before the statement of
Lemma 6), we can easily reduce to the case A = 0.

Thus, suppose f(X) =1+ > a; X!, ord, a; > 0, ord, a;— o0, g(X) =
1 + 2 b X" Since f(X)g(X) = 1, we obtain

by = —(bi_1a; + by_.a; + -+ + bay_, + a)fori > 1,

from which it readily follows by induction on i that ord, ; > 0. Next, we
must show that ord, b; — o as i — 0. Suppose we are given some large M.
Choose m so that i > m implies ord, a; > M. Let

e = min(ord, a,, ord, a,, ..., ord, a,) > 0.

We claim that i > nm implies that ord, b, > min(M, ne), from which it will
follow that ord, b, — co. We prove this claim by induction on n. It’s trivial
for n = 0. Suppose n > 1 and i > nm. We have

by =—(bi-1ay + -+ binln + bimi1yner + o+ @)

The terms b,_,a, with j > m have ord,(b;_,a,)> ord, a, > M, while the
terms with j < m have ord(b,_,a,) > ord, b,_, + ¢ > min(M, (n — 1)e) + ¢
by the induction assumption (since i — j > (n — 1)m) and the definition of e.
Hence all summands in the expression for b; have ord, > min(M, ne). This
proves the claim, and hence the theorem for N = 0.
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Now suppose N > 1, and the theorem holds for N — 1. Let A; < A be
the first slope of the Newton polygon of f(X). Using Lemma 7, we find an «
such that f(«) = 0 and ord, « = —A;. Let

ﬁ(X)=f(X)(l +§+§—:+~--+§+~--)

=1+ >a/Xel+ XQX]].

By Lemma 8, fi(X) converges on D(pM). Let ¢ = 1/a, so that: f(X) =
(1 = cX)fi(X). If the Newton polygon of f1(X) had first slope A, less than A;,
it would follow by Lemma 7 that f;(X) has a root with p-adic ordinal —2,’,
and then so would f(X), which itis easy to check isimpossible. Hence A;" > A,,
and we have the conditions of Lemma 6 (with /1, f, A, and A, playing the roles
of f, g, Ay, and A, respectively). Lemma 6 then tells us that f;(X) has the same
Newton polygon as f(X), minus the segment from (0, 0) to (1, A,). In addition,
in the case when f (and hence f;) have last slope A, because f converges on
D(p"), Lemma 6 further tells us that /; must also converge on D(p").

Thus, f1(X) satisfies the conditions of the theorem with N replaced by
N — 1. By the induction assumption, we can find an A,(X) e 1 + XQ[X] of
degree N — 1 and a series g(X)el + XQ[[X]] which converges and is
nonzero on D(p"), such that

hi(X) = f1(X)-g(X).

Then, multiplying both sides by (I — ¢X) and setting h(X) = (1 — c¢X)h(X),
we have

h(X) = f(X)-g(X),

with A(X) and g(X) having the required properties.

Finally, suppose that h,(X)el + XQ[X] is another polynomial of
degree N such that h(X) = f(X)g,(X), where g,(X) converges and is non-
zero on D(p*). Since h,(X)g(X) = f(X)g(X)g,(X) = h(X)g,(X). uniqueness
of h(X) follows if we prove the claim: h,g = hg, implies that h, and h have
the same zeros with the same multiplicities. This can be shown by induction
on N. For N = 1 it is obvious, because h,(x) = 0« h(x) = 0 for x € D(p*).
Now suppose N > 1. Without loss of generality we may assume that — 1 is
ord, of a root « of h(X) having minimal ord,. Since « is a root of both h(X)
and h,(X) of minimal ord ,, we can divide both sides of the equality i, (X)g(X)
= h(X)g,(X) by (I — X/x), using Lemma 8, and thereby reduce to the case
of our claim with N replaced by N — 1. This completes the proof of Theorem
14. O

Corollary. If a segment of the Newton polygon of f(X) € 1 + XQ[[X]] has finite
length N and slope A, then there are precisely N values of x counting
multiplicity for which f(x) = 0 and ord, x = —A.
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Exercises

Another consequence of Theorem 14 is that a power series which converges
everywhere factors into the (infinite) product of (1 — X/r) over all of its roots
r, and, in particular, if it converges everywhere and has no zeros, it must be a
constant. (See Exercise 13 below.) This contrasts with the real or complex
case, where we have the function e* (or, more generally, e"*, where A is any
everywhere convergent power series). In complex analysis, the analogous
infinite product expansion of an everywhere convergent power series in terms
of its roots is more complicated than in the p-adic case; exponential factors
have to be thrown in to obtain the *“Weierstrass product” of an “entire”
function of a complex variable.

Thus, the simple infinite product expansion that results from Theorem 14
in the p-adic case is possible thanks to the absence of an everywhere conver-
gent exponential function. So in the present context we’re lucky that exp, has
bad convergence. But in other contexts—for example, p-adic differential
equations—the absence of a nicely convergent exp makes life very compli-
cated.

EXERCISES

1. Find the Newton polygon of the following polynomials:
)1 — X+ pX? (i) 1 — X3/p? (i) 1 + X2+ pX* + p°X®
(iv) 2P iXxt1 ) (I — X)1 - pX)(1 — p?X)(dothisintwo ways)
i) TIP2, (1 — iX).

2. (a) Let f(X)e 1 + XZ,[X] have Newton polygon consisting of one segment
joining (0, 0) to the point (n, m). Show that if n and m are relatively prime,
then f(X) cannot be factored as a product of two polynomials with coefficients
in Z,.

(b) Use part (a) to give another proof of the Eisenstein irreducibility criterion
(see Exercise 14 of §I.5).

(c) Is the converse to (a) true or false, i.e., do all irreducible polynomials have
Newton polygon of this type (proof or counterexample)?

3. Let f(X)el + XZ,[X] be a polynomial of degree 2n. Suppose you know
that, whenever « is a reciprocal root of f(X), so is p/« (with the same multipli-
city). What does this tell you about the shape of the Newton polygon? Draw
all possible shapes of Newton polygons of such f(X) when n = 1, 2, 3, 4.

4. Find the Newton polygon of the following power series:
(i) 3% X' 1pt (i) 3Zo((pX) + X7 (i) 220 i!X"
(iv) 2720 X'/i! V) (1 = pX3I(1 = pX?) (vi) (I = p*X)/(1 — pX)
(vii) [T%o(1 = p'X) (viii) 3720 pt¥2 X

5. Show that the slopes of the finite segments of the Newton polygon of a power
series are rational numbers, but that the slope of the infinite segment (if there
is one) need not be (give an example).

6. Show by a counterexample that Lemma 7 is false if we omit the condition

that the line through (0, 0) with slope A, pass through a point (i, ord, a,),
i > 0.
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Distributions and measures.

Let us consider a commutative associative ring R, an R-module A and a

profinite (i.e. compact and totally disconnected) topological space Y. Then
Y is a projective limit of finite sets:

Y =IlimY;
!

where [/ is a (partially ordered) inductive set and for i > j, i, j € | there are
surjective homomorphisms 7; ; : Y; — Y} with the condition

mijomjk = mik for i > j > k. The inductivity of / means that for any

I,J € I there exists k € | with the condition kK > i, kK > j. By the universal

property we have that for each / € | a unique map 7 : Y — Y, is defined,

which satisfies the property 7 j o m; = m; (for each i,j € /).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September,2009

17 / 56



Let Step(Y, R) be the R-module consisting of all R-valued locally constant
functions ¢ : Y — R.

Definition
A distribution on Y with values in a R-module A is a R-linear homomorphism

w: Step(Y,R) — A.

For ¢ € Step(Y, R) we use the notations

p(p) = /y pdp = /Y p(y)du(y)-

Each distribution 1 can be defined by a system of functions pu() : Y; — A,
satisfying the following finite-additivity condition

W)= Y ix) ey, xev). (4.5)

wa;jl(y)
In order to construct such a system it suffices to put
u(x) = u(dix) €A (x € Yi),

where §; , is the characteritic function of the inverse image 7; !(x) C Y with
respect to the natural projection Y — Y;. For an arbitrary function
@j: Y;j — R and i > j we define the functions

Qi = Pj O, Y = @joTj, goEStep(Y,R), (p,':Y,'—’>Yj—>R.
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A convenient criterion of the fact that a system of functions () : Y; — A
satisfies the finite additivity condition (4.5) (and hence is associated to
some distribution) is given by the following condition (compatibility
criterion): for all j € I, and ¢; : Y; — R the value of the sums

u(e) = (i) = Y eily)n(v), (4.6)

yeY;

is independent of / for all large enough i > j. When using (4.6), it suffices
to verify the condition (4.6) for some “basic” system of functions. For
example, if

Y =G = |<iLn G;
is a profinite abelian group, and R is a domain containing all roots of unity
of the order dividing the order of Y (which is a “supernatural number”)
then it suffices to check the condition (4.6) for all characters of finite order
X : G — R, since their R ® Q -linear span coincides with the whole ring
Step(Y, R ® Q) by the orthogonality properties for characters of a finite
group (see [Kat], [MSD74]).
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Example: Bernoulli distributions

Let M be a positive integer, f : Z — C is a periodic function with the
period M (i.e. f(x+ M) =1f(x), f:Z/MZ — C). The generalized
Bernoulli number (see [BS85] ) By r is defined as k! times the coefficient
by t¥ in the expansion in t of the following rational quotient

Mz_:l f(a)te?

Mt _ 17
g e 1
that is,
o0 M—-1
Bif i f(a)te?
k| o Z eMt _1° (4.7)
k=0 a=0
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Now let us consider the profinite ring

Y = Zs = lim (Z/MZ)
M

(S(M) C S), the projective limit being taken over the set of all positive
integers M with support S(M) in a fixed finite set S of prime numbers.
Then the periodic function f : Z/MZ — C with S(M) C S may be viewed
as an element of Step(Y,C). We claim that there exists a distribution

Ey : Step(Y,C) — C which is uniquely determined by the condition

Ek(f) = Bk,f for all f € Step(Y, C) (48)

In order to prove the existence of this distribution we use the above
criterion (4.6) and check that for every f € Step(Y, C) the right hand side
in (4.8) (i.e. By ) does not depend on the choice of a period M of the
function f. It follows directly from the definition (4.7); however we give
here a different proof which is based on an interpretation of the numbers
By ¢ as certain special values of L-functions.
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For a function f : Z/MZ — C let

0@

L(s,f)=) f(n)n~*
n=1

be the corresponding L-series which is absolutely convergent for all s with
Re(s) > 1 and admits an analytic continuation over all s € C. For this series

we have that
By f

k

For example, if f =1 is the constant function with the period M = 1 then we
have that

L(1— k,f) = — KT (4.9)

A===70 Lt ma1

By being the Bernoulli number. The formula (4.9) is established by means
of the contour integral discovered by Riemann. formula apparently implies
the desired independence of By ¢ on the choice of M. We note also that if
K C C is an arbitrary subfield, and f(Y) C K then we have from the
formula (4.7) that By s € K hence the distribution Ej is a K-valued
distribution on Y.
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Measures

Let R be a topological ring, and C(Y, R) be the topological module of all
R-valued functions on a profinite set Y.

Definition
A measure on Y with values in the topological R-module A is a continuous
homomorphism of R-modules

n:C(Y,R) — A.

The restriction of i to the R-submodule Step(Y,R) C C(Y, R) defines a
distribution which we denote by the same letter i, and the measure p is
uniquely determined by the corresponding distribution since the R-submodule
Step(Y, R) is dense in C(Y, R). The last statement expresses the well known
fact about the uniform continuity of a continuous function over a compact

topological space.
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Now we consider any closed subring R of the Tate field C,, R C C,, and let
A be a complete R-module with topology given by a norm |- |4 on A
compatible with the norm |- |, on C, so that the following conditions are
satisfie:

e for x € A the equality |x|4 = 0 is equivalent to x = 0,

o forac R, x € A: |ax|4 = |a|p|x| 4,

o for all x,y € A: |x + y|a < max(|x|a,|y|a).

Then the fact that a distribution (a system of functions u{!) : Y; — A) gives
rise to a A-valued measure on Y is equivalent to the condition that the
system ,u(") is bounded, i.e. for some constant B >0 and forall i€, x€Y;
the following uniform estimate holds:

1 (x)]a < B. (4.10)
This criterion is an easy consequence of the non-Archimedean property

Ix + yla < max(|x|4,|y|a)

of the norm |- |4 (see [Ma73], [Vi76]). In particular if
A=R=0,={xeC, | |x|p <1} is the subring of integers in the
Tate field C, then the set of Op,-valued distributions on Y coincides with
Op-valued measures (in fact, both sets are R-algebras with multiplication
defined by convolution.
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Lecture N°3. The abstract Kummer congruences and the p-adic Mellin

transform

A useful criterion for the existence of a measure with given properties is:
Proposition (The abstract Kummer congruences)

(see [Kat]). Let {f;} be a system of continuous functions f; € C(Y,Op) in
the ring C(Y,Op) of all continuous functions on the compact totally
disconnected group Y with values in the ring of integers O, of C, such
that Cp-linear span of {f;} is dense in C(Y,C,). Let also {a;j} be any
system of elements aj € Op. Then the existence of an Op-valued measure
1 on 'Y with the property

fidu = aj

Y

is equivalent to the following congruences, for an arbitrary choice of
elements b; € C, almost all of which vanish

Z bifi(y) € p"Op for all y € Y implies Z biaj € p"Op. (4.11)

v

Remark

Since C,-measures are characterised as bounded C,-valued distributions,
every C,-measures on Y becomes a Op-valued measure after multiplication
by some non-zero constant.
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Proof of proposition 4.1. The necessity is obvious since
Zb;a; = /(p”Op — valued function)duy =
- Y
)
= p”/ (Op — valued function)dp € p"Oyp.
Y

In order to prove the sufficiency we need to construct a measure u from the
numbers a;. For a function f € C(Y,0,) and a positive integer n there exist
elements b; € C, such that only a finite number of b; does not vanish, and

f— ) bifi € p"C(Y,0p),

according to the density of the C,-span of {f;} in C(Y,C,). By the
assumption (4.11) the value ) . a;jb; belongs to O, and is well defined
modulo p” (i.e. does not depend on the choice of b;). Following N.M. Katz
([Kat]), we denote this value by “ |, fdys mod p” ". Then we have that the
limit procedure

fdp = lim / fdpmod p" " € limO,/p"0Op = Op,
Y n

Y n—oo

gives the measure p.
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Mazur's measure

Let ¢ > 1 be a positive integer coprime to

“TT«

qesS

with S being a fixed set of prime numbers. Using the criterion of the
proposition 4.1 we show that the Q -valued distribution defined by the
formula

ES(F) = Ex(f) — cXEx(f.),  fo(x) = f(cx), (4.12)

turns out to be a measure where E,(f) are defined by (4.8),
f € Step(Y,Qp) and the field Q is viewed as a subfield of C,.

Define the generelized Bernoulli polynomials B,EA,/!)(X) as

te(a—I—X)t

Z By (X Z () w7 (4.13)

and the generalized sums of powers
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Then the definition (4.13) formally implies that

—[BW)( M) — B (0)] = Sk—1,¢(M), (4.14)
and also we see that
K /g _
B(M (X) = Z (,) Bi tX* ' =By s+ kB 14X +---+ BosX.  (4.15)
i=0

The last identity can be rewritten symbolically as
Br.r(X) = (Br + X)*.

The equality (4.14) enables us to calculate the (generalized) sums of powers in
terms of the (generalized) Bernoulli numbers. In particular this equality implies
that the Bernoulli numbers By ¢ can be obtained by the following p-adic limit
procedure (see [La76]):

B, = lim
k,f — n—>ooMn

Sk.r(Mp")  (a p-adic limit), (4.16)

where f is a Cp-valued function on Y = Zg. Indeed, if we replace M in (4.14)
by Mp"™ with growing n and let D be the common denominator of all

coefficients of the polynomial B,EA;’)(X). Then we have from (4.15) that

i [ (MP )(M) (M)( )} = Bk_1.¢(Mp™) (mod (4.17)

k kDp )
The proof of (4.16) is accomplished by division of (4.17) by Mp" and by
application of the formula (4.14).
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Now we can directly show that the distribution E; defined by (4.12) are in
fact bounded measures. If we use (4.11) and take the functions {f;} to be all
of the functions in Step(Y,Op). Let {b;} be a system of elements b; € C,
such that for all y € Y the congruence

Z bifi(y) =0 (mod p") (4.18)

holds. Set f =) . bif; and assume (without loss of generality) that the
number n is large enough so that for all i with b; # 0 the congruence

ka.E

)y

Sk,f,(Mp") (mod p”) (4.19)

p"
is valid in accordance with (4.16). Then we see that

Mp"—1

Bir=(Mp") "> Z bifi(a)aX (mod p"), (4.20)

hence we get by definition (4.12):

ES(f) = Bis—c*Bux. (4.21)
Mp"—1

Z Z b [ (a)a* —f(ac)(ac)} (mod p").
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Let ac € {0,1,--- , Mp™ — 1}, such that a. = ac (mod Mp"), then the map
a+— ac is well defined and acts as a permutation of the set
{0,1,---, Mp" — 1}, hence (4.21) is equivalent to the congruence

ak — (ac)k g
Ef(f) = By — c*Byr. = Z b-f,-(a)ak (mod p"). (4.22)
a=0

Now the assumption (4.17) formally inplies that E_(f) =0 (mod p"),
completing the proof of the abstact congruences and the construction of
measures Ef.

Remark
The formula (4.21) also implies that for all f € C(Y,C,) the following holds

ES(f) = kEf (3 'f) (4.23)

where x, : Y — C, € C(Y,C,) is the composition of the projection
Y — Zp and the embeddmg Lp — Cp.

Indeed if we put a = ac + Mp"t for some t € Z then we see that
ak — (ac)k = (ac + Mp™"t)* — (ac)* = kMp"t(ac) "t (mod (Mp")?),
and we get that in (4.22):

2k — (ac)*
Mp"

18c — ac
Mp"

k(ac)k~ (mod Mp™).

The last congruence is equivalent to saying that the abstract Kummer
congruences (4.11) are satisfied by all functions of the type xg_lf,- for the
measure Ef with f; € Step(Y, C,) establishing the identity (4.23).
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The domain of definition of the non-Archimedean zeta functions

In the classical case the set on which zeta functions are defined is the set of
complex numbers C which may be viewed equally as the set of all continuous
characters (more precisely, quasicharacters) via the following isomorphism:

C — Homeont(RY,C*) (4.24)

S HH— (y — yS)

The construction which associates to a function h(y) on R (with certain
growth conditions as y — oo and y — 0) the following integral

L) = [ h )y

+

(which converges probably not for all values of s) is called the Mellin transform.
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For example, if ((s) = > _,~; n™° is the Riemann zeta function, then the
function ((s)I'(s) is the Mellin transform of the function h(y) =1/(1 — e™Y):

()= ¥ (4.25)

— ey
Ole y

so that the integral and the series are absolutely convergent for Re(s) > 1. For
an arbitrary function of type

(0. @)

f(z) = Z a(n)e?™nz

n=1

with z = x + iy € H in the upper half plane H and with the growth condition
a(n) = O(n°) (c > 0) on its Fourier coefficients, we see that the zeta function

(0. @)

L(s,f) =) a(n)n",

n=1

essentially coincides with the Mellin transform of f(z), that is

) oy [ gy
(QW)SL(S’ f)—/o f(iy)y y' (4.26)
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Both sides of the equality (4.26) converge absolutely for Re(s) > 1 + c.
The identities (4.25) and (4.26) are immediately deduced from the well
known integral representation for the gamma-function

[(s) = / e_yysﬂ, (4.27)
0 y

where % is @ measure on the group R which is invariant under the group

translations (Haar measure). The integral (4.27) is absolutely convergent
for Re(s) > 0 and it can be interpreted as the integral of the product of an
additive character y — e~ of the group R(*) restricted to R, and of the

multiplicative character y — y®, integration is taken with respect to the
Haar measure dy/y on the group RY.
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In the theory of the non-Archimedean integration one considers the group
Zs (the group of units of the S-adic completion of the ring of integers Z)

instead of the group R, and the Tate field C, = Q, (the completion of
an algebraic closure of Q) instead of the complex field C. The domain of
definition of the p-adic zeta functions is the p-adic analytic group

Xs = Homeont (Z3,C) = X(Z3), (4.28)

where:
X A~V X
ZS — GEqGSZq )

and the symbol
X(G) = Homeont (G, CJ) (4.29)

denotes the functor of all p-adic characters of a topological group G (see
[Vi76]).
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The analytic structure of X

Let us consider in detail the structure of the topological group Xs. Define
Up={xe€Z;, | x=1 (mod p")},

where v =1 or v = 2 according as p > 2 or p = 2. Then we have the natural
decomposition

Xs =X | (2/p"Z)* x [] 25 | x X(Up). (4.30)
q7p

The analytic dstructure on X(U,) is defined by the following isomorphism (which
is equivalent to a special choice of a local parameter):

gp:X(Up)i>T:{zE(C;< | |z —1], < 1},

where ¢(x) = x(1 + p¥), 1 4+ p” being a topoplogical generator of the
multiplicative group U, = Z,. An arbitrary character x € Xs can be uniquely

represented in the form x = xox1 where xq is trivial on the component U,, and
X1 Is trivial on the other component

(z/pz)* x | 25
q7p
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The character g is called the tame component, and 1 the wild component of
the character x. We denote by the symbol () the (wild) character which is
uniquely determined by the condition

X(@)(1+p7) =t

with t € Cp, |t|, < 1.
In some cases it is convenient to use another local coordinate s which is
analogous to the classical argument s of the Dirichlet series:

Op — XS
S —— X(S)7

where (%) is given by x(9)((1 4 p*)®) = (1 + p*)** = exp(aslog(1 + p*)).
The character x(8) is defined only for such s for which the series exp is
p-adically convergent (i.e. for |s|, < p*~1/(P=1)). In this domain of values
of the argument we have that t = (1 + p¥)® — 1. But, for example, for

(1 + t)P" =1 there is certainly no such value of s (because t # 1), so that
the s-coordonate parametrizes a smaller neighborhood of the trivial

character than the t-coordinate (which parametrizes all wild characters)
(see [Ma73], [Man76]).
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p-adic analytic functions on Xs

Recall that an analytic function F: T — C,

(T={z€C; | |z—1|p, <1}), is defined as the sum of a series of the type
S iogai(t —1)" (aj € C,), which is assumed to be absolutely convergent for all
t € T. The notion of an analytic function is then obviously extended to the
whole group Xs by shifts. The function

is bounded on T iff all its coefficients a; are universally bounded. This last
fact can be easily deduced for example from the basic properties of the
Newton polygon of the series F(t) (see [Kob80], [Vi76]). If we apply to
these series the Weierstrass preparation theorem (see [Kob80], [Man71]),
we see that in this case the function F has only a finite number of zeroes
on T (if it is not identically zero).
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In particular, consider the torsion subgroup X&™ C Xs. This subgroup is
discrete in Xs and its elements x € X{™ can be obviously identified with
primitive Dirichlet characters Y mod M such that the support

S5(x) = S(M) of the conductor of y is containded in S. This identification
is provided by a fixed embedding denoted

if we note that each character x € X&™ can be factored through some
finite factor group (Z/MZ)*:

X:Zs — (Z/MZ)” —~ Q" &C;,

and the smallest number M with the above condition is the conductor of
X € XS,

The symbol x, will denote the composition of the natural projection

Zs — Zj and of the natural embedding Z) — CJ, so that x, € Xs and

all integers k can be considered as the characters Xg Ly — vk
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Let us consider a bounded Cp-analytic function F on Xs. The above
statement about zeroes of bounded C,-analytic functions implies now that
the function F is uniquely determined by its values F(xoX), where xq is a
fixed character and x runs through all elements x € X' with possible
exclusion of a finite number of characters in each analyticity component of
the decomposition (4.30). This condition is satisfied, for example, by the
set of characters x € X&™ with the S-complete conductor (i.e. such that
S(x) = S), and even for a smaller set of characters, for example for the set

obtained by imposing the additional assumption that the character 2 is
not trivial (see [Ma73], [Man76], [Vi76]).
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p-adic Mellin transform

Let 1 be a (bounded) C,-valued measure on Zg. Then the non-Archimedean
Mellin transform of the measure u is defined by

L) = ) =[x, (x € Xs). (4.31)

which represents a bounded Cy-analytic function
L'u : X5 — (Cp. (4.32)

Indeed, the boundedness of the function L, is obvious since all characters
x € Xs take values in O, and p also is bounded. The analyticity of this
function expresses a general property of the integral (4.31), namely that it
depends analytically on the parameter x € Xs. However, we give below a
pure algebraic proof of this fact which is based on a description of the
lwasawa algebra. This description will also imply that every bounded
Cp-analytic function on Xs is the Mellin transform of a certain measure .
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The Iwasawa algebra
Let O be a closed subring in O, ={z€C, | |z|, <1},
G = lim G;, (i < /),

1

a profinite group. Then the canonical homomorphism G; S G; induces a
homomorphism of the corresponding group rings

O|Gj] — O[Gj].
Then the completed group ring O[[G]] is defined as the projective limit
of[6¢]] = limO[[G]], (i el).

1
Let us consider also the set Dist(G, O) of all O-valued distributions on G
which itself is an O-module and a ring with respect to multiplication given
by the convolution of distributions, which is defined in terms of families of

functions o
iy s G — 0,

(see the previous section) as follows:
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We noticed above that the theorem 4 would imply a description of Cp-analytic
bounded functions on Xs in terms of measures. Indeed, these functions are
defined on analyticity components of the decomposition (4.30) as certain power
series with p-adically bounded coefficients, that is, power series, whose
coefficients belong to O, after multiplication by some constant from C/.
Formulas for coefficients of these series can be also deduced from the proof of
the theorem. However, we give a more direct computation of these coefficients

in terms of the corresponding measures. Let us consider the component al, of
the set Zz where

ac (z/p'z)* x ||z,
q7

and let p,(x) = p(ax) be the corresponding measure on U, defined by
restriction of y to the subset al, C Zg.
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Consider the isomorphism U, = Z, given by:

y=7" (x €Zp,y € Up),

with some choice of the generator v of U, (for example, we can take
v =1+ p”). Let ), be the corresponding measure on Z,. Then this measure
Is uniquely determined by values of the integrals

/Z (X) dyi(x) = aj, (4.36)

P

with the interpolation polynomials (’f) since the Cp-span of the family

() veren

is dense in C(Zp, Op) according to Mahler’s interpolation theorem for
continuous functions on Z,). Indeed, from the basic properties of the
interpolation polynomials it follows that

Zb; (X) =0 (mod p") (forall xe€Zy)= bj=0 (mod p").
_ I

We can now apply the abstract Kummer congruences (see proposition 4.1),
which imply that for arbitrary choice of numbers a; € O, there exists a
measure with the property (4.36).
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Coefficients of power series and the lwasawa isomorphism

We state that the Mellin transform L,,, of the measure 11, is given by the
power series F,(t) with coefficients as in (4.36), that is

/U X(0)(y)du(ay) = i (/Zp (T) dM;(X)> (t—1) (4.37)

p 1I=0

for all wild characters of the form x (), x(1)(7) = t, [t — 1|, < 1. It suffices
to show that (4.37) is valid for all characters of the type y —— y™, where
m is a positive integer. In order to do this we use the binomial expansion

3= (1 (77— 1)) = 2 ()om -

which implies that

[ ymantan) = [ a0 =3 ( [ () du;(X)> ("~ 1)

establishing (4.37).
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Example: Mazur's measure and the non-Archimedean

Kubota-Leopoldt zeta function

Let us first consider a positive integer ¢ € Zg NZ, ¢ > 1 coprime to all primes
in S. Then for each complex number s € C there exists a complex distribution
ps on Gs = Zg which is uniquely determined by the following condition

ps(x) = (1= x1(e)e™ ") L (—s, X), (4.38)

where Mo = | [,cs g. Moreover, the right hand side of (4.38) is holomorphic
for all s € C including s = —1. If s is an integer and s > 0 then according to
criterion of proposition 4.1 the right hand side of (4.38) belongs to the field

Qx) cQ* cQ

generated by values of the character Y.
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Thus we get a distribution with values in Q2. If we now apply to (4.38)
the fixed embedding i, : Q — C, we get a Cp-valued distribution

1{€) = i,(u§) which turns out to be an O,-measure in view of proposition
4.1, and the following equality holds

() = in (1€ (x)).

This identity relates the special values of the Dirichlet L-functions at
different non-positive points. The function

L(x)= (1 —c () ) 7 Lyo(x)  (x €Xs) (4.39)

Is well defined and it is holomorphic on Xs with the exception of a simple
pole at the point x = x, € Xs. This function is called the
non-Archimedean zeta-function of Kubota-Leopoldt. The corresponding
measure 1{9) will be called the S-adic Mazur measure.
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Lecture N°4. Method of canonical projection of modular distributions.

© Modular forms, L-functions and congruences between modular forms

@ A traditional method of p-adic interpolation. and the method of
canonical projection of modular distributions

© The use of the Eisenstein series and of the Rankin-Selberg method
The Eisenstein measure by N.M.Katz, ... Convolutions of Eisenstein
distributions with other distributions

@ Examples of construction of p-adic L-functions

© Families of modular forms and L-functions.
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Modular forms as a tool in arithmetic
We view modular forms as: where g = exp(2miz),

1) g-power series z € H, and define

[-functi
f = Zanq” e C|[q]] and as areren

n=0 | | L(f,s,x) ZX

2) holomorphic functions

on the upper half plane for a Dlrlchlet character
H={zeC|Im z >0} X : (Z/NZ)* — C* (its Mellin transform)

A famous example: the Ramanujan function 7(n)

The function A (of the variable z) F(1) = 1,7(2) = —24

is defined by the formal expansion (3) B 2’52 ’7'(‘6 1475
__ @ n — y -

e T r(m)7(n) = 7(mn)

= qu:lgl —4q )3 for (n,m) =1,

Is a cusp form of weight kK = 12 tor all orimes

for the group I' = SLy(Z)). ° Pr! P
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Classical modular forms

are introduced as certain holomorphic functions on the upper half plane

H={ze€C| Im z >0}, which can be regarded as a homogeneous space
for the group G(R) = GL2(R):

H = GLy(R)/0O(2) - Z, (4.40)

where Z = {(gg) |x € R*} is the center of G(R) and O(2) is the

Cy dy
positive determinant acts on H by fractional linear transformations; on
cosets (4.40) this action transforms into the natural action by group shifts.

Let [ be a subgroup of finite index in the modular group SL3(Z).

orthogonal group. The group GLJ (R) of matrices v = (37 b’y) with
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Definition of a modular form

A holomorphic function f : HH — C is called a modular form of (integral)
weight k with respect to I iff the conditions a) and b) are satisfied:

@ a) Automorphy condition
f((ayz + by)/(cyz + dy)) = (cyz + dv)kf(z) (4.41)

for all elements v € T;
@ b) Regularity at cusps: f is regular at cusps z € Q U oo (the cusps can
be viewed as fixed points of parabolic elements of I'); this means that for

each element 0 = (i 3) € SLy(Z) the function (cz + d)~kf (ifzz—ig)

admits a Fourier expansion over non—-negative powers of g'/V = e(z/N)
for a natural number N. One writes traditionally

g = e(z) = exp(2miz).

A modular form
0

f(z) =) a(n)e(nz/N)

n=0
is called a cusp form if f vanishes at all cusps (i.e. if the above Fourier
expansion contains only positive powers of g'/V), see [La76], [Ma-Pa05]
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The complex vector space of all modular (resp. cusp) forms of weight k with
respect to [ is denoted by My (') (resp. Sx(I)).
A basic fact from the theory of modular forms is that the spaces of modular

forms are finite dimensional. Also, one has My (IN)M;(I") € My, y(T'). The
direct sum

M(M) = P M ()
k=0

turns out to be a graded algebra over C with a finite number of generators.
An example of a modular form with respect to SLy(Z) of weight kK > 4 is
given by the Eisenstein series

Gi(z)= > (m + mz)* (4.42)

my,maEZL

(prime denoting (my, my) # (0,0)). For these series the automorphy
condition (4.41) can be deduced straight from the definition. One has
Gk(z) = 0 for odd k and

mi)k -
Gi(2) = (2152_ 1))! —E S o (me(nz)| (4.43)

where ox_1(n) =>4, d“=1 and By is the k' Bernoulli number.
The graded algebra M(SL2(Z)) is isomorphic to the polynomial ring of the
(independent) variables G4 and Gg.
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Examples

Recall that B, denote the Bernoullli numbers defined by the development

(Numerical table:

1 1 1 1
By=1 Bi=--,By=~-, By=Bs=---=0, B B — —
0 ) 1 27 2 67 3 5 0 4 = 30 6 427
5 691 7 3617 43867
By = —— = By=-——-,Bg="— Big=—o—,...).
®T 766" 2130 T 6 T B1o0 ° 708 )
One has
(27ri)k (27TI >
k) =L -
¢(k) 5+ Gk(2) =1y +ng 1(n)q"
(z)—1+240203 n)q" € Ma(SL(2,2)),
(z)_1—504205 n)q" € Me(SL(2,Z)),
Es( _1+48OZ<77 n)q" € Mg(SL(2,2)),

Eo(z)=1— 264209 n)q" € Mio(SL(2,7Z)),
n=1

65520
E12(Z) =1+ W 20'11 q S M12(SL(2 Z))

Era(z)=1— 242013 n)q" € My14(SL(2,7Z)).
n=1

Proof see in [Serre70].

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms

ICTP, September,2009 52 / 56




Fast computation of the Ramanujan function:

dk 1,.d
Put hy := ZZ d<1g" = Z - q . The classical fact is that A = (E} — E2)/1728
n=1 d|n d=1 q
where E; = 1 + 240hy and Eg = 1 — 504 hg.

Computing with PARI-GP see [BBBCO], The PARI/GP number theory system),
http://pari.math.u-bordeaux.fr

o0 (1 n o0 dk—lqd
hk:zzd qzz:l_qd:>

n=1 d|n d=1

gp > h6=sum(d=1,20,d"5%q~d/(1-q~d)+0(q~20))
gp > h4=sum(d=1,20,d~3*q~d/(1-q~d)+0(q~20)
gp > Delta=((1+240%h4)"~3-(1-504*h6)"2)/1728

q - 24%q~2 + 252%q~3 - 1472%q~4 + 4830%q~5 - 6048%q~6 - 16744%q"7
+ 84480%q~8 - 113643%q~9 - 115920%q~10 + 534612%q~11
- 370944%q~12 - B77738%q~13 + 401856%q~14 + 1217160%q~15
+ 987136%q"16 - 6905934%q~17+ 2727432%q~18 + 10661420%q~19
+ 0(q~20)
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Congruence of Ramanujan
T(n)EZdll mod 691 :
d|n

gp > (Delta-h12)/691
%10 = -3*q~2 - 2566%q~3 - 6075xq~4 - 70656xq~5 - 525300%q~6
- 2861568%q~7 - 12437115%q~8 - 45414400%q~9
- 144788634xq~10 - 412896000%q~11 - 1075797268*q~12
- 2593575936%q~13 - 5863302600*q~14 - 12517805568%q~15
- 25471460475%q~16 - 49597544448%q~17
- 93053764671%q~18 - 168582124800%q~19 + 0(q~20)

More programs of computing 7(n) (see [Sloane])

PROGRAM

(MAGMA) M12:=ModularForms(GammaO(1), 12); tl:=Basis(M12)[2];
PowerSeries(t1[1], 100); Coefficients($1);

(PARI) a(n)=if(n<1, 0, polcoeff(x*eta(x+x*0(x"n))~24, n))

(PARI) {tau(n)=if(n<1, 0, polcoeff(x*(sum(i=1, (sqrtint(8*n-7)+1)\2,
(-1)~i*(2%i-1)*x~((i~2-i)/2), 0(x"n)))"8, n));}
gp > tau(6911)
h3 -615012709514736031488
gp > ##
* % % last result computed in 3,735 ms.

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms

ICTP, September,2009 54 / 56




2 ALEXEI PANCHISHKIN

Let C, = @p denote the completion of an algebraic closure of the field
Q, of p-adic numbers. Fix a positive integer /N, a Dirichlet character
vmod N and consider the commutative profinite group

Y = Yy, = lim(Z/Np"Z)*

and its group X = Hom (Y, C,\) of (continuouos) p-adic characters

(this is a C,-analytic Lie group analogous to Homg,,:(R;, C*) = C (by
— (y +— y°)). The group X is isomorphic to a finite union of discs

U={2€C, | |z|, <1}

The p-adic L-function L : X — C, is a meromorphis function on X

coming from a p-adic measure on Y.

1. TRADITIONAL METHOD

of constructing these functions is from the special critical values of
complex L-functions (which are often algebraic, after a suitable nor-
malisation). Let us fix an embedding i, : Q — C, in order to consider
algebraic numbers as p-adic numbers.

Example 1.1. The Riemann zeta function.

)= JJ a-17)" Zn 5)> 1), CL—k)=—=~,

| primes

where By are the Bernoulli numbers given by

=, B t" tet
Bt: n p— .
€ Z n! et —1

n=0

Put for ¢ > 1 coprime to p
C9(—k) = (1= ") (1 = F)¢(=k)

THEOREM 1.2 (Kummer). For any polynomial h(x) = Y . ;2" €
Zy|z) over Z, such that x € Z, => h(z) € p™Z, one has

Zaz ; —i) € p"'Z, (1.1)
This property expresses the fact that the numbers CC)( k) depend

(p)
continuously on k in the p-adic sense:

Corollary 1.3. Let ki, ky € N*, ky = ky (mod(p — 1)p™ 1), then

(i) (—k1) = () (—k2) (modp™)
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Indeed, it suffices to take h(z) = 2% — xk2.

Proof of Theorem 1.1 is implied by the well-known formula:

SN =Yt = e (Bea() = Bl (12

in which By(z) = (z + B)* = 3% (k)Bi:vk_i is the Bernoulli polyno-

i=0 \4
mial.

Definition 1.4. a) Let A be a normed topological ring containing Z,
as a closed subring and let h be a positive integer. Consider the A-
submodule C"(Y, A) of all locally polynomial functions of degre < h on
Y (of the variable y, : Y — L, the canonical projection); in particular,
the A-submodule C*(Y, A) consists of locally constant functions on Y
with values in A. If A = C, then

Vh>1 C"Y,A) cC ™Y, A) = {p:Y — A| @ locally analytic} C C(Y, A),

where C(Y,A) ={¢:Y — A | ¢ continuous}.

b) A distribution ® on'Y with values in a normed A-module V is an
A-linear map ® : C'(Y,A) =V, o — [, ¢ dpu.

¢) A measure ® : C*(Y, A) — V is a bounded distribution: |®(p)], <
Clel, where C does not depend on ¢.

d) Let h € N*. An h-admissible measure on Y with values in V' is
an A-linear map ® : C"(Y, A) — V with the following growth condition:
forallt=0,1,... h—1,

/ (y, — ap)tdéls =0 (pm(h_t)) )
a+(Np™)

p

for m — oo.

If A = C, then according to |AV] and |Vi76], such a map ® can
be uniquely extended to the A-module C'°°~2%(Y, A) of locally analytic
functions onY" of the parameter y, : Y — Z7.

THEOREM 1.5 (Mazur). There erists a unique (bounded) measure y(®)
on L, with values in Z, such that

kgu© — O
/Zxdu = () (—k), k=0

»
Remark. Theorem 1.2 is equivalent to Theorem 1.5 (by integration of
h against u(©).

In the present paper we construct p-adic distributions on Y with
values in C, starting from distributions with values in spaces of modular
forms.
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The p-adic L-function of Kubota-Leopoldt is the meromorphic function
L,: X — C} given by

[, xdu®
Lp(a:)' JYT

=1 (e reX (1.3)

(with a single simple pole at x = y, '), and the function (1.3) is
independent of a choice of ¢: for all Dirichlet characters x mod p™,
X :Z, —>@X — C} one has

Ly(xyk) = (1= x()p")L(—k, x) € i,(Q™).

In general every distribution on Y with values in Z, defines a p-adic
L-function (the non-Archimedian Mellin transform of p):

Ly: X =Gy ta) = [ atw)de

If D(s,x) = >_,>1 x(n)c,n™° is an arithmeticaly defined complex L-
function twisted with a Dirichlet character y with the property D*(—k, ) €
Q for an infinite set of couples &,y (and with a normalization D*(s, x)
obtained by multiplying D(s, y) with certain elementary factors), one
constructs usualy the corresponding p-adic L-function L = L, start-
ing from the algebraic special values D*(—k, x) in such a way that

Ly (xu) Zéxyﬁdupzip(D*(—k,x)),

and the existence of such a measure is equivalent to generalized Kum-
mer congruences for the special values D*(—k, x). Formulas for these
values could be quite complicated and one uses various methods in
order to obtain such congruences (like the formulas of type (1.2) in
the proof of the Theorem 1). For modular forms one uses geometric
tools like modular symbols, continuous fractions, the Rankin-Selberg
method etc., (voir [Man73|, [Ra52|, [Man-Pal, [PLNM]).

We propose a new method which produces a family of p-adic mea-
sures starting from a distribution ® on Y with values in a suitable
vector space M = |, oo M(Np™) of modular forms; this family of
p-adic measures fi, ¢ ¢ IS parametrized by non-zero eigenvalues o €
C, # 0, of the operator U of Atkin-Lehner on M, and by a primitive
cusp eigenform f with an associated eigenvalue o # 0 (on an easy
modification fy of f as an eigenfunction). One says that a primitive
cusp eigenform f = > _ a(n, fle(nz) € S(I'o(N),v) C M (where
(e(nz) = exp(2minz))) is associated to an eigenvalue « if there exists a
cusp form fy = foo =D ,5; a(n, fo)e(nz) such that f, | U = afy and
fo | T(£) = a(f) fy for all prime numbers £ 1 Np)

In the ordinary case ||, = 1 a construction of such measures could
be obtained from Hida’s idempotent e = lim, .o, U(p)" (see Hida
|[Hi93|) acting on p-adic modular forms; the image of e is contained in
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a subspace M4 C M of finite dimension (“the ordinary part of M?”)
which is known to be generated by certain classical modular forms.
One obtains p,e 5 = {;(e®) for a suitable linear form ¢; € M°4*. In
a more general case when « # 0 one could imitate this method using
instead of M the primary (characteristic) subspace M* C M of U
(which is also of finite dimension).

2. DISTRIBUTIONS WITH VALUES IN MODULAR FORMS

Let A be an algebraic extension K of Q, or its ring of integers
Ok. Let us fix an embedding i, : Q — C, and let M,(I';(N); A),
M (To(N)1; A) be the submodules of A[[g]] generated by the g-expansions
f=3,0a(f)g" € Mp(T1(Np™),Q) of classical modular forms
with algebraic Fourier coefficients a,(f) € Q in i '(A). One puts
M = UpsoM(Np™), where M(Np™) = My(I'1(Np™); A), and S =
Um>0S(Np™) the A-submodule of cusp forms.

Examples of distributions with values in M.

Let @ : C}(Y,C,) — M be a distribution on Y with values in M.

a) Eisenstein distributions. For a complex number s € C and a, bmod N
put (by analytic continuation):

Eyn(z s5a,0) = (cz+d) ez +d|™> (0# (c,d) = (a,b)mod N) .

Starting from this series , one obtains the following Eisenstein distri-
butions: put s =—r, 0 <r </ —1,

NI — )
(—2mi)=2r (—4my)"

E,in(a,b) = Z e(—ax/N)E;n(Nz,—r;x,b)

amod N
=eren(a,b) + (4my) ™" Z sgnd- d“2 YW (4ndd'y, € — 7, —7)
0<dd’,d=a,d’=bmod N
-e(dd'z) € M, o(N), where r' = max(r,{ —r — 1),

Wi tr, = = 320 () e,

s j) Tl —r—j)
((s;a,N)= > n*,
YLEa?I%C}dN)
(—4my) T (0 +s) ./ b
= —\¢(1—¢—2s;a,N
57«,571\](&7 b) F(g + 25) 5<N>C< g S5 a, ) s——p

I+2s—1) a . os ‘
et ) 21

N

S=—T

These series are in general nearly holomorphic modular forms (see Sec-
tion 7) in spaces M, o(N?), where ' = max(r,{ —r — 1) but in certain
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cases they are holomorphic, e.g. £ >3, r=0or r = —1) and these
series produce distributions on Y x Y with values in M:

E.o((a+ (Np™) x (b+ (Np™)) := E,gnpm(a,b) € Mi(N?*p*™).

b) Partial modular forms. For any f =" _.a,(f)q" € My(T'1(Np™)
one puts B

p(a+ (Np™) = Y au(f)g" € Mp(Np™)

n>0
n=a( mod p")

¢) Partial theta series (also with a spherical polynomial), see [Hi85].

Remarks. i) For any Dirichlet character y mod p™ viewed as a function
on Y with values in i,(Q), the integral

/Y () A0y = 0500 = 3 x(Man(F)g" € My(N*p™)

n>0

coincides then with the twisted modular form f,.

ii) The distributions a), b), ¢) are bounded (after a regularisation of
the constant term in a)) with respect to the p-adic norm on M =
Upm My (T1(Np™), A) C Al[g]] given by |g|, = sup, |a(n,g)|, for g =
> onso(n, 9)g" € Mi(I'1(N), A) ).

iii) Starting from distributions a), b), ¢) one can construct many other
distributions, for example, using the operation of convolution on Y (as
in [Hi85]|, where the case of the convolution of a theta distribution with
an Eisenstein distribution was considered).

However we need distributions p with scalar values (in Z, or in C,)
which we construct starting from distributions ® with values in M.
This will be done in two steps:

The first step is the passage from M to a certain finite-dimensional
part M° C M; one uses a suitable projector 7 : M — M?° such that
one can keep track of denominators when the level of modular forms
grows.

The second step is to apply a suitable linear form to the distribution
7m(®) in order to obtain the special values of the L-functions as certain
p-adic integrals against the measure w(P).

3. FIRST STEP: PROJECTORS ON FINITE DIMENSIONAL SUBSPACES

The first idea would be to use the trace operator

N m
T = Y
YELo(Np™)\T'o(N)
One obtains after a normalisation a projector
_ Np™
m(f) = [Lo(N) : To(Np™)] ' Try" f

which is well defined but which introduces inacceptable denominators.
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The second idea is to use the operator U = U, of Atkin-Lehner
which acts on M and on S by g | U = > .,a(pn,g)q", where g =
>0 a(n,9)q" € M C Allq]], a(n, g) € A.

Let o € C, be a non-zero eigenvalue of U = U, on M, associated to a
primitive cusp eigenform f =" _, a(n, f)e(nz) € Sp(I'o(N),¢) C M.

In the ordinary case |a|, = 1 there exists a p-adic construction of a
projector 7 given by Hida’s idempotent e = lim,_,, U(p)" acting on p-
adic modular forms, whoses image is in the finite dimensional subspace
M4 C M (“the ordinary part of M”). Then one gets pio.e f = {f(e®)
with a suitable p-adic linear form ¢; € M°d*,

4. A NEW CONSTRUCTION

It provides a rather simple method which attaches to a distribution
® on Y with values in a suitable vector space

M= U M(Np")

of modular forms, a family p, ¢ ; of p-adic measures on Y parametrized
by non-zero eigenvalues « associated with primitive cusp eigenforms
f. This construction does not use any p-adic limit procedure and in
fact it uses only standard linear algebra considerations in the finite
dimensional primary (characteristic) subspace of the eigenvalue a.

Definition 4.1. a) For an a € A put M@ = Ker(U — ol) the A-
submodule of M of eigenfunctions of the A-linear operator U (of the
eigenvalue o).

b) Put M* = U,>1 Ker(U — al)"™ the a-primary (characteristic )
A-submodule of M.

c) Put M®(Np™) = M*NM(Np™), M@ (Np™) = MAIAM(Np™).

Proposition 4.2. Let A= Q,. Define Ny = Np, then U™(M(Nop™)) C
M(No).

Proof follows from a known formula [Se73],
Um — pm(k/Qfl)WNopm Tr%gpm WNO’

where g, Wn(2) = (VNz)Fg(=1/Nz) : M(N) — M(N) the main
involution of level N (over the complex numbers).

Proposition 4.3. Let A = @p and let o be a non-zero element of A;
hence o

a) (U*)™ : M*(Nop™)——M*(Nop™) is an invertible Q,-linear op-
erator.

b) The Q,-vector subspace M(Nop™) = M®(Ny) is independent of
m.



8 ALEXEI PANCHISHKIN

¢) Let Tom : M(Nop™) — M*(Nop™) the canonical projector onto
the a-primary subspace of U (of the kernel Ker 7o m = ()5, Im(U —
al)™ = ®pzaMP(Nop™)), then the following diagram is commutative

M(Nop™) —2% M (Nop™)

o[ e

M(No) —= M*(No)

Proof. Due to the reduction theory of endomorphisms in a finite dimen-
sional subspace over a field K, the projector m,,, onto the a-primary
subspace (-, Ker(U — oI)" has the kernel (1,5, Im(U — al)" and it
can be expressed as a polynomial of U with coefficients in K, hence
Ta,m commutes with U. On the other hand, the restriction of 7, ,, on
M(Ny) coincides with 7, o : M(Ng) — M*(Ny) because its image is

UKer —al)"NM(Ny) = LJKerU|MN0 —al)",
n>1 n>1

and the kernel is

() Im(U — al)" " M(No) = () Im(U |pvg) —ad)™

n>1 n>1

5. DISTRIBUTIONS WITH VALUES IN p-ADIC MODULAR FORMS

Let g = ano a(n,g)g"™ € My(I'1(N),A) then |g|, = sup, |a(n, g)|,
is a well-defined p-adic norm on

M = Upso M (T (Np™), A) C Al[q]]-

Let us denote by M the completion of M in A[[q]] with respect to this
norm. Let V' be a normed A-module.

THEOREM 5.1. Let « # 0 be a non-zero eigenvalue of the operator
U on the A-module M. The a-primary part ®“ of a distribution on

Y with values in M is given by [, o®* := (U“)_mﬂa@((fygo do) |
Um> € M for all p € C1(Y, A) and for all p™ sufficiently large so that
[y @ d® is a finite linear combination in M(Nop™)).

Put ®(a+(Np™)) = fy Xat+(Npm) AP where X oy (npmy denotes the char-

acteristic function of an open subset a+(Np™) CY ; hence there ezists
m’ € N such that

®(a+ (Np™)) = @(X(ar(vpm)) € M(NP™H),
and the a-primary part ®* of ® s defined by

(a+ (Np™)) = ()™ [ma(@(a+ (Np™) | U™]. (5.1)



A NEW METHOD OF CONSTRUCTING p-ADIC L-FUNCTIONS 9

6. MAIN THEOREMS

Let ® be a bounded distribution with values in M and « an eigen-
value of U on M.

THEOREM 6.1. If |a|, = 1 then ®* is a bounded distribution on'Y with
values in M® (an A-module of finite rank).

THEOREM 6.2. Suppose that for allm € N* and fort =0,1,... hx—1
/ y, d® € M(Nop™™) (with h = [ord, o] +1) (6.1)
+(Nop™)

for a suitable non-negative integer s (the condition of the modularity
of a suitable level). Then there exists an hs-admissible distribution d*
on Y with values in M® such that for all m' sufficiently large (with
m' > sm) and for all t =0,1,... hsx — 1 one has

/ y;d(ia = (UOé)fmlﬂ-a’O ((/ y;dq)) ’ Um/) .
a+(Nop™) a+(Nop™)

Remark. If A = @p then the condition of the theorem 4 is equivalent to
Iy XYy d® € M(Nop™*) for all Dirichlet characters x mod Nop™ (with
values in A) because

t t
y do = E X! / Xy, dP.
/a+(Nopm) Nop P

mod Nop™

Proof of Theorem 6.1. 1t suffices to show that for a constant C' > 0
and for all the open subsets of type a + (Np™) C Y one has |®%(a +
(Np™))|, < C. By our assumption there exists m’ € N such that

®(a+ (Np™)) = ®(X(arvpm)) € M(NP™H),
then the a-primary part ¢ of ® is given by (5.1):
@ (a + (Np™) = (U [mool@(a + (N5 | U]

On the a-primary subspace M* C M one has U* = al + Z for
a nilpotent p-integral operator Z: for all ¢ = Y _ a(n,g)¢" € M,

91U =3 0a(n, 9)¢" g | Ulp < lgl, and |g | Z], < g1,
Next all the functions ®*(a+(Np™)) = o™ (a(U*) ™)™ [700(®(a + (Np™)) | U™]
are bounded because |a~![, = 1 and
n—1
(U™ = (a7 U™ =T +a"'2)" Z ( ) a7
=
(6.2)
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Proof of Theorem 6.2. Let ord, o > 0 and let h = [ord, o] + 1. Hence
one has to bound

/ (yp—ap)t Ao = a " (a(UY) M |:7Ta70 (/ (yp — ap)t d(ID) | U“} )
a+(Nop™) a+(Nop™)

The norms of the operators

(aU%) 1y = (o) = Z ()2

are uniformly bounded by C; > 0 as n = dim M® does not depend on
m. Hence for all £t =0,1,...,hscr — 1 one has

‘ / o )(yp - ap)t do” » < (- |a|;m%' MaXyeaJr(Nopm) |yp - ap|t' |(I)|p
a+(Nop™

< Oy Oylp™ |t =ordr e = o(pmh=Dy b > ord, «

as m — oo (because |®], < O, and |al;™ = p™ ).

7. NEARLY HOLOMORPHIC p-ADIC MODULAR FORMS OF TYPE r > (

Let us specialize us now to the case when A is either an algebraic
extension K of Q, or the ring Ok of integers of K. Fix an embedding

Ip - Q— @p = C,. Let r be a non-negative integer and ¢,w two vari-

ables (over the complex numbers g = e(z) = €*™*, w = 4y = 47 Im(2),
z € C). In the ring A[[q]][w™"] let us consider the A[[g]]-submodules

P.(A) = {g =Y w gy with g; =37 - a(j,n,g)q" € A[[q]]} Con-
sider also for any positive integer a the complex vector spaces of nearly
holomorphic functions (see [Hi85|) @y = { > o Im(472) 7 g;(2) with

gj = anoa(j7 n, g)e(nz/a)} and pUt Qr = Ualer,a-

THEOREM 7.1. a) The A-module M, ;x(T1(N),A) C Allq]]lw™"] of
modular forms of type r > 0 and of weight k > 1 for I'1(N) is generated

by the series g € M, with algebraic coefficients a(j,n, g) € i,(Q) such
that the correspondent complex series (denoted also g)

g=1i,"(¢9) =Y Tm(4rz)" Y i, (a(j,n,g))e(nz) € Qra
j=0 n>0
satisfy to two conditions: ¥y € T'1(N), glxy = g and Vy € Sly(Z),
g|k’7 € Q.
b) Put M, = M, (N, p) = Up>oM, (Np™), where M, ,(Np™) =
M, (T (Np™), A).
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8. EXAMPLE: REAL ANALYTIC EISENSTEIN SERIES OF WEIGHT
?>0

(see [Ka76|)| For s € C and a,bmod N define (as in Section 2) the
Eisenstein series:

Eyn(z,s;a,b) = Z(cz+d)_e\cz+d|_2s (0 # (¢,d) = (a,b) mod N) .

Starting from this series one obtains the following Eisenstein distri-
bution with values in nearly holomorphic forms (for all s = —r with
0<r<e-1):

N2 — )

E, ,b) = ,
en(a,b) (—2mi) =2 (—4my)"

Z e(—ax/N)E;n(Nz, —r;,b)

amod N

= eron(a,b) + (dmy)™ > sgnd-dT W (dmdd'y, L — v, —)

0<dd’,d=a
d’=bmod N

(8.1)
ce(dd'z) € My o(N?),

where 1’ = max(r,{ —r — 1),

W(y,g_h —T) _ Z(_l)j (T) FF(E—_T)Z/Tj , C(S; a, N) = Z n_* :

j=0 J (6 - ]> nzar(lnéc}d N)
_ (—Amy)T(l+s) b ‘
eron(a,b) = (1 25) 5<N>§(1 ¢ —2s;a,N) o

M((+2s—1) (a | N |
(47ry)”511“(8)5<_> [C(E 25 = L N) ()T 25— 1 b, N)}

N

e

9. DISTRIBUTIONS WITH VALUES IN NEARLY HOLOMORPHIC p-ADIC
MODULAR FORMS OF TYPE r > 0

Let g = Zgzo w™ ano a(j,n, 9)q" € M.y, C Allql]lw™"]. Put |g|, =
sup,, ;|a(j,n, g)|,- One has a p-adic norm on M,.;.
Let a be an eigenvalue of U on M, ., g|U™ = pk/2=1) Y mod pm q| (Olplfn) =

- +
p " Zumodp’m g(zpmu>,

k

z4+u Im 2 m —j mj - om n

Im( >:p_m:g!U =D w ™) alip"n.g)g
j=0

m
p n>0

(an integral operator on Mrk)
Definition 9.1. a) Mff“) = Ker(U — o),

b) M2, = Un21 Ker(U — aI)",
) Miy(NB™) = My (Np™) 1 M2,
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THEOREM 9.2. a) For allm > 1 the A-module M, (Nop™) = Mg, (No)
1s of finite rank and it does not depend on m. o
b) The following diagram is commutative (for A= Q,)

M, (Nop™) S M (Nop™)

UWJ/ \LZ(U"‘)W

M(Np) M (No)

Ta,0

(Tom 1S the projector onto the a-primary subspace with the kernel
N>y Im(U — al)" N M, 1 (No) (equal to the direct sum of all the other
prir_n,a,ry subspaces; Tom = Rom(U) with a suitable polynomial R, ,, €
Alx] see Proposition 4.3).

Definition 9.3. Let o € A be a non-zero eigenvalue of the operator U
on M, and ® : C1(Y, A) — M., a distribution. The a-primary part
d: CH(Y, A) — M2, of ® is given by

() = U [maoU™(®(p)] € M2,
for all m sufficiently large (avec ®(p) € M, (Nop™)).

The definition is independent of the choice of m (assumed sufficiently
large) by Prop. 9.2, b).

THEOREM 9.4. Let ||, = 1 and ® a bounded distribution with values in
the A-module M, j, of p-adic nearly holomorphic modular forms. Then
the distribution ®% defined in 9.3 is also bounded.

Proof. 1t is identical to that of Theorem 6.1 (in which the holomorphic
case was treated).

10. h-ADMISSIBLE DISTRIBUTIONS.

Let ®; : C}(Y,A) — M, be a family of distributions (non nec-
essarily bounded, j = 0,1,...,r* r* > 1). For any open subset
a+ (Np™) CY put ®j(a+ (Np™)) = @;(Xa+vpm))-

THEOREM 10.1. Let 0 < ||, < 1 and h = Jord, a| + 1. Suppose that
there exists » € N* such that for all 5 = 0,1,... hsxe — 1 and for all
m > 1 one has ®;(a + (Nop™)) € M, ,,(Nop™*) (the level condition).
Suppose next that for t = 0,1,...,hsx — 1 and for all a+ (Np™) C Y
one has

¢
t —J m m —m
o3 (5) e yta Dl < Ol = Cp (0
=0
with a suitable constant C' > 0 (tl}e divisibility condition). Then there
exists an hx-admissible measure ®* : C"*(Y, A) — M2, C M, such

that fa+(N()pm) ygd(fo‘ = ®%(a + (Nop™)) (for j =0,1,... hse—1).
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Proof. 1t suffices to verify the condition of growth (1.1 d)) for ®§(a +
(Nop™)) € M,k (Nop™*). One has U = ol + Z, Z" = 0 on Mg, (Ny),
n = rkaM7 (Nop™; A).

On the other hand by the conditions of the theorem we have

t

/a+(Nopm)(yp —,)'dd" = Z (t> (—ay)"7@F (a + (Nop™))

=0

P (Z ({)carasiar <Nopm>>)] .

J=0

The operators o~ (U®) =% = S0 1 (7"*)(a~'Z)" are uniformly bounded

7

by a constant C; > 0 hence the condition (10.1) implies

/ (yp — ap>td(i)a
a+(Nop™)
—»xordpa

when m — oo because |al, = |p|”%®, ord,a < h, |p™|,
o(p™").

< C-Cilal,™p™ L = o(p™ 1)
V4

11. THE SECOND STEP: APPLICATION OF A SUITABLE LINEAR
FORM

Let a € Q C C be a non-zero eigenvalue of U on M,.;(C) associated
with a primitive cusp eigenform f € S;(I'g(N), ) and let fy = fyo be
a corresponding eigenfunction (fo|U = afy), let us define fO = f|Wy,,

f(')o = ZnZl an(fo)q”, Wi, = (?Vo_é)

Proposition 11.1. o) U* = W&(}UWNO in the hermitian vector space
S, k(1 (No), C), the adjoint operator with respect to the Petersson scalar
product.

b) One has f°|U* = af°, and for all "good" prime numbers | { Np
one has T, f° = a;(f) f°.

¢) The linear form l;o = g — (f° g) on M, x(T1(No),C) van-
ishes on Kerma, where mao @ My p(T'1(No),C) — M7, (T'1(No), C)
(the projector onto the a-primary subspace with the kernel Kerm, o =
Im(U — al)") hence

(% 9) = (", man(9))-
d) If g€ M(Np™, Q) = M(Nop™, Q) et a # 0, one has
(f'9%) =a™(fg | U™)
where
9" = (U*) " maolg | U™) € M*(Np)
is the a-primary part of g.
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e) One puts
(f°, a"™glU™)n
‘C &3 g = 07
d ( ) <f07f0>N0
hence Lo : M(Np™; Q) — Q (the linear form Lo, sur M, ,(T1(Np),C)
is defined over Q) and there exists a unique A-linear form lro €
M3, (No)* such that

(%, a7™U™(g)) Ny
<f07 fO)N@

iy (Lralg) =
(Vg with coefficients in i, (A)).

Proof of Proposition 11.1 a) See [Miy|, Th. 4.5.5.
b) By definition, fOlU* = f§ | W, W ,UWp = aff | Wap = af°.
¢) For any function

g=U—al)"geKermyo=Im(U — al)"
one has
(f°00) = (f",(U—al)"g) = (U —al)f*,(U - al)" 'g) =0
hence for g1 = g — ma0(g) we get
(1°.9) = (", ma0(9) +(9—9)) = (f*, ma0(9) +(f*, 91) = {f°, Ta0(9))
d) Let us use directly the equality (U*)™f° = a™f° of b):
a™ - (f%g%) = ((U)" ", U " Tapolg | U™)) =
(' Tanlg | U™) = (91 U™)

by ¢) because g|U™ € M(Np). B
e) Note that L;,(fo) = 1, fo € M(Np;Q); consider the complex
vector space

Ker Ly = ()" ={g € M(Np;C) | (f°g) =0}

which admits a Q-rational basis because it is stable by the action of all
"good" Hecke operators T; (11 Np):

(f*9)=0=(f*\Tig) = (T} f°,9) = 0

and one obtains such a basis by the diagonalisation of the action of all
the 7} (a commutative family of normal operators) and e) follows.

12. RELATIONS TO THE L-FUNCTIONS: CONVOLUTIONS OF THE
EISENSTEIN DISTRIBUTIONS

Let £ mod N be an auxiliary Dirichlet character £ : Y — A*,
Y22, Y = lim Ym,

Ynpm = (Z/Np™Z)*. Consider two Eisenstein distributions
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Eo e npm (€,0) = ZQEYNpm &(a)Eoe(a,b; Np™) €

M(),g if€230r§7é1
My, ifE=1,0=1,2

ET’,Z,Npm (a) = ZbEYNpm ET,Z,Npm ((I, b) S Mr’,Za r = max(?",ﬁ —Tr— 1)

Proposition 12.1. Let y,v : Y — A* be two Dirichlet characters
mod Np™,
a) Let f € S(N,v), k > 2, define

®;(a)npm = Z ¢§(Q)Eo,k717j(§7ya)Ej,Hj(y)

yEYNpm

(a twisted convolution, j = 0,...,k — 2). Hence for any Dirichlet
character x mod Np™ one has

P;(x) = Eoj—1-3(& X) Eja+5(VEX);
b) the special values of the function L¢(s,x) = >, <, X(n)an(f)n
with a primitive Dirichlet character x mod Np™ (m > 1) admit the
following integral representation

(2, = SO U

—S

(where G(x) is the Gauss sum of x, t € Q is an explicitly given ele-
mentary constant independent of j and x);

c) the distributions ®; satisfy the conditions of Theorem 6 and they
produce an h-admissible measure (compare with [Vi76]) which interpo-
lates the normalised critical values

a"GOOT (G + DL +1,X) Ly(k = 1,€)
(_Zﬂ—i)j+k<f7 f)

where (f, f) denotes the normalized Petersson product.

Proof of Proposition 12.1 a) This is a general property of multiplicative
convolutions.
b) Implied from the Rankin-Selberg method for the convolution

D(s, f.g9) = Ly(2s +2 — L,Y€X) Y _ anban ™,
n=1

where £ is an auxiliary non-trivial Dirichlet character £ and the numbers

b= 01156(m) = Y X(E(n/d)d™!

dn,d>0

are Fourier coefficients of a certain Eisenstein series g = Y~ b, exp(2minz)

of weight [ (and of Dirichlet character y¢) if x¢(—1) = (—1)! so that

Ly(s) = annﬂ =L(s—141,Y)L(s,&)
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and we know by Rankin’s lemma (see |[Ra52|, or a general lemma
of Shimura [Shi76|, Lemma 1 (generalized Rankin’s lemma), see also
[Shi77], [Hi85|, [Man-Pa|) that D(s, f,g) can be expressed through
Li(s — 1+ 1,%)Ls(s,€). In order to get the integral representation
of b), we evaluate then the function Lf(s — [+ 1,%)Ls(s,€) at points
s=k—1,andput =k —j—1, where 1 <1 <k —1).

c) One checks coefficient-by-coefficient that the distributions ®; sat-
isfy the level condition and the divisibility condition of Theorem 6 with
» = 2. Then one directly applies Theorem 6 and proposition 11.1 ¢),
d) in order to obtain the desired h-admissible measure jif, in the form

fia = Lra(P).
13. APPLICATION TO TRIPLE PRODUCTS

Consider the vector space

M = U Mk(rl(Npm))®3
m>0
and let L(f ® g® h, s) be the triple L-function attached to f @ g®h €
Si(T1(N))®3 associated with an ordinary eigenvalue a37, hence

fo ® go ® hg € Si(T'1(Np))®?

is an eigenfunction of U®? on S (T';(Np))®3, and f°® ¢° ® kY is an
eigenfunction of (U*)®3. Let us use the restriction to the diagonal
O = E}(z1,22,23) € Mp(T1(Np))®® of the Siegel-Eisenstein distri-
bution (see |[Plsr|) viewed as a formal Fourier series. One obtains a
distribution on Y with values in M.

Put . <f0 ® g0 ® hO’ (I)aﬁ'y>
lf®g®h,ozﬁ’7(q)) =y <<f0, f0><g0’ 90><h0, h0>)

THEOREM 13.1. (a work in progress with Siegfried Bocherer)] The dis-
tribution liggenasy (P) on Y with values in M is bounded and the
integrals lrggon,asy(P)(X1 ® X2 ® x3) on the characters x1 ® x2 @ X3
coincide with the special values L*( fy, ® gy, @hyq, So), where the normal-
1sation of L* involves Gauss sums, Petersson scalar products , powers

of ™, afy.

Proof. The existence of l¢gy0n a8, (P) follows from the existence of ®
using Theorem 3, and the equality is implied by the integral formula
of Garrett-Harris [GaHal, see also [LBP], [PTx]|.
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On p-adic families of L-functions

|—Introduction

A motivation: why study [-values attached to modular

forms?

A popular proceedure in number theory is the following:
Compute f via

Cons’Fruct a gengating ) modular forms.
function f = Zn_zO anq for example A number
€ C[[q]] of an arithmetical ~~ oo o .
: n (solution)
function n — ap, Zp(n)q
for example a, = p(n n=0
P n P( ) _ (A/q)_1/24
Example 1 [Chand70|: ) ;
(Hardy-Ramanujan)
Good bases, Values
pn) = —— = finite dimensions, of L-functions,
+0(e7r\/2/3("—1/54>/x;‘;), many relations periods,
An = Vn = 1724, and identities congruences, . ..
Other examples: Birch and Swinnerton-Dyer conjecture, ... L-values

attached to modular forms
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|—Statement of the problem of Coleman-Mazur

Statement of the problem of Coleman-Mazur

This talk is about the paper [PaTV] by A.P., Two variable p-adic L
functions attached to eigenfamilies of positive slope, Invent. Math. v. 154,
N3 (2003), pp. 551 - 615, and about some further developments.

The Tate field C,
Fix a prime p, and let C, = @p We fix an embedding

be the Tate field ip : Q — C,, and view
(the completion of the field algebraic numbers as
of p-adic numbers) p-adic numbers via i,.

A primitive cusp eigenform f
f=f = Z anq" € 8x(To(N),),a primitive cusp eigenform
n>1 f = fk of Weight k> 2
(where g = e(z) = exp(27iz), for To(N) with a
Im(z) > 0) Dirichlet character ¢y (mod N).
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|—Statement of the problem of Coleman-Mazur

The special values of the L-function attached to f at

s=1,--- k—1
where 1 — a, X + 1)(p)p*~1 X2

L(sx) = S x(mann™, = (1 apX)(1 — apX)
n>1 is the Hecke polynomial
(x are Dirichlet characters) ap and «, are called

the Satake parameters of f

Periods of f Following a known theorem of Shimura [Sh59] and Manin
[Ma73], there exist two non-zero complex constants c*(f),c(f) € C*
(the periods of f) such that for all s=1,---,k — 1 and for all Dirichlet
characters x of fixed parity, (—1)¥5x(—1) = +£1, the normalized special
values are algebraic numbers:

L*(f,5,x) = (2"”)_1((52)”(5”‘) cQ. (2.1)
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|—Statement of the problem of Coleman-Mazur

A tamily of slope 0 > 0 of cusp eigenforms f, of weight

k > 2 containing f
1) the Fourier coefficients ap(k) of f;
Ny and the Satake p-parameter a,(k)

' by certain
k— f = an(k)q" are s
= Tk ; n(k)g p-adic analytic functions k — a,(k)

€ Q[q] € C,lq] for (n, p) = 1

2) the slope is constant and positive:
ord(ap(k)) =0 >0

A model example of a p-adic family (not cusp and ¢ = 0): Eisenstein series
the Fourier coefficients a,(k)
B k-1 and one of the Satake p-parameters
=) I Nh=E =1
are p-adic analytic functions,
and ordp(ap(k)) = ordp(1l) =0

d|n




On p-adic families of L-functions

|—Statement of the problem of Coleman-Mazur

The existence of families of slope ¢ > 0: R.Coleman,
|[CoPB]

He gave an example with
p=7,f=A, k=12
a; =7(7)=—-7-2392,0 =1,

and a program in PARI for computing
such families is contained in [CST98]
(see also the Web-page of W.Stein,
http://modular.fas.harvard.edu/ )
The Problem, see [Co-Ma] R. Coleman, B. Mazur, The eigencurve.
Galois representations in arithmetic algebraic geometry, (Durham,
1996), London Math. Soc. Lecture Note Ser., 254, at p.6

Given a p-adic analytic family k — f, = Z an(k)q" € Q[q] of positive
n=1
slope o > 0, to construct a two-variable p-adic L-function interpolating

L*(fka S, X) on (57 k)
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|—Statement of the problem of Coleman-Mazur

Known cases:
treated in [Am-Ve| by Y. Amice, J. Vélu,
e One-variable case in [Vi76] by M.M. Visik, and in
(k = k is fixed, o > 0), [MTT] by
B. Mazur; J. Tate; J. Teitelbaum
e 0 = 0 (H.Hida) . .
(“ordinary families”) (see in [Hi93])
they correspond to powers of a

e Special values of L-functions .
grossen-character A

attached to families 7, of an imaginary quadratic field K
OII/IYU\./l'. M;nT and l\/)l\'kﬁ/ll'VISh;\ll(; at a splitting prime p,
[ a- '] - Tk — Z (a)q (resp. to grossencharacters
aCOk

and of N.M.Katz, [Kat]), of type. 40 . /low
which are are certain of the idele class group A} /K
ordinary families (in the sense of Weil [We56],)

y of a CM-field K.
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I—Statement of the problem of Coleman-Mazur

Motivation comes from the conjecture of Birch and
Swinnerton-Dyer, see in [Colm03]

For a cusp eigenform f = f,, corresponding to an elliptic curve E by Wiles [Wi], we
consider a family containing f.

S

One can try to approach k =2,s =1

from the other direction, taking k — 2«
instead of s — 1, this leads to a formul. T+ o e
linking the derivative over s at s =1 c |
of the p-adic L-function with the
derivative over k at k = 2 T

of the p-adic analytic function e ST
ap(k), see in [CSTO8]: QL g

L;)7f(1) = Lp(f)Ly (1)

: da, (k)
th L,(f) = —2—F
W p(f) dk ’k:2 The validity of this formula
needs the existence of

our two variable L-function!




On p-adic families of L-functions

|—Statement of the problem of Coleman-Mazur

Our method

is a combination of the Rankin-Selberg method, the theory of p-adic integration

with values in p-adic Banach algebras A and the spectral theory of Atkin’s
U-operator: U = U, : A[q] — Alq] defined by:

U Zanq” = Zapnq” e Alq]-

n>1 n>1

Here A = A(B) is a certain p-adic Banach algebra of functions on an open
analytic subspace B C X of the weight space X = Homeont(Y,C}). This is an
analytic space over Cp,, which consists of all continuous characters of the
profinite group Y = (Z/NZ)* x Z,

The classical analogue of the weight space is the whole complex plane

C = Homeont (R, C*), 5 = (y — y°).

The weights k correspond to certain points in B C X. Any series
f = anl anq" € A[q] produces a family of g-expansions

{fc = ew(f) = Z evk(an)q" € Cplg]}. which can be classical modular forms

n>1

in Q[q].
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|—Statement of the problem of Coleman-Mazur

1) We construct first an analytic function £, : X — A = A(B) as the Mellin
transform

L,(x) = /Yx(y) du(y) (where x € X = Homcont(Y,(C:;),x = x(y)),

[t is a certain measure with values in A, on the profinite group Y.
2) For each s € B C X, there is the evaluation homomorphism

evs : A(B) — Cp; we obtain L,(x,s) by evaluation of an A-valued

integral:

£u(x,5) = eve(Lu(x)) = evs ( /Y xdu> (x € X, Lu(x) € A)

This gives a p-adic analytic L-function in two variables
(x,s) € X x B C X x X:

(x,5) — L,(x,s).

3) We check an equality relating the algebraic numbers L (s, x)
(s =1,---,k—1) with the values L, (x, k) at certain points x € X (more
precisely, at x = x - y[’,‘).

10
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p-adic integration and the p-adic weight space

p-adic integration and the p-adic weight space

Consider the group

Y = lim(Z/Np*Z)* = (Z/NZ)* x 7

and the group of p-adic characters
X = Xy = Homeont (Y, C5) 3 X, ¥p,
where

x mod Np“Z: (Z/Np"Z)* — C;
Yo: Y —1Z;

( a profinite group with
a projection y, : Y — Z7)

(the p-adic weight space,
which is a Cp-analytic group)
(a Dirichlet character)

(the canonical projection,

a p-adic character of Y)

The analytic structure on X = Xy = Homeon (Y, C, ) over Cp is given by the

decomposition:

X = Hom((Z/NpZ)*, C;) x Homeont(I', Cy)

where Y = (Z/NpZ)* x T, T = (1+ pZp)*, is a procyclic group of generator
v =1+ p, and we see that X is a finite cover of the p-adic unit disc:

X —»Homcom(r,C;) ;u:
{teChl||t—1p<1l}={xt:y—t]|teU}.

11
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|—p—adic integration and the p-adic weight space

Distributions with values in Banach modules: notation
is a point in the weight space X = Homgqp( Y, (C;j)

(k,v) = ygw € X (we write simply k for (k,))

A (a p-adic Banach algebra)

% (an A-module)

C(Y,A) (the A-Banach algebra

U of continuous functions on Y )
Qloc—const(y' A (the A-algebra

of locally constant functions on Y )
Definition
a) A distribution D on Y with values in V is an A-linear form
D eloc=const(y A) — V, o D(p) = / wdD.
Y

b) A measure u on Y with values in V is a continuous A-linear form

p:C(Y,A) — V, gpl—>/gpd/¢.
Y

The integral / wdp can be defined for any continuous function ¢, and any
14

12 bounded distribution u, using the Riemann sums.
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L

p-adic integration and the p-adic weight space

Admissible measures of Amice-Vélu

A more delicate notion of an h-admissible measure was introduced in
[Am-Ve] by Y. Amice, J. Vélu (see also [MTT], [Vi76]):

Definition

a) For he N,h > 1 let P"(Y,A) denote the A-module of locally
polynomial functions of degree < h of the variable

Yp:Y — Z:j — A*; in particular,

Tl(Y,A) _ Gloc—const(Y’A)

(the A-submodule of locally constant functions). Let also denote
Gloc=an(y A) the A-module of locally analytic functions, so that

PL(Y,A) C P'(Y,A) C Glcman(y A) c (Y, A).

13
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L

p-adic integration and the p-adic weight space

Admissible measures of Amice-Vélu (continued)

b) Let V be a normed A-module with the norm |- |, v. For a given
positive integer h an h-admissible measure on Y with values in V' is an
A-module homomorphism

o PHY,A) -V

such that for fixed a € Y and for v — oo the following growth
condition Is satisfied:

/ (vp — 3p)"d®| = o(p ")) (3.2)
a+(Np") p.V

for all h =0,1,...,h—1 2, :=y,(a)

The condition (3.2) allows to integrate only the locally-analytic
functions: there exists a unique extension of ® to Cc—2"(Y A) — V
(via the embedding P"(Y, A) C @lec=an(Y A)). The integral is
defined using generalized Riemann sums: take the beginning of the
Taylor expansion of a locally-analytic function ¢ € €c=27(Y A) (of

14| order h — 1) instead of just values of a function ¢.
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L

p-adic integration and the p-adic weight space

The p-adic Mellin transform and two variable p-adic analytic

functions

Any h-admissible measure [i on Y with values in a p-adic Banach
algebra A can be caracterized by the logarithmic growth o(log”(+))
of its Mellin transform L;(x) (see [Am-Ve]|, [Vi76], [HaH]):

Li: X — A, defined by L;(x) :/ x(y)dp(y),
%

where x € X, L;(x) € A, X C @lec=an(y A)*
Key property of h-admissible measures ji: its Mellin transform L is
analytic with values in A.

Then we obtain the function L ,,(x, s) by evaluation at (s,%): this is
a p-adic analytic function in two variables (x,s) € X x B C X x X:

La(x,s) =evs(Ly) (xe€ X, Li(x) e A).

15
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p-adic integration and the p-adic weight space

Example ([Am-Ve], [MTT], [Vi76])

For a primitive cusp eigenform f = fi = >~ a,q" € Sx([o(N), 7)) of
weight k > 2 for [o(N) with a Dirichlet character 1 and positive slope
o = ordp(«) define the integer h = [0] + 1 (where 0 < k — 1, and
1—a,X +9(p)p*1X2 = (1 —apX)(1 - o, X) as above).

Then there exists an h-admissible Cp,-valued measure i = i, £(y) on Y
such that for all couples (j, x) with 0 <j < k — 2, and for any nontrivial
primitive Dirichlet character x mod p" satisfying x£(—1) = (=1)k=1=/,
there is the following equality (in Cp):

[y~ - pVJG X) % . = ]
/Y X(y) yp dft = ip ( av( 150 +J,x)> (=Lilxyp)),  (33)
where G(x) is the Gauss sum of the character x mod p¥, and L¥(1 + j, X)
is given by a choice of periods (2.1). In other words, the complex L-values
(3.3) attached to f coincide with the values L (x y5) of the p-adic Mellin
transform of fi.
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L Coleman’s families

Coleman’'s families: notation

The proof of the existence of families of slope o > 0 by R.Coleman, [CoPB], uses the
following ideas: let us consider

K : Qp] < o0 — a finite extension of Q, contaning
all the Fourier coefficients
ip(an) of f

A = Ak(B) — the K-Banach algebra

of rigid-analytic functions
eviy A — K — the evaluation map

defined for all (k,¢) € B
(a neigbourhood around (k, ) € X).

M(N; A — a Banach A-module of overconvergent
— U M(NpY, ; A) families of modular forms:

v>1 this module is generated by some
C Alq] g = neobng" € Ald]

such that evk(g) € K[q]
are classical cusp eigenforms for all &

with (k, 1) in a neighbourhood

B of (k,v) € X.

17




On p-adic families of L-functions

L Coleman’s families

Coleman proved:

18

e The operator U acts as
a completely continuous operator

on each A-submodule M(Np¥; A)T
C Alq] (i.e. Uis a limit
of finite-dimensional operators)

e there is a version

of the Riesz theory:

for any inverse root o € A*
of Py(T) there exists

an eigenfunction g, Ug = ag

— there exists

the Fredholm determinant
Py(T)

=det(ld — T - U) € A[T]

such that evk(g) € K[q]
are classical cusp eigenforms
for all k such that (k, )

Is in a neigbourhood

B around (k,9) € X

(see in [CoPB])
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Definition

a) A function g € M(Np¥; A)' C A[q] is called Coleman’s family if
Ug = ag, and the functions evi(g) € K[q] are cusp eigenforms for all
k such that (k,) is in a neigbourhood B around (k,) in the p-adic
weight space X, and ord,(a(k)) = o > 0 is constant and positive,
where a(k) = evi(a) € K Niy(Q)

b) Let f, € Q[q] denote the primitive cusp eigenform attached to
evi(g) € K[q]. Then the family {f;} of classical primitive cusp forms
is also called Coleman’s family.

Remark
Hida’s families correspond to o = 0, they were constructed in [Hi86]

(see also [Hi93]).
There exist analogues of Hida's families in the Siegel modular case.
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Recall that by [Ra52], [Za77] and [Sh77], the numbers

TR (fe, fi) Np

are algebraic for all j € Z with 0 < < k — 2,
x&(—=1) = (—=1)*71 (here (f, fy)np denotes the Petersson scalar product.

Main Theorem

Consider a nonzero analytic function a = a(s) € A* defined in a neigbourhood
B of (k,v) € X, and consider Coleman’s family

f = {fk - Zan(k)q"} e Alql

n=1

with coefficients in the algebra A = A(B), where o € A* is the corresponding
eigenvalue of U. Suppose that the slope ord,(a) = o > 0 is fixed for all

a = a(k) with (k,v) in B, and define the integer h = [o] + 1.

Then there exists an h-admissible measure [i = pi,, f with values in A on the
group Y, determind by the following property:
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Main theorem (continued)
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for all couples (j, x) with 0 <j < k —2, k > 20 + 2, any primitive
Dirichlet character x mod p" satisfying x&(—1) = (—=1)k=17/, the
following equality holds:

evk (/Yx(y)y{; dﬁ) = ip (Rk’i‘:fk(;f,) ’Fk(1+j,>2),) (5.4)

where G(x) is the Gauss sums of x mod p¥, and Ry € Q* is an
elementary factor coming from an explicit choice of periods c¢* ().
The choice of periods: fix two Dirichlet characters & mod p of
different parity then

(—2i7T)k_1<fk, fk>Np
Mk —1)Ls (k—1,8)

cE(f) = where £(—1) = £(—1)k"1. (5.5)
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A key ingredient in our construction
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is the use of a linear form
ga(k) : Mk(’W%%@) — @7

such that a(k) € Q% Lok)(Uph) = aly(ky(h) for all h € My(Np, 1, Q), and
1 —apX +9(p)p"1X2 = (1 — a(k)X)(1 — a(k)' X) for a primitive cusp

eigenform f = Zanq" € 84 (To(N), 1, Q) of weight k > 2 for I'g(N) with a

n=1
Dirichlet character ©» (mod N). One can define such linear form by
(f%, h)
h+— h
lo : h <f0,fo>7w ere

fo is an eigenfunction of U,: fo|U, = a(k)fy, and
fO is the corresponding eigenfunction of U3: fO|Us = a(k)f°,
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|—Eigenfunctions of Up and of U;:.

Functions fy and Y

23

Recall that for any primitive cusp eigenform f = > "2, ap(f)q",
there is an eigenfunction of U = U, with the eigenvalue

o =al) € Q (U(f) = ak) given by

fo = Z anq”—o/z anqP" = Z a(fy, n)q" € S, (Fo(Np), 1, Q), and

n>1 n>1 n>1

0 —1 _ n ANS)
fO _ fbﬁ‘k (Np 0 ) ’ fb’o — Za(fb, n)q c Sk(rO(Np)awa@)
n>1

is an eigenfunction of the adjoint operator Uy, is explicitely
computed in [Go-Ro].
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|—Eigenfunctions of Up and of U;:.

The answer to the question of Coleman—Mazur

24

is given by the function (5.6) of the following theorem:

Theorem
Under the assumptions and notations of Theorem 5.2 there exists a
unique p-adic analytic function on X x B (of two variables x, s),

Loz,f(’la '2757 f) X XB — <CP (56)

such that

i) for any fixed (s,%) € B, the function L, ¢(x,s; &, f) of the variable

x is Cp-analytic and has the logarithmic growth o(log"(x)),

i) for each couple (x,j) with0 <j < k —2, k > 20 + 2 and any

primitive Dirichlet character xy mod p¥ € X' with values in K*

satisfying v > 2, x£(—1) = (=1)k=1, the special value

L(xyp, k; &, fx) is given by the image under i, of the algebraic number

PYG(x)
ap(k)

and R, € Q* is an elementary factor given by the explicit choice of

periods c*(f,), as in (5.5).

R

£, (1+J,X), where G(x) is the Gauss sums of x mod p",
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Construction of the admissible measure [i
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Recall the Definition 3.2: an h-admissible measure on a profinite group
Y with values in an A-module V is an A-module homomorphism

i PNY,A) =V,

satisfying a certain growth condition (3.2).

This means that ji is given by a sequence {p;} of certain distributions
on Y, in such a way that for j =0,1,--- , h— 1 and for all compact
open subsets U C Y one has

/ yidfi = (V). (6.7)
U
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Recall: the growth condition (3.2)

is needed in order to define an h-admissible measure i out of a
sequence {y;} of distributions on Y, in such a way that

/Uy,{;dﬁ = (V)

for j=0,1,---,h—1 and for all compact open subsets U C Y.
This condition has the form: for t =0,1,--- ,h—1

/ (yP - ap)tdﬁ
a+(Np") P

= Et: ( ) ~ap) pia+ (Np"))| = o(p""Y) for v — co.

J=0

(6.8)

In this condition the elements ;(a + (Np")) belong to a p-adic

26| Banach algebra A.
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We construct the sequence p; out of products of Eisenstein series:

Hj = Ka(ﬂa(cbj))? U=0,1,---,h—=1),h=[o] + 1.

» ®&; is a sequence of modular distributions on Y with values in a
certain A-module M = My(v); A) of modular forms with
coefficients in A (it has infinite rank):

Mu(y;A) = ) M(Np",4; A),

v>0

(our modular forms ®;(x) are products of certain families of
classical Eisenstein series in A[q])
> T, Is the canonical projector onto the characteristic A-submodule

M* = M*(A) of Atkin's operator U (ano bnq”) = > n>0 bpng"
(Key point: the A-module M“(A) is locally free of finite rank)
> (o € Hom»4(M“, A) is a A-linear form (given by the Petersson

fO h
scalar product with h € M%, as in Section 3: h1 o h) :
(f0, fo)
normalized by the equality /,(g) = 1 for Coleman’s eigenfunction

g = fo € M=,

27
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Main congruence: criterion of admissibility

28

Theorem

Let 0 < |a|p < 1 and suppose that the following conditions are
satisfied: for allr =0,1,--- h—1 with h = [ordpa] + 1, and v > 1,

®,(a+ (Np¥)) € M(Np*)T (the level condition) (6.9)
and the following p-adic congruence holds: for all t =0,1,---,h—1

U Z (t) (—ap)"~"®,(a+ (Np¥)) =0 mod p*” (6.10)

r
r=0

(the divisibility condition)

Consider the linear form CTDO‘(53+(va)y£) = To(Pr(a+ (Np")) (defined
on local monomials of degree r = 0,1,---, h — 1).
Then ®% is an h-admissible measure: ®® : P'(Y,Q) — M* Cc M
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L Construction of the admissible measure i

Proof uses the commutative diagram:

M(Np¥+L, p; A)'
U"l
M(Np, ; A)T

Ta,v

—
Ta,0

M*(Np¥+L, o A)T
w
M (Np, ;. AT = M (Np¥ 4y AT

The existence of the projectors 7, , comes from Coleman’s Theorem

A.4.3 [CoPB].

On the right: M®(Np“*1,4; A)T does not depend on v (a version of
Hida's Control Theorem), and U acts on the locally free A-module
M*(Np¥*1, A)T via the matrix:

(a

0

o

87

0
0

-

*

-

where v € A”

—> U" is an isomorphism over Frac(A),
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One controls the denominators

of the modular forms of all levels v by the relation:

Tav(h) = U™V mao(U*h) =: ma(h) (6.11)

The equality (6.11) can be used as the definition of 7,. The growth

condition (3.2) for m,(®,) is deduced from the congruences (6.10) between
modular forms, using the relation (6.11).

Recall: then we obtain the function L, (x,s) by evaluation at (s,%): this is
a p-adic analytic function in two variables (x,s) € X x B C X x X:

La(x,s) =evs(Lp) (xe X, Lu(x) e A).
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Modular Eisenstein distributions ®;

Consider again two auxiliary Dirichlet characters £& mod p, £(—1) = £1,
and use the method of Rankin-Selberg for the convolution

D(s,f,g) =Ln(2s +2 — k — I, 9&x) Z anbnn™°, where (7.12)
n=1

br =0y 1 5e(n) = > xX(d)é(n/d)d" T,

d|n,d>0

are the Fourier coefficients of an Eisenstein series g = > ° ; bsq" of
weight | (and of Dirichlet character %¢€) if x¢(—1) = (—1), so that

s)—anS L(s —1+1,%)L(s,§).
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Rankin's lemma (cf. [Rab2]) gives

D(s,f,g) = Ln(2s+2—k — [,9p€x) > anbpn™* (7.13)

n=1

— Lf(S — [+ ]_7)_()Lf(575)7

and evaluation at s = k — 1 is expressed through the Rankin-Selberg
integral of f with the product of two Eisenstein series of weights
k—1—j and 1+ :

(f, Ex—1—j(& X) Erj(0EX)) mpv-

One defines the modular distributions ®; on the group
Y =1im(Z/Np“Z)” in such a way that the modular form

®;(x) e Alq] is the product of these Eisenstein series with variable
coefficients in A:

evi(©/(x)) = (~1Y Beo1 (€. X)Er (8X) =2 ©1(x).
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Main congruence
Explicitely, the Fourier coefficients of ®; (for j =0,...,k — 2) are given by

®;(a+ (Np")) (7.14)

— Z e b)z Z i(n1,ab)Bj(n2, b)q" € Algq], where

b mod NpVv n>0 ni+n2=n

Ai(ny, ab)(k) = 3 £(dh)sgn (d)df > (7.15)
d1|n1
(nl/dl)zab mod va

Bi(na, b)(k)= > sgn(dy)(m/da) for ny > 0.
d2|n2
do=b mod NpY

(Note that the last series has constant coefficients). One verifies
coefficient-by-coefficient that the consructed modular distributions ®;

- satisfy the level condition and the divisibility condition (6.9), (6.10):
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Main congruence (continued)
03 (£) a0 0+ (46 (7.16)

=0 M

t o0

t . : .

=Z(.)<—ap>“2 S (“1YAj(m. ab)Bj(m. b)q
j=0 J n>0 n1+na=p¥n

?

=0(modp™).

Let us fix ny et ny with ny + np = p¥n, di|n and da|ny with
(n1/d1) = ab mod Np" et dy = b mod Np", and write only the terms
which depend on j:

Zt: C)(—a)t—f(—l)fdlk—2—j (Z_i)j — k-2 (_a _ (d’l’;))t (7.17)

J=0

t
= dlk_zdz_t (—adz + (Z—i)) = 0 mod p"’.

The congruence (7.17) is then satisfied because p { d> and

—a— 2 = modp"
didy, ) = TP
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Algebraic A-linear form ¢, : MY(A) — A

35

Let us describe a linear form ¢, on the locally free module

Mp(; A)® = mo(Mpy(0; A)) of finite rank.

Let use a basis {g'} of M*(A)" over the field of fractions Frac(A), such
that g! = g is fixed Coleman’s eigenvector as above, and g’ are
eigenfunctions of all Hecke operators Ty, (/1 Np).

Define £, (h) = x1, where h =" xig', x € A

(the first coordinate of h € M(A)T. An explicit evaluation in terms of the
Peterson product shows:

evk(fa(h)) = ga(k)(hk)a where hk = evk(h) < Mk(/\/,w).

The R.H.S. can be computed for classical modular forms h, through the
(normalized) Petersson scalar product, moreover, ¢,(g) = 1.
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Proof of Main Theorem

Take the admissible measure [i, := éaj,c(CTDO‘), with ®* constructed
by the admissibility criterium of Theorem 6.1 out of products of

Eisenstein series ®; and the linear form £, ¢ (the Petersson product
over A). Let us compute the integrals

vy ( /y i dﬁa,f) = en(la(ma(®;(0) = (9.18)
evi (Lo U™ 10 0 U ®;(x)))

f9. Uvo;
= ga(k)(ﬁa(k)(bj,k(X)) — O‘(k)_v< k<7ck07 (fk)ko(>X)>

for primitive Dirichlet characters x mod p", using the relation
(6.11): mo(h) = U Yma,0(U"h), where -
Dj i = evie(Pj) = (—1) Ex—1-j(&; x) E1+j(¥Ex).

36




On p-adic families of L-functions

I—Proof of Main Theorem

Proof of Main Theorem (continued)

The value of the p-adic integral (9.18) can be computed using the
Rankin—Selberg convolution:

Li(s—1+1,0)L5(5,0) = Ln(2s +2— k= 1, 9p€x) > _ an(k)bpn™,

n=1
(9.19)
where by = 0y 5 #(n) = D _4jn.d>0 ¥(d)é(n/d)d'~1, are the
Fourier coefficients of an Eisenstein series g = >~ , b,q" of
weight | with character x¢) (if x&(—1) = (=1)").
Puts=k—-1,/=k—-1—4,;=0,---k—2with k > 2+, into
(9.19):

L (L4, X)Lg (k= 1,8) = Ly(1+j,9Ex) D> an(k)ban™*F1.

n=1
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Proof of Main Theorem (continued)

Using this equality, the R.H.S. of (9.18): is then computed using
the Rankin—Selberg integral in the form:

evk (La(ma(Pi(X))) = tk - p:(igf) (1 +J45X),

(—2im) 1 {fi, )
Mk —1)Lg (k—1,8)°

where c(f,) =

G(x) denotes the Gauss sum of the character xy mod p", and

t, € Q™ is an explicit elementary constant. Then one applies
directly theorem 6.1 (the admissibility criterion) with s = 1, and
the congruences (7.16) in order to obtain the required h-admissibles
measures ji = [if o in the form pf, = Ef’a(&)o‘) (given by the
sequence of the distributions &% = 7, (®;)).
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Conclusion

39

After having an admissible measure ®© with values in modular
forms over the algebra A, we then construct the required
h-admissibles measures ji = fir ,, in the form jif o, = Lo (DY), as
explained above.

Indeed, we obtain the function in question L ,(x,s) by evaluation at

s = (s,%) € B: this is a p-adic analytic function in two variables
(x,s) e X x B C X x X:

La(x,8) = evs(L1)(x) (x € X, s€B, Li(x) € A).

Here A = A(B) denote again the Banach algebra A and B is an
affinoid neighbourhood around s = (s,1) € B (with a given
Dirichlet character ¢ mod N).
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A further development: Garrett's triple products
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Our data: three primitive cusp eigenforms

fi(2) = D anjq" € Sig(Nj, ), (=1,2,3) (10.20)
n=1

of weights kq, ko, k3, of conductors Ny, N>, N3, and of nebentypus
characters 1); mod N;, N := LCM(Ny, No, N3).

Let p be a prime, pt N. We view f; € Q[q] 2, Cplq] via a fixed

embedding Q >, Cp, Cp = Q, is Tate's field.

Let v denote a variable Dirichlet character mod NpY,v > 0.

We view k; as a variable weight in the weight space

X = Xnpv = Homeone (Y, C}), Y = (Z/NZ)* X Z5 > (yo, ¥p)-

The space X is a p-adic analytic space first used in Serre’s [Se2] Formes
modulaires et fonctions zéta p-adiques. Denote by (k, x) € X the

homomorphism (yo, ¥p) — x(¥0)x(y, mod p")y[,‘. We write simply k; for
the couple (kj, ;) € X.
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A four variable p-adic L function

attached to Garrett’s triple product of three Coleman’s families

. 1
of cusp eigenforms of three constant slopes o; = ordp(af)}(kj)) > 0 where

gl,J)(kJ) E,J)(kj) are the Satake parameters given as inverse roots of the

Hecke p—polynomial
. 2
1— ap,X — ()P 1X% = (1 — al (p)X)(1 — o) (p)X).
We. assume that orclip( ol )(k ) < ordp(a E)J)(kj)).
This extends a previous result (see [PaTV]|, where a two variable p-adic
[-function was constructed interpolating on all k a function
(k,s) — L*(fx,s,x) (s=1,---,k—1) for such a family.
We use the theory of p-adic integration with values in spaces of nearly
holomorphic modular forms (in the sense of Shimura, see [Sh2000]).



On p-adic families of L-functions

I—Some further developments

Generalities on triple products

The triple product with a Dirichlet character y is defined as the following
complex L-function (an Euler product of degree eight):

Lhehofhsx)=]]L(hehe k), x(P)P ) (10.21)
ptN
where L((fi ® f @ ), X) = (10.22)

(1) (1) (1)
a, 0 0 0
det (18 - X ( 0 (2)> ( 8’2 (2)> ( 673 (2)>>
o, o, a3

_H (77(1)) (77(2)) (77(3))X)

7

1 1 1 1 1 2 2 2 2
:(1 alaaix) (1 — al)alNal?)x)- . (1 - al?)al)al?)X),

product taken over all 8 maps n: {1,2,3} — {1,2}.
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Critical values and functional equation
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We use the corresponding normalized L function (see [De79], [Co],
[Co-PeRi]), which has the form:

ANA®KL® RS X)= (10.23)
lc(s)Tc(s — ks +1)c(s — ko + 1)l c(s — ki +1)L(H ® H ® 3,5, X),

where ['c(s) = 2(27) T (s).
The Gamma-factor determines the critical values
s=ky, -+, ko + ks — 2 of A(s), which we explicitely evaluate (like
.
in the classical formula ((2) = %) A functional equation of A(s)
has the form:
s— ki + ky + ks —2 — s.
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Statement of the problem

44

Given three p-adic analytic families f; of slope o; > 0, to construct a
four-variable p-adic L-function attached to Garrett’s triple product of these
families

We show that this function interpolates the special values
(57 k17 k27 k2) = /\(fl,kl ® 7c-2,k2 & 7LE?»,k37 S, X)

at critical points s = kq,--- , ko + k3 — 2 for balanced weights
ki < ko + k3 — 2; we prove that these values are algebraic numbers afters
dividing by certain “periods’.

However, our construction uses directly modular forms, and not the
[-values in question.

A comparison of special values of two functions is done after the
construction.
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