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P-ADIC NEVANLINNA THEORY AND APPLICATIONS

HA HUY KHOAI

In this talk we give a brief survey on the p-adic Nevanlinna theory and its applications

in p-adic function theory and related topics.

1. Nevanlinna theory

One can start by recalling the fundamental theorem of algebra:

Theorem 1.1. Let

f(z) = ao + a1z + · · ·+ anz
n

be a polynomial of degree n ≥ 1, with complex coefficients. Then for every complex value a,

the equation f(z) = a has n solutions (counting multiplicities).

One can say that a polynomial takes every value a with the same frequency. Thus, the

number of solutions of a polynomial depends on its degree, i.e., on the growth.

It is quite naturally to ask: ”what happens if instead of polynomials one considered

holomorphic, or more generally, meromorphic functions”, or , ”how many times does a

meromorphic function f(z) take a value a ∈ P1 ?”.

In this case one can not say about ”degree”, then one hopes to have a relation between

the number of zeros of a function and its growth.

The first results in this direction belong to Hadamard.

Theorem 1.2. Let f(z) be a holomorphic function in the complex plane C. Then,

the number of zeros of f in {|z| ≤ r} ≤ log max
|z|≤r
|f(z)|+O(1),

where O(1) depends on f , but not on r .

This result is not yet ”ideal” because of the following two deficiencies.

1. When f is a meromorphic function, we have the infinity in the RHS of the inequality.

In this case, the Hadamard theorem does not give an estimation of the number of zeros of

f .

2. There are functions, for example, f(z) = ez, which do not have the zeros, but grow

very fast. In this case, Hadamard’s inequality becomes trivial, because the LHS is zero.

For eliminating these deficiencies, R. Nevanlinna defines the following functions.
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Counting function . Let a ∈ C. We set

n(a, r) = the number of zeros of f(z)− a in the disk {|z| ≤ r} (counting multiplicity),

N(a, r) =
∫ r

o

n(a, t)− n(a, 0)

t
dt+ n(a, 0) log r.

Characteristic function . Instead of log max|z|≤r |f(z)| we consider the function

T (r) =
1

2π

∫ 2π

o
log+ |f(reiθ)|dθ +N(∞, r).

By using these two functions one get the following inequality:

N(0, r) ≤ T (r) +O(1).

This inequality is valid and non-trivial for meromorphic functions. For eliminating the

second deficiency one notices that, while the function ez does not have the zeros, it takes

many values ”approached to zero”. Then one can ”measure” this set by using

Mean proximity function.

m(a, r) =
1

2π

∫ 2π

o
log+ | 1

f(reiθ)− a
|dθ,

where log+ = max(0, log). It is obviously that m(a, r) becomes large when f(z) approaches

to a.

There are two ”Main Theorems” and defect relations which occupy a central place in

Nevanlinna theory.

First Main Theorem of Nevanlinna. There is a function T (r) such that for any

a ∈ P1 we have

m(a, r) +N(a, r) = T (r) +O(1).

As T (r) does not depend on a, one can say that a meromorphic function takes every

value a ∈ P1 (and ”approached to a” values) with the same frequency. However, to have

the First Main Theorem, as an analog to the fundamental theorem of algebra, one had have

to add an ”approximity part” (the function m(a, r)). Therefore one would hope that this

part would be ”very small”. Indeed, this follows from the following very deep theorem of

Nevanlinna.

Second Main Theorem of Nevanlinna For arbitrary q ∈ N and distinct points

ai ∈ P1, i = 1, . . . , q, we have
q∑
i=1

m(ai, r) < 2T (r) +O(log(rT (r))),

where the inequality is valid beside a set of finite measure.

Because the right hand side does not depend on q, one can say that the values m(ai, r)

are ”very small”.
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The following ”defect relation” gives a ”quantitative version” of the above statement.

Set

δ(a) = lim
r→∞

m(a, r)

T (r)
,

Then we have

∑
a∈P1

δ(a) ≤ 2.

δ(a) is called the defect value at the point a, and the above inequality is ”defect relation”.

Precisely, δ(a) = 0 for almost all a (except a countable set). Roughly speaking, with two

Main Theorems and the defect relation one can work with meromorphic functions as one

does with polynomials.

2. Nevanlinna Theory and Number Theory

In the famous paper ”De la métaphysique aux mathématiques” ([W]) A. Weil discussed

about the role of analogies in mathematics. For illustrating he analysed a ”metaphysics”

of Diophantine Geometry: the resemblance between Algebraic Numbers and Algebraic

Functions. However, the striking similarity between Weil’s theory of heights and Cartan’s

Second Main Theorem for the case of hyperplanes is pointed out by P. Vojta only after

50 years! P. Vojta observed the resemblance between Algebraic Numbers and Holomorphic

Functions, and gave a ”dictionary” for translating the results of Nevanlinna Theory in

the one-dimensional case to Diophantine Approximations. Due to this dictionary one can

regard Roth’s Theorem as an analog of Nevanlinna Second Main Theorem. P. Vojta has also

made quantitative conjectures which generalize Roth’s theorem to higher dimensions. One

can say that P. Vojta proposed a ”new metaphysics” of Diophantine Geometry: Arithmetic

Nevanlinna Theory in higher dimensions.

Table 6.1: Vojta’s Dictionary
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Value Distribution Diophantine Approximation
A non-constant function f : C→ P1 An infinite sequence {x} in a number field F
A radius r An element x of F
A finite mesure set E of radii A finite subset of {x}
An angle θ An embedding σ : F → C
|f(reiθ)| |x|σ
(ordzf) log

r

|z|
(ord℘x)[F℘ : Qp] log p

Characteristic function: Logarithmic height:

T (f, r) =
∫ 2π
0 log+ |f(reiθ)|dθ

2π
+N(f,∞, r) h(x) = 1

[F :Q]

∑
σ:F ↪→C

log+ |x|σ +N(F,∞, r)
Mean-proximity function: Mean-proximity function:

m(f, a, r) =
∫ 2π
0 log+

∣∣∣∣∣ 1

f(reiθ)− a

∣∣∣∣∣dθ2π
m(F, a, x) =

∑
σ:F ↪→C

log+

∣∣∣∣∣ 1

x− a

∣∣∣∣∣
σ

Counting function: Counting function:

N(f, a, r) =
∑
|z|<r

(ord+
z (f − a)) log

r

|z|
1

[F :Q]

∑
℘∈F

(ord+
℘ (x− a))[F℘ : Qp] log p

First Main theorem Height property
N(f, a, r) +m(f, a, r) = T (f, r) +O(1) N(F, a, x) +m(F, a, x) = h(x) +O(1)
Second Main theorem : Roth type conjecture:

(q − 2)T (r, f)−
q∑
j=1

N (1)(f, aj, r) (q − 2)h(x)−
q∑
j=1

N (1)(F, aj, r)

≤ log(T (f, r)ψ(T (f, r))) +O(1) ≤ log(h(x)ψ(h(x))) +O(1)
Weaker Second Main theorem: Roth’s Theorem:

(q − 2)T (r, f)−
q∑
j=1

N(f, aj, r) ≤ εT (f, r) (q − 2)h(x)−
q∑
j=1

N(F, aj, r) ≤ εh(x)

Jensen’s Formula: Artin-Whaples Product Formula:∫ 2π
0 log |f(reiθ)|dθ

2π

∑
σ∈S∞

log |x|σ
= N(f, 0, r)−N(f,∞, r) +O(1) = N(F, 0, x)−N(F,∞, x)

3. p-adic Nevanlinna Theory.

In the philosophy of Hasse-Minkowski principle one hopes to have an ”arithmetic result”

if one had have it in p-adic cases for all prime numbers p, and in the real and complex cases.

Hence one would naturally have interest to determine how Nevanlinna Theory would look

in the p-adic case.

§1. Two main theorems

Let p be a prime number, Qp the field of p-adic numbers, and Cp the p-adic completion

of the algebraic closure of Qp. The absolute value in Qp is normalized so that |p| = p−1.

We further use the notion v(z) for the additive valuation on Cp which extends ordp.

We define the counting function in exactly the same way as in classical Nevanlinna theory.

That is, given a meromorphic function f , we let n(f,∞, r) denote the number of poles in
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{|z| ≤ r}, and we let

N(f,∞, r) =
∫ r

o
[n(f,∞, t)− n(f,∞, 0)]

dt

t
+ n(f,∞, 0) log r =

∑
|z|≤r,z 6=0

max{0,−ordzf} log
r

|z|
+ max{0,−ordof} log r,

where ordzf denotes the order of vanishing of f at z, negative numbers indicating poles.

Counting functions for other values are defined similarly.

For the mean proximity function, note that the norms | |r are multiplicative on entire

functions and they extend to meromorphic functions. Thus we define

m(f,∞, r) = log |f |r,

and for finite a,

m(f, a, r) = log
1

|f − a|r
.

Note that there is no need to do any sort of ”averaging” over |z| = r, since by the strong

maximum modulus principle, for suitable generic z with |z| = r, we know |f(z)| = |f |r.
Finally, just as in classical Nevanlinna theory, the characteristic function is given by

T (f, a, r) = m(f, a, r) +N(f, a, r).

The properties of the valuation polygon imply that

log |f |r =
∑

|z|≤r,z 6=0

(ordzf) log
r

|z|
+ (ordof) log r + 0(1),

where the 0(1) term depends on the size of the first non-zero coefficient in the Laurent

axpansion for f at 0. This is of course a non-Archimedean Jensen formula and can be

written

m(f,∞, r) +N(f,∞, r) = m(f, 0, r) +N(f, 0, r) + 0(1),

from which the non-Archimedean analog to Nevanlinna first Main Theorem easily follows.

The Second Main Theorem. Let f be a non-constant meromorphic function on Cp, and

let a1, a2, . . . , aq be q distinct points on Cp ∪ {∞}. Then, for all r ≥ ro > 0,

(q − 2)T (f, r)−
q∑
j=1

N(f, aj, r)−NRam(f, t) ≤ − log r + 0(1),

where

NRam(f, a) = N(f ′, 0, r) + 2N(f,∞, r)−N(f ′,∞, r)
measures the growth of the ramification of f , and the 0(1) term depends only on the aj,

the function f , and the number ro.

Corollary. Let f and a1, a2, . . . , aq be as in the Theorem. Then for all r ≥ ro

(q − 2)T (f, r) ≤
q∑
j=1

N1(f, aj, r)− log r + 0(1),
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where N1(f, aj, r) denotes a modified counting function in that each point where f = a is

counted only with multiplicity 1, and again 0(1) term depends on the aj, f, ro.

§2. The height function.

In the p-adic case we can use so-called ”the height function”. Notice that, the Newton

polygon gives expression to one of the most basic deffrences between p-adic analytic

functions and complex analytic functions. Namely, the modulus of a p-adic analytic function

depends only on the modulus of the argument, except at a discrete set of values of the

modulus of argument. This fact often makes it easier to prove the p-adic analogs of classical

results. Now we give the definition of the height function.

Let f(z) be an analytic function on Cp, it is represented by a convergent power series

f(z) =
∞∑
n=0

anz
n.

For each n we draw the graph Γn which depicts v(anz
n) as a function of v(z) = t. This

graph is a straight line with slope n. Since we have lim
n→∞
{v(an)+nt} =∞ for all t it follows

that for every t there exists an n for which v(an) + nt is minimal. Let h(f, t) denote the

boundary of the intersection of all of the half-planes lying under the lines Γn. Then in any

finite segment [r, s], there are only finitely many Γn which appear in h(f, t). Thus, h(f, t)

is a polygonal line. This line is what we call the height of the function f(z). The points t

at which h(f, t) has vertices are called the critical points of f(z). A finite segment contains

only finitely many critical points. If t is a critical point, then v(an)+nt attains its minimum

at least at two values of n. If v(z) = t is not a critical point, then |f(z)| = p−h(f,t).

The height of a function f(z) gives complete information about the number of zeros of

f(z). Namely, f has zeros when v(z) = ti (a critical point) and the number of zeros of f

such that v(z) = ti is equal to the difference ni+1 − ni between slopes of h(f, t) at ti−0 and

ti+0

For a meromorphic function f =
φ

ψ
, the height of f is defined by h(f, t) = h(φ, t)−h(ψ, t).

We also use the notation

h+(f, t) = −h(f, t).

Then we have:

Theorem 3.1. Let f be a meromorphic function and let a1, a2, . . . , aq be q distinct points

in Cp ∪ {∞}. Then for t sufficiently small,

(q − 2)h+(f, t) ≤
q∑
j=1

N1(f, aj, t) + t+ 0(1),

where N1(f, a, t) denotes a modified function in that each point where f = a is counted only

with multiplicity 1, and the 0(1) is a bounded value as t −→ −∞.
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The height function is applied to the interpolation problem (see [K1]). Let u =

{u1, u2, . . . } be a sequence of points in Cp. In that follows we shall only consider sequences

u for which the numbers of points ui satisfying v(ui) ≥ t is finite for every t. We shall

always assume that v(ui) ≥ v(ui+1), (i = 1, 2, . . . ).

Definition 1. The sequence u = {ui} is called an interpolating sequence of f if the sequence

of interpolating polynomials for f on u converges to f .

For every sequence u we define a holomorphic function Φu as follows. We set

Nu(t) = #{ui|v(ui) ≥ t}.

We can write the sequence u in the form:

u = {u1, u2, . . . , un1 , un1+1, . . . , un2 , . . . },

where

v(ui) = tk for nk−1 < i ≤ nk

(we take uo = 0), and

lim
k→∞

tk = −∞.
We choose a sequence ak with the property

v(ao) = −n1t1, v(ak+1) = v(ak) + (nk − nk+1)tk+1, (k = 1, 2, . . . ).

We set

Φu(z) = 1 +
∞∑
k=1

akz
nk .

Then the series converges for z ∈ Cp and determines an analytic function Φu(z) on Cp, for

which the number of zeros in each region {z|v(z) > t} is equal to Nu(t), and

h(Φu, t) =
∫ t

∞
Nu(t)dt.

Theorem 3.2. The sequence u = {ui} is an interpolating sequence of the function f(z) if

and only if

lim
t→∞
{h(f, t)− h(Φu, t)} =∞.

Remark 3.3. This is the first interpolation theorem for p-adic analytic functions not

necessarily bounded. A similar theorem for analytic functions in the unit disc implies that

the p-adic L-functions associated to modular forms are uniquelly defined by the values on

Dirichlet characters (see [K2]).

Remark 3.4. We can use the interpolation theorem to recover a p-adic meromorphic

function if we know the preimages (with multiplicity) of to points (see [K3]).

For high dimensions, as well as in the complex case, instead of the study the preimage

of a point, we should consider the preimage of a divisor of codimension one. The reason is

that in the p-adic case there exist also Fatou-Bieberbach domains (see [K]):
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Theorem 3.5. There exists an injective holomorphic map F : C2
p −→ C2

p with the

Jacobian J(F ) ≡ 1 and the complement of the image of F contains a non-empty open set

in C2
p

Now let f = (f1, . . . , fn+1) : Cp → Pn(Cp) be a p-adic holomorphic curve, where the

functions fj have no common zeros.

Definition 2. The height of the holomorphic curve f is defined by

h(f, t) = min
1≤j≤n+1

h(fj, t),

where h(fj, t) is the height of p-adic holomorphic function on Cp.

Notices that the height of a curve is well defined up to a bounded value.

The following theorem is a p-adic version of the Second Main Theorem in the case of

holomorphic curves.

Theorem 3.6. ([KT) Let H1, . . . , Hq be q hyperplanes in general position, and let f be a

non-degenerate holomorphic curve in Pn(Cp). Then we have

(q − n− 1)h+(f, t) ≤
q∑
j=1

Nn(f.Hj, t) +
n(n+ 1)

2
.t+ 0(1),

where 0(1) is bounded when t→ −∞ and h+(h, t) = −h(f, t).

Cherry and Ye [CY] extend the theorem to several variables. Moreover, they considered

the case of degenerate curves by using so called Nochka’s weights ([N]), Hu and Yang [HY]

obtain similar results for moving targets.

For the case of hypersurfaces we have the following

Theorem 3.7. ([KA1]) Let H1, . . . , Hq be hypersurfaces of degree d in Pn(Cp) in general

position. Let f be a non-degenerate holomorphic curve . Then

(q − n)h+(f, t) ≤
q∑
j=1

N(f ◦Hj, t

d
+ 0(1),

where 0(1) is bounded when t→ −∞.

This is a p-adic version of Eremenko-Sodin’s theorem ([ES]).

We conclude this section by a conjecture.

Recall that a holomorphic curve f is said to be k-non-degenerate if the image of f is

contained in a linear subspace of dimension k and is not contained in any linear subspace

of dimension k − 1.
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Conjecture 1. Let H1, . . . , Hq be hypersurfaces of degree dj, j = 1, . . . , q in Pn(Cp) in

general position, let f be a k- non-degenerate holomorphic curve, and s be an integer ≥ k,

or s =∞. Then

(q − 2n+ k − 1)h+(f, t) ≤
q∑
j=1

Ns(Hj ◦ f, t)
dj

+ 0(1).

Remark 3.8. In the complex case the above conjecture corresponds to the following cases:

1. Nevanlinna’s Second Main Theorem: n = 1, k = 1, dj = 1, s =∞.
2. Cartan Theorem: ∀n, k = n, dj = 1, s = n.

3. Nochka Theorem (Cartan’s conjecture): ∀n,∀k ≤ n, s = k, d = 1.

4. Eremenko-Sodin’s theorem: ∀n, k = n,∀dj, s =∞.

Remark 3.9. In recent years the Nevanlinna theory is developed also for the case of positive

characteristic ([ ], [ ]).

4. Defect relation and Borel’s Lemmas.

Let H be a hyperplane of Pn(Cp) such that the image of f is not contained in H. We

say that f ramifies at least d (d > 0) over H if for all z ∈ f−1H the degree of the pull-back

divisor f ∗H, degzf
∗H ≥ d. In case f−1H = ∅ we set d =∞.

Theorem 4.1. Let H1, . . . , Hq be q hyperplanes in general position. Assume f is linearly

non-degenerate and ramifies at least dj over Hj. Then

q∑
j=1

(1− n

dj
) < n+ 1.

Remark 4.2. In the complex case we have a similar inequality, but with the sign ≤. The

reason is that in the p-adic case, the error term in Second Main Theorem is simpler that

the complex one. This is important for applications.

From Theorem 4.1 one can prove the following p-adic version of Borel’s Lemma.

Theorem 4.3. ( p-adic Borel’s Lemma [Q]). Let f1, f2, . . . , fn (n ≥ 3) be p-adic holomor-

phic functions without common zeros on Cp such that f1 + f2 + ...+ fn = 0.

Then the functions f1, . . . , fn−1 are linearly dependent if for j = 1, . . . , n every zero of

fj is of multiplicity at least dj and the following condition holds:

n∑
j=1

1

dj
≤ 1

n− 2
.

By using the defect relation one can prove some generalizations of Borel’s lemma.
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Theorem 4.4. (p-adic analogue of Masuda-Noguchi’s Theorem [M-N]).

Let

Mj = z
αj,1
1 . . . z

αj,n+1

n+1 , 1 ≤ j ≤ s,

be distinct monomials of degree l with non-negative exponents. Let X be a hypersurface of

degree dl of Pn(Cp) defined by

X : c1M
d
1 + . . . csM

d
s = 0,

where cj ∈ C∗p are non-zero constants.

Let f = (f1, .., fn+1) : Cp −→ X be a non-constant holomorphic curve such that any

fj 6≡ 0. Assume that

d ≥ s(s− 2).

Then there is a decomposition of indices,{1, 2, ..., s} = ∪Iγ, such that

i) Every Iγ contains at least 2 indices.

ii) The ratio of Md
j ◦ f(z) and Mk

j ◦ f(z) is constant for j, k ∈ Iγ .

iii)
∑
j∈Iγ

cjM
d
j ◦ f(z) ≡ 0 for all γ .

Corollary 4.5. For d ≥ 3 there is no solutions of the following equation in the set of p-adic

non-constant holomorphic functions having no common zeros:

xd + yd = zd

5. p-adic hyperbolic spaces

Recall that a complex space is said to be hyperbolic if every holomorphic curve in it is

a constant curve. In the complex case, the Borel Lemma is often used to establish the

hyperbolicity of a complex space. In what follows we show some applications of p-adic

Borel’s Lemma in the study of p-adic hyperbolic hypersurfaces.

Although the set of hyperbolic hypersurfaces of degree d large enough with respect to

n is conjectured to be Zariski dense [Ko]), it is not easy to construct explicit examples of

hyperbolic hypersurfaces.

The first example of smooth hyperbolic surfaces of even degree d ≥ 50 was given by R.

Brody and M. Green ([BG]). Now we show how to use p-adic Borel’s Lemmas to construct

explicit examples of p-adic hyperbolic hypersurfaces.

Let X be a hypersurface defined as above, and let d ≥ s(s− 2). Suppose that X is not

hyperbolic, and let

f = (f1, ..., fn+1) : Cp −→ X

be a nonconstant holomorphic curve in X. We are going to show that {cj} belongs to an

algebraic subset of (C∗p)s. We may assume that any fj 6≡ 0.

By Theorem 4.4, there is a decomposition of indices {1, . . . , s} = ∪Iξ such that
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i) every Iξ contains at least 2 indices,

ii) the ratio of Md
j ◦ f(z) and Md

k ◦ f(z) is constant for j, k ∈ Iξ,
iii)

∑
j∈Iξ cjM

d
j ◦ f(z) ≡ 0 for all ξ.

Now for a decomposition of {1, . . . , s} as above, we set bjk = Md
j ◦f(z) /Md

k ◦f(z). Then

the linear system of equations

AY = B

where A is the matrix {αj`−αk`}, Y =


y0
...
yn

, B = log bjk, has the solution log f0, ..., log fn.

Thus, the matrix A satisfies certain conditions on the rank. On the other hand, by the

condition iii) there exist (A0, ..., An) ∈ Pn such that (ci) ∈ (C∗p)s satisfies the following

equations ∑
i∈Iξ

ciA
αio
o · · ·Aαinn = 0

Hence, (ci) ∈ (C∗p)s belongs to the projection Σ ⊂ (C∗p)s of an algebraic subset in (C∗p)s×Pn.

If we take (ci) 6∈ Σ, we have a hyperbolic hypersurface.

5.1.Examples.

Let N = 4n − 3, k = N(N − 2) = 16(n − 1)2. Then for generic linear functions

Hj(z0, . . . , zn) ∈ Cn+1
p (1 ≤ j ≤ n) the hypersurface

X :
N∑
j=1

Hk
j = 0

is hyperbolic. This is p-adic version of a result of Siu and Yeung ([SY], 1997).

Proof. By p-adic Borel’s lemma, if f : Cp −→ X is a non-constant holomorphic curve,

then Imf ⊂ ∩ξXξ, where

Xξ :
∑
j∈Iξ

Hk
j = 0.

The genericity of {Hj} implies ∩Xξ = ∅.
For the case of surfaces in P3 we can use the following method. Take at first a surface

X ⊂ P3 such that every holomorphic curve in X is degenerate. This means that the image

of a holomorphic map from Cp in to X, f : Cp −→ X, is contained in a proper algebraic

subset of X. If one could prove that the image f(Cp) is contained in a curve of genus at

least 1, then f is a constant map (Berkovich’s theorem).

5.2. Example Let X be a surface in P3(Cp) defined by the equation

X : zd1 + zd2 + zd3 + zd4 + czα1
1 zα2

2 zα3
3 zα4

4 = 0,

where c 6= 0,
4∑
i=1

αi = d, and if there is an exponent αi = 0, the others must be 6= 1. Then

X is hyperbolic if d ≥ 24.
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5.3. Example Let X be a curve in P2(Cp) defined by the following equation:

X : zd1 + zd2 + zd3 + czα1
1 zα2

2 zα3
3 = 0,

where d ≥ 24, d > αi ≥ 0,
∑

αi = d. Then the complement of X is p-adic hyperbolic in

P2(Cp).

6. unique range set for meromorphic functions

For a non-constant meromorphic function f on C and a set S ⊂ C ∪ {∞} define

Ef (S) = ∪a∈S{(m, z)|f(z) = a with multiplicity m},

and

Ēf (S) = ∪a∈S{z|f(z) = a ignoring multiplicities }.
A set S ⊂ C∪{∞} is call an unique range set for meromorphic functions (URSM) if for any

pair of non-constant meromorphic functions f and g on C, the condition Ef (S) = Eg(S)

implies f = g. A set S ⊂ C∪{∞} is called an unique range set for entire functions (URSE)

if for any pair of non-constant entire functions f and g on C, the condition Ef (S) = Eg(S)

implies f = g. Classical theorems of Nevanlinna show that f = g if Ēf (aj) = Ēg(aj) for

distinct values a1, . . . , a5, and that f is a Möbius transformation of g if Ef (aj) = Eg(aj)

for distinct values a1, . . . , a4. Gross and Yang show that the set

S = {z ∈ C|z + ez = 0}

is an URSE. Notices that this set is infinite. Since 1995, URSE and also URSM with finitely

many elements have been found by Yi ([Y1], [Y2]), Li and Yang ([LY1], [LY2]), Mues and

Reinders [MR], Frank and Reinders [FR]. Li and Yang introduced the notation

λM = inf{#S|S is a URSM},

λE = inf{#S|S is a URSE},
where #S is the cardinality of the set S.The best lower and upper bounds known so far are

5 ≤ λE ≤ 7, 6 ≤ λM ≤ 11.

For p-adic meromorphic or entire function f on Cp, we can similarly define Ef (S) and

Ēf (S) for a set S ⊂ Cp ∪ {∞} and introduce the notation λM and λE. By using p-adic

Nevanlinna theory and theory of singularities we can prove the following theorems:

Theorem 6.1. Let P be a generic polynomial of degree at least 5. Let f and g be p-adic

meromorphic functions such that P (f) = CP (g) with a constant C. Then f ≡ g.

Theorem 6.2. Let S = {a1, a2, a3, a4} be a generic set of 4 points in Cp. Then for p-adic

meromorphic functions f and g, the conditions Ef (S) = Eg(S) and Ef (∞) = Eg(∞) imply

f ≡ g.
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For the proof, see [KA].

In [K-H] we proved that for a generic pair of sets {S, T} with the total number of elements

at leats 5, the condition Ef (S) = Eg(S) and Ef (T ) = Eg(T ) implies f = g for p-adic

meromorphic functions f, g (i.e., the pair {S, T} is a bi-URS for p-adic meromorphic

fucnctions). From this fact I would like to formulate the following

Conjecture 2. A generic set of 6 points in Cp ∪ {∞} is a URS for p-adic meromorphic

functions.

As it is mentioned above, Li and Yang suggested that there exist a URS for complex

meromorphic functions with 6 elements. However, from the result on bi-URS for p-adic

meromorphic functions, I think, as in the Conjecture, a URS for p-adic meromorphic

functions should have at least 6 elements, and then, a URS for complex meromorphic

functions should have at least 7 elements.
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