

2057-6

First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring

7 - 25 September 2009

Embedded Systems

Ang Chu Suan GMS Technology 3&5 Jalan USJ 7/3B UEP Subang Jaya 47610 Petaling Jaya Malaysia

Embedded Systems in Distributed Environment

angchusuan@gmail.com

Chu Suan ANG

Kuala Lumpur, Malaysia

Objectives

- Brief history of hardware in embedded systems
- To introduce embedded system hardware
 - Small systems (\$1-10)
 - Mid-range systems (\$10-100)
 - Large systems (\$100-1000)

Introduction

- Myself
- History of hardware and computing
 - From ENIAC to Computing for the Future of the Planet
 - ENIAC http://en.wikipedia.org/wiki/ENIAC
 - Future http://www.cl.cam.ac.
 uk/research/dtg/research/wiki/CFTFP
- History of hardware in this workshop series
 - Origin of this long running workshop
 - Microprocessor Real-time OS Distributed Systems –
 Open Source Systems

Free and Open Source

- Free and Open Source Software
 - http://en.wikipedia.org/wiki/Free and Open Source Software
 - Richard Stallman's Free Software Foundation http://en.wikipedia.org/wiki/Free Software Foundation
 - Open Source Initiative
 - o Bruce Perens, Eric Raymond
 - http://en.wikipedia.org/wiki/The Cathedral and the Bazaar
 - o http://en.wikipedia.org/wiki/Open Source Initiative

Open Source Hardware

- o http://en.wikipedia.org/wiki/Open Source Hardware
- Has been around for longer
- Engineering practice

Real-time Internet Remote Access

- Webcams: http://219.94.127.11/webcam.htm
- Remote Control: http://219.94.127.14
- KL Temperatures: http://219.94.127.12

Demo of a Distributed ES since 2003

Early Example

- 1991 Cambridge Trojan Room coffee pot webcam
 - http://www.cl.cam.ac.uk/coffee/coffee.html
 - Server gets data (video frame) ready
 - Client (web browser) accesses via network
- Server side effort is relatively simple
 - HTML with SSI
- Client more complicated
 - Done by browser

- Prehistory 1970s and earlier!
 - Mostly analogue design
 - Mostly self designed
 - Unless you are rich
 - Then buy HP, Keithley, Tektronics, etc.

- Microprocessor Era 1980s
 - Thrill of learning digital computer albeit 8-bit
 - Everyone learned assembly language
 - Everyone learned 8-bit architecture
 - Everyone designed uP boards
 - Laboratory applications proliferate
 - Mostly self designed
 - Relatively simple
 - No standardization
 - No cheap products

- Warring States Era 1990s
 - Transition from 8 bits to 32 bits
 - Many attempts by many people
 - Enhancing 8-bit power with large memory
 - Rabbit Semiconductor
 - Riding on Java success
 - TINI sub-module (8-bit)
 - Tapping on large scale integration
 - AXIS ETRAX System-on-chip (32-bit)
 - Building single board PC
 - ICOP SBC

- 32-bit Era 2000s
 - PC becomes embedded system workhorse
 - Large memory & storage and raw processing power
 - Networking
 - High resolution display with powerful image processors
 - Wireless
 - Embedded hardware design becomes
 - Either very simple (8-bit)
 - Or very complex (32-bit)

- Now 2009 (Ang's suggestion)
 - Three types of hardware
 - For most small or real-time jobs
 - Design with 8-bit MCU, aka PIC
 - Design your hardware because no one else knows what you want
 - o For others with space constraints
 - Buy 32-bit SBC, *aka* ARM9
 - Buy because it is cheaper to do so
 - For the remaining
 - Buy PC, *aka* Intel Atom netbook
 - Because everyone is doing so

Small to Large Embedded Systems

Embedded Processors

- \$1 \$10
 - Microcontrollers
- \$10 \$100
 - 32-bit Embedded Systems
- \$100 \$1000
 - \circ PC

Microcontrollers

- Small applications
 - As low as \$1
- Powerful despite its size and cost
 - Oweb server for <\$5</p>
 - Good for distributed applications
- About the power of the hardware used in early microprocessor colleges here
- Very popular uC- PIC

PIC and Application

Microchip Technology shipped the 6 billionth chip by February 2008.

World population is 6.8 billion in 2009.

Microcontroller Applications

- Good for large range of lab applications
 - Parallel & serial I/O
 - O ADC/DAC
 - Timer/Counting
- Good for real-time applications
 - By partitioning tasks to small sub-systems
 - Like encapsulation in OOP
- Real-time tasks easily implemented
 - Crystal oscillator
 - 105 ~ 7stability e.g. 10 s measurements in 1 s possible

EP Module - TINI

- Tiny Internet Interface
 - Dallas Semiconductor (Maxim Integrated Products since 2001)
- Java runtime environment
 - Used in this Workshop
- Mid range EP Module
- Category of \$50 \$100
- Used in our Lab

EP Module - Rabbit Cores

- Rabbit Semiconductor
- Same category as TINI
 - o \$50 \$100
- Very popular now
 - Earlier market entry than TINI
 - Extensive range of modules
 - Good candidate for interfacing to legacy devices
 - Powerful EP by itself
 - Small hard real-time controller

RCM3700

System-on-Chip

- Complete system on a chip
 - Processor, memories & peripheral
- ETRAX 100LX Multi Chip Module (MCM)
 - By Axis Communications
- Runs Linux & OS of similar complexity
- **•** \$70
- Good candidate for complex RTS in distributed environment

32-bit RISC Microcontrollers

- Chips with ARM core
 - o 32-bit Processor, memories & peripherals
- 80% of EP market
- Runs Linux & OS of similar complexity
- \$5 ~ \$20
- Powerful, low power consumption

SBC & Mini PCs

- Cheapest hardware not necessary wise choice
- SBCs are more cost effective in many situations
- Many standards & form factors available
 - STB Bus, PC/104, EBX, Half-size SBC, 3.5"
 - Mini ITX
- Standard PC functions at \$100 available now

Samsung S3C2440-based Boards

At \$50~100,

the day of building your own is over? Ssh! Don't tell Uli.

Other ARM9-based Boards

Samsung's S3C

Marwell's XScale

2410 Main Board

2410 Core Module

Mini PC

At \$100, the waiting is over? Even Uli would not build this one!

The 8-bit Story

- 30 years now and no one can get rid of it...
- In the beginning, there were the 4 bits...
- Then they invented the 8 bits...
- Intel, Motorola, TI, NS, Philips, Siemens, NEC, you name it...
- Then came the 16, 32 and even 64 bits...
- But one reinvented THE 8 BITS...
 - (They account for 55% of all microprocessors)

The PIC Story

- Microchip Technology (1989 from GI)
 - o http://en.wikipedia.org/wiki/Microchip Technology
 - Steve Sanghi, CEO
 - Michael J Jones, VP Human Resource (retired 2004)
- From failing to #1 in the world (8-bit)
 - o Shipped 7,000,000,000 PICs
 - 450 PIC products
 - 2007: revenue \$1.039 billion,
 - o net income \$357 million
 - o 2009: revenue \$903 million,
 - o net income \$248 million
- Reason?

PIC MCUs

- RISC-based devices by Microchip Technology Inc.
- Tremendously successful recently
- Hundreds of products and increasing
 - Various memory configurations
 - Low voltage
 - Small footprint
 - Ease of use
- http://www.microchip.com

PIC10F Family

- Smallest
- 6-pin
- 12-bit program word
- $2.0 \sim 5.5 \text{ V}$
- Timer, Watch Dog Timer
- Flash program memory (384/768 bytes)
- **●** \$0.5 ~ \$1

PIC12 Family

- Smallest
- 8-pin
- 12-bit/14-bit program word
- 2.5V
- Interrupt handling
- A/D
- Flash, OPT or ROM program memory
- EEPROM data memory
- \$1~3

PIC16 Family

- Very popular MCUs
- 12-bit wide instructions
- 14-, 18-, 20-, 28-pin
 - o SOIC (Small Outline IC), 1.27 mm pitch
 - SSOP (Shrink Small Outline Package), 0.65
- 2V (battery operation)
 - Also, 15 V operation (16HV5XX)

PIC18 Family

- Top of the line
- 16-bit
- Enhanced core
 - o ADC, 32 level deep stack
 - Multiple internal and external interrupts
- Programmable low voltage & brown out detection
 - All instruction in 1 cycle, except for branches(2)
 - o 77 instructions, up to 10 MIPS

Extreme Low Power Microcontrollers

- http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeId=1484
- Sleep / Power-down current down to 20 nA
- Brown-out Reset down to 45 nA
- Watch-dog Timer down to 400 nA
- Real-time Clock/Calendar down to 500 nA
 - Operation @ 1MHz: 100~200 uA
 - 1 year = 8760 hours
 - 1AH = 106 uAH
 - \bullet At 1uA, duration 10₆/8760 = 114 years

Example: PIC12F675

- CMOS Flash 8-bit MCU
- 8-pin package
- 4-channel 10-bit ADC
- 1-channel comparator
- 128-byte EEPROM data
- Good for small applications when field reprogramming is necessary
- \$0.73

PIC Applications

- PICs suited for large range of lab applications
- Good for small real-time applications
 - By partitioning tasks to small sub-systems
 - Like encapsulation in OOP
- Real-time tasks easily implemented
 - Crystal oscillator
 - 105 ~ 7stability e.g. accurate 10 s measurements in 1 s possible
 - \circ 1 year = 3.1 x 107 s

Motion Detection

- A small real-time application
- Objective
 - Simple, lightweight and low cost motion detector
- Methods
 - Many video recognition to accelerometers
 - We choose Light intensity detection

CdS Sensors

- CdS light dependent resistors (LDRs)
 - Small, cheap, available, robust
 - 4 mm, \$1
- Signal processing needed to detect motion

Sensor Characteristics

- \bullet 1 k (at 10 lux) 20 M dark)
- 5 orders of magnitude change
- Practical changes much smaller
- Tunnel or telescopic view helps
- 0.1 to 10 x change possible
- 8-bit ADC is sufficient
- Problems
 - Dynamic range or ambient light intensity
 - Artificial lighting fluctuations

Solutions

- Potential dividers
 - Switch in different resistances
 - Disadvantage current consumption
 - Fluorescent lighting fluctuation needs integration
- Averaging or integrating over half period of mains needed
 - Accurate sampling and take average
 - Better solution: use RC integrator (over half period)

Motion Detector Circuit

The Story of ARM

- http://en.wikipedia.org/wiki/ARM Holdings
- Most widely used 32-bit processors
 - 1.7 billions chips in 2005
 - o 90% embedded 32-bit RISC processors (2009)
 - o 98% mobile phones (1 billion in 2007)

• 200+ IP licensees

 Analog Devices, Atmel, Broadcom, Cirrus Logic, Freescale, Fujitsu, Intel, IBM, Infineon Technologies, Nintendo, NXP Semiconductors (Philips), OKI, Samsung, Sharp, ST Microelectronics, Texas Instruments, VLSI

Major products

- Nokia, Sony Ericsson, Samsung
- o Apple iPod, iPhone, Nintendo
- o PDA, GPS, camera, television

The History of ARM

- In the beginning...
 - Acorn Computers (BBC, Archimedes)
 - 1983 Acorn RISC Machine project
 - An advanced MOS Technology 6502
- 1985 ARM1
- 1986 ARM2
 - o 32 bits (simplest useful 32-bit in the world)
 - 0 4 MIPS @ 8 MHz
 - No microcode (30,000 transistors, vs 70,000 in 68000)
 - Low power consumption

The History of ARM

- 1990 Advanced RISC Machine Ltd spun off
 - With Apple Computer and VLSI Technology
- 1991 ARM6
 - Apple Newton PDA
- Successful business model
 - Sell IP cores for others to build microcontrollers. CPU
- 2006 revenues
 - \$164 million royalties + \$120 million licenses
 - \$0.11 per chip

ARM Architecture

- Low power, low cost
- 32-bit RISC
- Hardwired without microcode
- Uniform 16x32-bit register file
- Single cycle execution
- Conditional execution of most instructions
- http://en.wikipedia.
 org/wiki/ARM architecture

Samsung S3C2410

Features of S3C2410

- 1.8V int., 3.3V memory, 3.3V external I/O microprocessor with 16KB I-Cache/16KB D-Cache/MMU
- External memory controller (SDRAM Control and Chip Select logic)
- LCD controller (up to 4K color STN and 256K color TFT) with 1-ch LCD-dedicated DMA
- 4-ch DMAs with external request pins
- 3-ch UART (IrDA1.0, 16-Byte Tx FIFO, and 16-Byte Rx FIFO) / 2-ch SPI
- 1-ch multi-master IIC-BUS/1-ch IIS-BUS controller
- SD Host interface version 1.0 & Multi-Media Card Protocol version 2.11 compatible
- 2-port USB Host /1- port USB Device (ver 1.1)
- 4-ch PWM timers & 1-ch internal timer
- Watch Dog Timer
- 117-bit general purpose I/O ports / 24-ch external interrupt source
- Power control: Normal, Slow, Idle and Power-off mode
- 8-ch 10 bit ADC and Touch screen Interface

Example 2440 Development Board

- S3C2440A:32bit ARM920T kernel
- System Clock: Internal PLL 400MHz, external bus 100~133MHz
- LCD controller: STN/CSTN/TFT LCD, up to 1024*768 pixels
- LCD interface: 3.5" ~ 10" TFT
- Touch screen controller: 4-wire resistive
- 100MHz Ethernet
- 3 Serial ports
- USB1.1 host
- USB1.1 device
- SD/MMC interface
- Reset button
- RTC with Li-ion battery
- 20-pin JTAG interface
- 4 general purpose LED lamps
- Power indicator LED
- 6 general purpose push-buttons
- Power switch
- SPI I/O
- 64MB Nand Flash

The Story of Intel Atom

- Intel filing the mobile device gap
- Project in 2004
 - Sold ARM-based XScale line to Marvell in 2006 for USD600 million
- Work with Asustek
 - Eee out in 2007, sold 350,000 units
- Low power and low cost in Netbooks
 - N270 2.5W at 1.6GHz
- Worldwide shipment of netbooks
 - 10 million (2008)
 - 32.7 million (2009)

Intel Atom

- x86 x86-64 CPU *popular*
- 45 nm CMOS *low power*
 - TDP 2.5~8 W
- Single or dual core

- At 1.6 GHz: 3300 MIPS, 2.1 GFLOPS
 - o Pentium M740 at 1.73GHz: 7400 MIPS, 3.9 GFLPS, 27 W
- Power
 - o CPU: N270 2.5W
 - o Chipset: 945GSE 6W
 - o I/O Controller: 82801GBM 3.3W
 - o Total 11.8W
- http://en.wikipedia.org/wiki/Intel Atom

Chipset Layout

Rival -VIA Nano

- http://en.wikipedia.org/wiki/Via nano
 - o x86-64 instructions architecture (AMD compatible implementation)
 - o 65 nm manufacturing process
 - o clock speed of 1 GHz to 1.8 GHz
 - o bus speed of 533 MHz or 800 MHz
 - Support for ECC
 - o <u>x86 virtualization</u> (Intel compatible implementation)
 - o 128 KB L1 cache and 1 MB L2 cache, exclusive
 - Pin compatible with the <u>VIA C7</u>.
 - 5~25 W
 - Performance better than low end single core Atom

Rival – ARMv7 (Cortex)

- http://en.wikipedia.
 org/wiki/ARM architecture x86-64
- Cortex family
- ARMv7 architecture
- Similar performance to Atom
- ½ power consumption
- Single chip

Netbook PCs

- The success story of ASUS Eee in 2007
 - http://en.wikipedia.org/wiki/ASUS Eee
 - Intel Atom CPU
- Now every PC manufacturer has it
- Looks like it is taking over the low-end notebook market
- Unbranded version: \$250~300 at 2009.

Atom-based Netbook PC

• Intel N270 1.6GHz

• RAM: 1GB DDRII

• HDD: 160GB SATA

• 10.2" WXGA 1024*600 LCD

• Wifi 802.11a/b/g

• Standard I/O

