

The Abdus Salam International Centre for Theoretical Physics



2057-14

#### First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring

7 - 25 September 2009

Introduction to Networking

Abhaya S. Induruwa

Department of Computing Canterbury Christ Church University North Holmes Road Canterbury CT1 1 QU U.K.



#### The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

#### First Workshop on Open Source and Internet Technology for Scientific Environment

7 – 25 September 2009





## Introduction to Computer Networks

#### Abhaya Induruwa

#### Department of Computing Canterbury Christ Church University United Kingdom





### • How much do you know about networks?





- 4 lectures
  - Overview of Network Architectures, Protocols
  - TCP/IP Internals
  - Useful protocols in TCP/IP stack
    - DHCP
    - tftp
    - NFS
    - Using Wireshark (originally Ethereal)
  - Introduction to Wireless Sensor Networks



## Paradigm Shifts since early 1950s



| Туре                   | Description                                             | Communication<br>Technology        | Transmission<br>Technology                                        |
|------------------------|---------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|
| Terminal<br>Networks   | Connect "dumb" terminals to a central computer          | WAN – PSTN<br>56 – 64 Kbps         | Copper cable                                                      |
| Data Networks          | Connect networks to networks                            | WAN – PSDN<br>56 Kbps – 10<br>Gbps | Coax cable<br>Wireless<br>•Radio, Satellite,<br>µWave<br>OF       |
| Local Area<br>Networks | Connect computer<br>resources spread in a small<br>area | LAN<br>1 Mbps – 10<br>Gbps         | Coax cable<br>•Thick wire<br>•Thin wire<br>•UTP, STP, OF<br>•WiFi |



## Paradigm Shifts since early 1950s



| Туре                                     | Description                                                                     | Communication<br>Technology  | Transmission<br>Technology          |
|------------------------------------------|---------------------------------------------------------------------------------|------------------------------|-------------------------------------|
| Metropolitan<br>Area<br>Networks         | Connect resources spread in a city                                              | MAN<br>100 Mbps –<br>10 Gbps | Coax Cable<br>OF, WiMAX,<br>µWave   |
| Personal<br>Area<br>Networks             | Connect resources<br>localised in a small area                                  | PAN<br>100 Kbps -            | UTP, WiFi,<br>Bluetooth, IrDA       |
| Wireless<br>Personal<br>Area<br>Networks | Connect resources<br>localised in a small area<br>using short range<br>wireless | WPAN                         | RFID, IrDA,<br>Bluetooth,<br>ZigBee |



## Paradigm Shifts since early 1950s



| Туре                               | Description                                                                    | Communication<br>Technology              | Transmission<br>Technology                                          |
|------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|
| Master Slave                       | Terminal Networks                                                              | WAN<br>(PSTN)                            | Coax Cable                                                          |
| Distributed –<br>Client Server     | Enterprise computing.<br>Connect resources<br>belonging to one<br>organisation | WAN<br>(PSDN) ,<br>LAN, MAN,<br>PAN, WSN | UTP, WiFi,<br>Bluetooth, IrDA                                       |
| Distributed –<br>Grid<br>Computing | Connect resources<br>distributed across the<br>globe. Also P2P                 | WAN, LAN,<br>PAN, WSN,<br>WPAN           | OF, Satellite,<br>UTP, WiFi,<br>RFID, IrDA,<br>Bluetooth,<br>ZigBee |
| Cloud<br>Computing                 | Extra thin clients connect to resources concentrated in a few places.          | WAN, LAN,<br>PAN, WSN,<br>WPAN           | OF, Satellite, UTP,<br>WiFi, RFID, IrDA,<br>Bluetooth, ZigBee       |



## **Networking Standards**



- Why do we need standards?
- Standard making bodies:
  - ISO
  - IEEE
  - ANSI
  - IETF
  - National Standard Bodies
  - SIGs/Forums/Alliances



## **Reference Models**



#### • ISO – OSI (Open System Interconnect)

| 7 Layer Reference Model              |         |                  |                                                  |  |
|--------------------------------------|---------|------------------|--------------------------------------------------|--|
|                                      | Unit    | Layer            | Function                                         |  |
| User/Host<br>Layers                  | Data    | 7 - Application  | Application to Network<br>Process and vice-versa |  |
|                                      |         | 6 – Presentation | Data representation & encryption                 |  |
|                                      |         | 5 – Session      | Interhost communication                          |  |
|                                      | Segment | 4 – Transport    | End-to-end connection                            |  |
| Network<br>Operator /Media<br>Layers | Packet  | 3 – Network      | Network routing                                  |  |
|                                      | Frame   | 2 – Data Link    | Physical Link                                    |  |
|                                      | Bit     | 1 – Physical     | Physical Media                                   |  |



## **Reference Models**



#### **IEFT TCP/IP Reference Model (3 + 1 layers)**

| Unit      | Layer                  | Function                                                 | Protocol(s) |
|-----------|------------------------|----------------------------------------------------------|-------------|
| Data      | 3 - Application        | Application to Network<br>Process and vice-versa         | Many        |
| Segment   | 2 – Transport          | End-to-end connection<br>Reliability and Flow<br>Control | TCP or UDP  |
| Packet    | 1 – Network            | Network routing                                          | IP          |
| Frame/Bit | 0 – Host to<br>network | Link control and bit transfer                            | Many        |



## **Reference Models**



#### **TCP/IP – 5 Layer Reference Model**

| Unit    | Layer                 | Function                                                       | Protocol(s)          | Standard body          |
|---------|-----------------------|----------------------------------------------------------------|----------------------|------------------------|
| Data    | 5 - Application       | Application to Network<br>Process and vice-versa               | Many                 | IETF                   |
| Segment | 4 – Transport         | End-to-end connection<br>Reliability and Flow<br>Control       | TCP or<br>UDP        | IETF                   |
| Packet  | 3 – Network           | Network routing                                                | IP                   | IETF                   |
| Frame   | 2 – Data Link         | Logical Link Control<br>(LLC)<br>Media Access Control<br>(MAC) | Ethernet +<br>others | IEEE + other<br>forums |
| Bit     | 1 – Physical<br>Media | Bits on wire                                                   | Many                 | ANSI, ISO              |



## LAN/MAN Standards













The ZigBee Protocol



- The ZigBee protocol carries all the benefits of the 802.15.4 protocol with added networking functionality.
- The ZigBee protocol was engineered by the <u>ZigBee</u> <u>Alliance</u>, a non-profit consortium of leading semiconductor manufacturers, technology providers, OEMs and end-users worldwide.
- The protocol was designed to provide OEMs and integrators with an easy-to-use wireless data solution characterized by low-power consumption, support for multiple network structures and secure connections.
- The ZigBee protocol was designed to carry data through the hostile RF environments that routinely exist in commercial and industrial applications.



## ZigBee protocol features



- Low duty cycle Provides long battery life
- Low latency
- Support for multiple network topologies: Static, dynamic, star and mesh
- Up to 65,000 nodes on a network
- 128-bit AES encryption Provides secure connections between devices
- Collision avoidance
- Link quality indication
- Clear channel assessment
- Retries and acknowledgements
- Support for guaranteed time slots and packet freshness



# Comparison of three technologies



| Standard            | ZigBee<br>IEEE802.15.4  | WiFi<br>IEEE802.11b  | Bluetooth<br>IEEE802.15.1 |
|---------------------|-------------------------|----------------------|---------------------------|
| Range (m)           | 100                     | 100                  | 10                        |
| Battery life (days) | 100 – 1000              | 0.5 – 5.0            | 1 – 7                     |
| No of nodes         | > 64,000                | 32                   | 7                         |
| Application         | Monitoring &<br>Control | Web, Email,<br>Video | Cable<br>Replacement      |
| Throughput (Kb/s)   | 20 – 250                | 11,000               | 720                       |





- Mostly IEEE standards
- Bluetooth SIG
- WiFi forum certification
- WiMAX forum certification
- SIGs and forums supplement the work of the IEEE





- Originated from the DIX Ethernet standard
- Designed by Bob Metcalf in 1973
- IEEE commenced standardising CSMA/CD in February 1980, hence 802 committee
- Now a family of standards
- more than a billion cards have been sold
- 48 bit unique NIC (MAC) address







- 802.3 (1983) 10Base5
- 802.3a (1985) 10Base2
- 802.3i (1990) 10Base-T (cat 3/4)
- 802.3j (1993) 10Base-F
- 802.3u (1995) 100Base-TX (cat 5), 100Base-FX
- 802.3z (1998) 1000Base-X
- 802.3ab (1999) 1000Base-T (cat5/6)
- 802.3ae (2003) 10GBase-over Fibre
- 803.3an (2006) 10GBase-T (cat 6/7)
- P802.3ba (2009 -10) 40 Gbps to 100 Gbps









•at the end of the wait A and C can transmit





- Slow speeds can use hubs or switches
- High speeds require the use of switches
- Use of switches improve performance as collisions are avoided on switched connections



## Wireless LANs



- Uses Radio Frequency (RF) in the GHz band to transmit and receive data over air.
- IEEE 802.11 standards family
  - 802.11b (2.4 GHz/11 Mbps), 802.11g (2.4 GHz/54 Mbps)
  - Proprietary enhancements
    - 802.11b+ (22 Mbps), 802.11 Super g (108 Mbps)
  - 802.11a (5 GHz/54 Mbps)
  - 802.11n (100-300 Mbps) in the future
- Typical operating ranges are
  - Indoor 30m at 11 Mbps and 90m at 1 Mbps
  - Outdoor 120m at 11 Mbps and 460m at 1Mbps
  - Inverse relationship between data rate and range















- C hears A's RTS and sets Network busy for the duration including ACK
- D hears B's CTS and sets Network Busy



## Grid as an example of Distributed Computing



