
2057-15

First Workshop on Open Source and Internet Technology for
Scientific Environment: with case studies from Environmental

Monitoring

Abhaya S. Induruwa

7 - 25 September 2009

Department of Computing
Canterbury Christ Church University

North Holmes Road
Canterbury CT1 1 QU

U.K.

TCP/IP Networking

An Overview of TCP/IP
Protocol Stack

Abhaya Induruwa
Department of Computing

Canterbury Christ Church University
United Kingdom

1
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

TCP/UDP – IP Protocol
Suite

Developed in the late 60s early 70s
Transmission Control Protocol

TCP – IEN5 RFC 761 RFC 793
Internet Protocol

IP – IEN2 RFC 760 RFC 791
User Datagram Protocol

UDP – RFC 768

2
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

TCP

connection oriented
reliable
stream transport protocol

3
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

How does TCP achieve
this?

• connection oriented
• uses RST, SYN, ACK, FIN flags to establish,

maintain and tear down connections
• checksum for both header and application data
• sequence numbers to put the packets in the

correct order
• acknowledgement numbers to let the sender

know that a packet has been received
• retransmission if packets are not acknowledged.

4
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

UDP

connection-less
inherently unreliable
fast
message transport protocol

5
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Why do we need UDP?

• inherently unreliable but fast
• no connection establishment
• no acknowledgements
• no retransmissions
• little transport protocol overhead (8 bytes only)
• messages are delivered on a best effort basis
• checksum is used to detect errors. If errors

are detected, UDP can discard or deliver to the
application with a warning

6
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

The role of IP

• Best effort delivery
• based on IP addresses
• Inter-domain and Intra-domain routing
• Header checksum to ensure correct header

on delivery
• Routers can drop packets resulting packet

loss
• IP does not do anything about it.

7
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Abhaya Induruwa
TCP/IP Protocol Stack

Open Source for Scientific Environment,
Trieste, 7 -25 September 2009 8

movie

Data Encapsulation

Abhaya Induruwa
TCP/IP Protocol Stack 10

Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

TCP Segment Header

IP Header

Source Port

0 3 7 15 31

Destination Port

Sequence Number

Window Size

Urgent Pointer

PaddingOptions

Acknowledgement Number

TCP Header Data from Application

TCP
HL

Checksum

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

11
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

UDP Packet Header

IP Header

Source Port

0 15 31

Destination Port

UDP Message Length

UDP Header Data from Application

UDP Checksum

12
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

What is a Port?

• A port is a transport address at which
processes can listen for connection
requests

• 16 bit port address giving 65536 ports
• Well known ports

– Below 1024 (0 – 1023)
– Provide standard services
– Known port numbers?

13
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Well Known Port Numbers

http://http://www.iana.orgwww.iana.org/assignments/port/assignments/port--numbersnumbers

• Port numbers below 1024
• Reserved for standard services

FTP 21 File Transfer TCP
SSH 22 Secure Shell Login TCP
Telnet 23 Remote login TCP
SMTP 25 Simple Mail Transfer TCP
DNS 53 Domain Name Service TCP/UDP
TFTP 69 Trivial FTP UDP
Finger 79 user lookup TCP
HTTP 80 World Wide Web TCP
POP3 110 Post Office Protocol V3 TCP
SNMP 161 Network Management UDP
SNMP Traps 162 Network Management Traps UDP
HTTPS 443 Secure HTTP TCP
IMAP4 993 Message Access over TLS/SSL TCP

14
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Registered Port Numbers

http://http://www.iana.orgwww.iana.org/assignments/port/assignments/port--numbersnumbers

• Port numbers from 1024 to 49151
L2TP 1071 Layer 2 Tunnelling Protocol
PPTP 1723 Point to Point Tunnelling Protocol

• Port numbers above 49151 are unassigned.
• These are for Dynamic/Private services.

15
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 datagram

IP Header Data (TCP segment or UDP packet)

Ver
Head
Len

0 3 7 15 31

Ser type Packet Length

TTL

Identification D
F

M
FProtocol

ID Number
Source Address

Destination Address

PaddingOptions

Header Checksum

Fragment Offset

16
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Header
• IP Header has a 20 byte fixed part
• A variable length optional part
• Padding is used to align with a byte

boundary
• IP Header is transmitted in big endian

order. ie. From left to right with the high
order bit of the version field going first

• SUN Sparc is big endian architecture
• Intel Pentium is little endian architecture

17
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Header (contd ...)
• Fragmentation is controlled by two bits

– DF – Do not Fragment
• instructs the router not to fragment this packet

– MF – More Fragments
• when set to one indicates that this packet is fragmented and

this fragment is not the last one

• Fragmentation Offset
– 13 bit field to specify in bytes the offset of the data

field of this packet from the starting point of the
source packet.

• Identification
– 2 byte filed used to identify the packets created as a

result of fragmentation. All fragments of the same
packet must have the same value in this field.

18
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

• Protocol Identification Number
– Specify the higher layer protocol for which the payload is

intended (using Assigned Internet Protocol Numbers).
1 – ICMP 6 – TCP
8 – EGP 17 – UDP
41 – IPv6 89 – OSPFIGP
115 – L2TP 255 – Reserved

http://www.iana.org/assignments/protocol-numbers

• Header Checksum
– 2 bytes; calculated for header only
– Since some header fields get changed in the course of

packet transmission across the network, the header
checksum is recomputed at each router node.

IPv4 Header (contd ...)

19
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Addresses
• 32 bit source address
• 32 bit destination address
• Completely different from any hardware

address (eg. 48 bit Ethernet Address)
• Every node (host or router) on an

internetwork should have at least one
unique IP address

• Hosts connected to more than one
network will have a different IP address to
every connection (multi homed networks)

20
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Address Classes
• 5 different classes – known as Classful

Class A
Class B
Class C
Class D
Class E

0 Net ID Host ID

1 0 Net ID Host ID

1 1 0 Net ID Host ID

1 1 1 0 Multicast address

1 1 1 1 0 Reserved for future use

0 7 15 23 31

Network Portion of the Address Host Portion of the Address

21
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Addressing

Network IDNetwork ID No of No of
networksnetworks

No of HostsNo of Hosts

Class AClass A 11--127 127 126126 16, 777,21416, 777,214

Class BClass B 128128--191191 16,38416,384 65,53465,534

Class CClass C 192192--223223 2,097,1512,097,151 254254

22
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Address Ranges

Address RangeAddress Range

Class AClass A 1.0.0.0 1.0.0.0 -- 127.255.255.255127.255.255.255

Class BClass B 128.0.0.0 128.0.0.0 -- 191.255.255.255191.255.255.255

Class CClass C 192.0.0.0 192.0.0.0 -- 223.255.255.255223.255.255.255

23
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

IPv4 Addresses

• A total of 4 Giga addresses
• Usually written in dotted decimal notation
• IP address space is managed by ICANN

(Internet Corporation for Assigned Names
and Numbers)

• Every Internet Host and Router has a
unique IP address which encodes its
network number and host number

24
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Special IPv4 Addresses
0.0.0.0 This host on this network – used during boot up

255.255.255.255 Direct Broadcast on LAN

127.x.y.z Local loopback address
– eg. 127.0.0.0
– Data sent to this address will not be transmitted into the

network
– Packets received with this address are returned to the

upper layer protocol of the same computer
– Useful for testing programme

25
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Layer
Supporting Protocols

• IP is the main network layer protocol
used for data transfer.

• Several control protocols exist to assist
IP

ICMP – RFC 792
ARP – RFC 826 (IP to hardware address)
RARP – RFC 903 (H/W to IP address)
BOOTP – RFCs 951, 1048 and 1084
DHCP – RFCs 2131 and 2132

26
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Sockets

• Socket is an end point of a
communication channel

• identified by a socket address
• in IPv4 socket addresses are 48 bits
• not to be confused with 48 bit Ethernet

addresses
• obtained by combining IP address (32

bits) with port address (16 bits)
• TCP sockets and UDP sockets

27
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

TCP/IP Client Server
Example

A user enters a URL on a browser to access a
web server.
How many different protocols are used?

• HTTP
• DNS
• TCP
• UDP
• IP
• Physical layer, eg. Ethernet

28
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

HTTP Client-Server Application

HTTP
client

DNS
client

DNS
Server

Application Layer

Transport Layer

IP Layer

TCP UDP

Host to Network Layer

user

HTTP server
192.5.8.31:80

IP

DLL and Physical Layer Protocols

1

5

2

4

3

7

6

http://www.anyserver.anywhere.com/anydocument.html

www.anyserver.anywhere.com

192.5.8.31

Abhaya Induruwa
TCP/IP Protocol Stack 29

Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

DHCP Protocol

• Dynamic Host Configuration Protocol – RFC
1541 superseded by RFC 2131

• on booting the device broadcasts its MAC
address

• the DHCP server listens to these broadcasts
and replies with an IP address

• IP address can be allocated from a pool –
hence dynamic

• IP address can also be fixed – kept in a table

30
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

DHCP Protocol

31
Abhaya Induruwa

TCP/IP Protocol Stack

DHCP Server

Client - 1 Client - 2 Client - 3 Client - n

Clients get the IP address corresponding to
their MAC address from the table.

MAC IP
Client-1 172.16.16.11
Client -2 172.16.16.12
Client -3 172.16.16..13

Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

TFTP Protocol

• Trivial File Transfer Protocol – RFC 1350
• uses UDP over port 69
• no security
• Typically used by disk-less workstations
• used by embedded systems, such as Geode

and ARM boards
• On booting the device sends a DHCP request

for the IP address
• Once it gets its IP address, it sends a RRQ

using TFTP to read the file

32
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

NFS Protocol
• Originally developed by Sun Microsystems

in 1984
• allows a client to share files and directory

over a network in a manner similar to how
local storage is accessed

• used UDP
• NFSv2 released as Open Source in 1989 –

RFC 1094
• Now NSFv4 (2003), version developed by

the IETF – TCP based
• Next revision is 612 pages!

33
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

NFS Protocol

34
Abhaya Induruwa

TCP/IP Protocol Stack

NFS Server
/dev/sda5 mounted under /nfsshare

Client - 1 Client - 2 Client - 3 Client - n

NSF clients can mount /nfsshare and
use as if they are accessing local hard disk

Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Programming

• Network programming can be done in many
popular languages

• C, C++, Java, C#, VB.NET all have APIs to
programme network functions

• PHP is an alternative

35
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Hello World in PHP
<!--
This example shows how PHP code is embedded in HTML code.
The browser will display the header from the HTML part of the code.
Then it will display the output by executing PHP code.
-->
<html><body><h1>Hello World Example</h1></body></html>
<html>
<body>

<?php
// echo will display the string argument
echo "Hello World";
?>

</body>
</html>

36
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Programming in
PHP<!--

This example shows how PHP programming can be used to deal with IP addresses and host names.
-->
<html><body><h1>IP Address Example</h1></body></html>

<?php
// get host by address
$hostaddress = gethostbyaddr('127.0.0.1');
print $hostaddress;
print "<p>The host name is: $hostaddress". "</p>\n";
// get host by name
$hostip = gethostbyname("www.ictp.it");
print "The host address is: $hostip". "<p/>\n";
// and re-check
echo gethostbyaddr("$hostip");
echo "
";
// convert dotted decimal IPv4 address to IP proper address
$longip = ip2long($hostip);
print ("The long address is: $longip". "<p/>\n");
// convert to packed notation
$packedip = inet_pton($hostip);
printf ('%$s %$b', "The packed address is: " $packedip);
echo inet_ntop($packedip);
echo long2ip(-1939271547);
?>

37
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Programming in
PHP

Some of the available PHP commands:

checkdnsrr – Check DNS records corresponding to a given Internet host
name or IP address

dns_check_record – Alias of checkdnsrr
dns_get_mx – Alias of getmxrr
dns_get_record – Fetch DNS Resource Records associated with a hostname
gethostbyaddr – Get the Internet host name corresponding to a given IP

address
gethostbyname – Get the IPv4 address corresponding to a given Internet host

name
gethostbynamel – Get a list of IPv4 addresses corresponding to a given

Internet host name
gethostname – Get the host name
getprotobyname – Get protocol number associated with protocol name
getprotobynumber – Get protocol name associated with protocol number

38
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

Network Programming in
PHP

References:

http://it2.php.net/manual/en/book.network.php

http://it2.php.net/manual/en/ref.sockets.php

http://www.devshed.com/c/a/PHP/An-Introduction-to-Sockets-in-PHP/

39
Abhaya Induruwa

TCP/IP Protocol Stack
Open Source for Scientific Environment,
Trieste, 7 -25 September 2009

	play: Yes

