
2057-7

First Workshop on Open Source and Internet Technology for
Scientific Environment: with case studies from Environmental

Monitoring

Paul Bartholdi

7 - 25 September 2009

Observatoire de Geneve
Chemin des Maillettes 51

CH-1290 Sauverny
Switzerland

Shell Programming

Shell programming

Paul Bartholdi

OB
SE

RV
ATOIRE DE GEN

ÈVE

FONDÉ EN
1772

OpenSource Workshop - 2009 – ICTP - Trieste

Introduction

Shell scripts are very high level programs using the Unix facilities.

Simple examples
ls -ltR
ls -ltR | head -7
ls -ltR > ls-ltR

ls -l ls-ltR

ls -ltR > ls-ltR_‘date +"%y.%m.%d_%H:%M:%S"‘

ls -l ls-ltR* | tail +2 | head -1

ls -ltR \
| head -16 \
| awk ’ ! /^total/ {tot += $5 ; \

printf ("%9d %s\n", tot, $0) }’

alias rsum "awk ’\! /^total/ {tot += "\$"\!* ; \
printf ("’"%9d %s\n"’", tot, "\$0") }’"

ls -ltR | head -16 | rsum 5

Question

So, What is Shell programming ?

Introduction (real)
A (shell) script is an executable text file containing unix commands,
including redirections, pipes and other scripts.

I Essentially all Unix commands can be used ;
I Similarely, most constructs found in usual programming

languages are also available for scripts. Newer ones (tcl,
perl) incorporate facilities of sed, awk, grep etc. or use
completely new concepts as objects as in python or scsh
(based on SCHEME).

I Many dialects exist. The main ones are those based on the
original bourn shell (sh, ksh, bash, zsh), and those based
on C (tcsh, csh).

I All consider commands, executable (program and script),
and files as basic elements.

I It is quite usual to use tcsh for interactive and sh (ksh) or
bash for scripts.

Shell Syntax

To be executable, a file just needs the +x bit set
(chmod a+x+ <file>).

To differentiate the dialects, the file should start with a
pseudo-comment in the form :

#!/bin/bash

or whatever other shell (including awk, perl etc) is used.

If this line ends with a -x, then every line executed is echoed.
This is very useful for debugging.

A good site to visit : http://www.shelldorado.com/

Parameters

In most (all ?) shells, parameters are positional.

Inside a script, $n refers to the n’th parameter passed to the
script.

$0 is the name of the script itself

$# is the number of parameters passed

Example :

#!/bin/sh
echo "You executed the shell script $0"
echo "You passed $# parameters"
echo "The first parameter was $1"
exit 0

Comments and Continuation

Any character between # and the end-of-line is treated as a
comment.

It can appear anywhere in the line

If the line ends with a \ (no space after it), the next one is
considered as a continuation.

The number of continuation lines is essentially unlimited.

It is a good habit to align vertically the \ continuations.

Inside a line, the \ is used to protect special characters from
interpretation.

Quotes

Quotes

Three quotes are used : ’ ’ , " " and ‘ ‘

Inside ’ ’ , no special character is interpreted.

Inside " " , $ ‘...‘ ! \ are the only ones
interpreted.

The string inside ‘ ‘ is replaced by the string resulting from
the execution of the commands inside the ‘ ‘ .

Quote Examples

%
Test="NoGood"
echo 1. Test # just ascii string (Test)
echo 2. $Test # $ interpreted (NoGood)
echo 3. \$Test # $ not interpreted ($Test)
echo 4. \\$Test # \ and $ interpreted (\NoGood)
echo 5. "$Test" # $ interpreted (NoGood)
echo 6. ’$Test’ # $ not interpreted ($Test)

Today=‘date | tr " " "_"‘

cp Ex7.java Ex7.java_‘date +"%m%d-%H%M%S"‘

I What is the content of the variable Today ?
I What is the name of the copy of Ex7.java ?

Variables
Variable can be defined inside a shell. Except if exported, they
are local, not seen outside the shell.

Variable names are made of letters, digits and underscore only,
starting with a letter or an underscore.

They are defined with a = (bash, sh) , without a space around
the = sign, or read form the standard input :

Test="Order==$1" ; read answer

and are used, as for parameters, with a $ in front, for them to
be replaced with their content.

It is purely text manipulation. They can appear inside a "word".
It is then necessary to enclose the name of the variable with
{ } to obviate any confusion.

if [x${answer} == "xY"] ; then
SetPower $level

fi

Global Variables

bash/sh/ksh/... Variables are made global with the command
export variable_name

This can be on the line where the variable is defined, or
anytime later. NETWATCH=etherreal export etherreal

The list of all global variables is obtained with export
without parameter.

csh/tcsh Local variables a re defined with :
set VAR=value

While global variables are defined with :
setenv VAR value

The list of all global variables is obtained with printenv

Special Variables
A few special variables are always available. Assignment to
them is not allowed.

$0 is the name of the current script/executable,

$# is the number of parameters,

$n are the parameters passed to the script,

$@ is the list of all parameters enclosed between " "

$_ is the command line fully qualified name f the current script,

$$ is the pid (process id number) of the current script,

$? is the status of the most recently executed foreground
pipeline,

$(command) is the result of the command (same as
‘command‘).

Environment Variables

The system looks for programs in the directories defined in the
variable PATH , and execute the first found.

In the same way, man looks in the directories defined in the
variable MANPATH , and the loader in the LD_LIBRARY_PATH
for libraries.

The directory names are separated with colon (" : ")
characters.

To add a new directory :

PATH=${PATH}:new_dir PATH=new_dir:$PATH

Remarks for PATH

Remarks for PATH

I A generous PATH is predefined for most Unix, but not
available for cron.

I the current directory (.) is usually part of PATH . It is better
to have it at the end to avoid replacing system commands.

I it is good to have all executables in $HOME/bin or
$HOME/scripts , and to add these directory to PATH in
the .login file.

I do the same for your local man pages.
I to see the full PATH , use

echo $PATH | tr ":" "\n" [| sort | uniq -c]
I to find where an executable is : which my_program
I to find all copies of an executable :

whereis my_program

envv to modify PATH

This small program make it easy to add, change, move or
remove entries in a PATH variables. No entry will appear more
than once. It will work equally well in sh and csh.

Example to add my_dir in front of PATH :

eval ‘envv add PATH my_dir 1‘

or if many entries are changed :

envv (2)

If many entries are changed, better use (.login, .profile) :

env SHELL=/usr/bin/csh envv << ---EOF--- > /tmp/envv.$$
set EDITOR crisp
move PATH /usr/bin 1
add PATH /unige/java1.2/bin
add PATH /home/system/bartho/bin 1
add LD_LIBRARY_PATH /usr/local/lib
move LD_LIBRARY_PATH /usr/lib 1
del MANPATH /usr/local/lsf5/5.0/man
---EOF---

source /tmp/envv.$$
/bin/rm /tmp/envv.$$

File Name Modifiers (csh)

Variable can be modified with the following modifiers :

<variable name>:r suppress all the possible suffixes

<variable name>:s/old/new/ substitutes new for old.

More modifiers are available, see man pages.

Example :

foreach file (*.java)
echo " $file --> $file:r "
cp $file:r $file:r_org

end

Conditionals (bash, csh)

bash/sh/ksh/...
if list ; then

commands
else

commands
fi

csh/tcsh
if (expression) then

commands
else
commands

endif

Case (bash, csh)
Case (bash, csh)

bash/sh/ksh/...
case word in

pattern1) commands ;;
pattern2) commands ;;
*) commands ;;

esac

csh/tcsh
switch (string)
case labe1 :

commands
breaksw
...
default:
commands

endsw

Loops (bash, csh)

bash/sh/ksh/...
for var in list ; do

commands
done

csh/tcsh
foreach var (list)

commands
end

Conditional loops (bash, csh)

bash/sh/ksh/...
while list ; do

commands
done

csh/tcsh
while (expression)

commands
end

Conditional Expression (bash, ksh)

Conditionals test the status resulting from the execution of the
list.

Simple conditional expression are done using [expression] ,
or the compound [[compound expression]] .

Compound expressions are made of simple expressions linked
with logical operators (||, &&, !).

Binary operators are :
== , != , < , > , -eq , -ne , -le , -gt , -ge

Unary operators

Unary operators are (see man pages for all of them) :

-a file file exists (any type)

-d file file exists and is a directory

-f file file exists and is a regular file

-s file file exists and is not empty

-r file file exists and is readable

-w file file exists and is writable

-x file file exists and is executable

Examples of Conditionals (bash)

Testing some parameters of a file

if [! -a $1] ; then
echo " file $1 does not exists"

else
if [[-f $1 && -w $1]] ; then

echo " file $1 is a regular file"
echo " and is writable"

else
echo " file $1 is not a regular file"
echo " or is not writable"

fi
fi

Examples of Conditionals 2 (bash)
Counting to one minute

i=0
date
while test $i -le 60 ; do

case $(($i%10)) in
0) j=$(($i/10)) ; echo -n $j ;;
5) echo -n ’+’ ;;
*) echo -n ’.’ ;;

esac
i=$(($i+1))
sleep 1

done
echo ’ ’
date

Wed Sep 2 17:10:47 CEST 2009
0....+....1....+....2....+....3....+....4....+..
Wed Sep 2 17:11:48 CEST 2009

Examples of Loops (bash)

Converting all tiff files into postscript ones

for file in *.tiff ; do
psfile=${1%.tiff}.ps
convert $1 $psfile
echo "$1 converted into $psfile"

done

Simple list of password file

count=0
while read whole_line ; do

UserName=‘echo $whole_line | cut -d":" -f1 ‘
echo "User $count has username $UserName"
count=‘expr $count + 1‘

done < /etc/passwd

Trapping Signals (bash, sh)

It is possible to execute a command in the case a signal is sent
to the script.

Syntax :

trap " command " list of signals

Example :

trap "\rm -f $TMP" 0 1 2 3 9 15

A signal is sent with the command kill n where n is the
number or the name of the signal

List of Signals

List of Signals

The most useful signals are :

0 -EXIT not a real signal, just passed to the script

1 -HUP hangup

2 -INT interrupt, also generated with <ctrl>C

3 -QUIT quit, also generated with <ctrl>[, explicitly
request a core dump

9 -KILL brutal death, cannot be caught or ignored

10 -BUS bus error

11 -SEGV segmentation violation

List of Signals - 2

13 -PIPE pipeline without reader to terminate a writing
process

15 -TERM to terminate a process gracefully

16 -USR1 user defined

17 -USR2 user defined

23 -STOP stop momentarily the process

25 -CONT restart a stooped process

Script file : KillMeAfter

Suppose we have a script that should not take more than a few
seconds, but hangs sometimes...

Here is an example ;

#!/bin/sh
host=$1
/home/b/bartho/bin/KillMeAfter $$ 80 &
if /sbin/ping $h 1 > /dev/null ; then
if /usr/bin/ssh -n $host "date" > /dev/null ; then

/usr/bin/ssh -n $host "/usr/bin/checkpc -f; \
/etc/init.d/lpd restart"

fi
fi
/home/b/bartho/bin/KillKillMeAfter $$
exit 0

Script file : KillMeAfter

A lot of precautions have been taken, but we cannot be sure
that checkpc or lpd will not hang.

The two commands KillMeAfter and
KillKillMeAfter will do the job

Script file : KillMeAfter (2)

KillMeAfter gets two parameters.

I The first is the pid of the calling script.
I The second is the max time allowed for the calling script.

KillMeAfter will go to sleep for that time, and when
waken-up, kills the calling script if it still exists.

KillKillMeAfter is called at the end of the script, and kills
the sleeping KillMeAfter script. It has one parameter, the calling
script pid (necessary because we don’t want to kill the wrong
KillMeAfter !)..

Script file : KillMeAfter (3)

#!/bin/sh
called by some script, with pid as parameter $1,
expected to kill it after $2 sec

echo $0 : pid=$1
echo $0 go to sleep for $2 sec
sleep $2

echo $0 weak up
if ‘ps -ef -o pid | egrep $1 > /dev/null ‘ ; then

kill -9 $1
echo pid : $1 should be dead now
else
echo pid : $1 was already killed
fi

exit 0

Script file : KillKillMeAfter

#!/bin/sh
Kill the KillMeAfter started by pid $1
Also kill the sleep started by KillMeAfter

GAWK=/bin/gawk

KMApid=‘ps -ef | tr -s ’ ’ | egrep KillMeAfter \
| $GAWK -v pid=$1 ’$10 == pid {print $2} ’ ‘

sleeppid=‘ps -ef | tr -s ’ ’ | egrep sleep \
| $GAWK -v pid=$KMApid ’$3 == pid {print $2} ’ ‘

if ["X$KMApid" != "X"] ; then
kill -9 $KMApid $sleeppid 2> /dev/null

fi

exit 0

Script file : snapshot backup

The cost of storage is now almost the same for disks and tapes.
The goal of the following script is to make rotating backups on
disks in a very efficient way, both in time and disk space.

Header :
#!/bin/sh

mikes handy rotating-file-system-snapshot utility

this needs to be a lot more general, but the
basic idea is it makes rotating backup-snapshots
of /home whenever called

Local adaptation by Paul Bartholdi - 2002/10/02

echo "***** Start : ‘date‘"

Script file : snapshot backup (Definitions)

Definitions :
------------- system commands used by this script
ID=/usr/bin/id
ECHO=/bin/echo
MOUNT=/bin/mount
RM=/bin/rm
MV=/bin/mv
CP=/bin/cp
TOUCH=/bin/touch
RSYNC=/usr/bin/rsync

------------- file locations --------------------
SNAP_ORG=/home/b/bartho
SNAP_RW=/tmp
EXCLUDES=/home/b/bartho/backup_exclude
INCLUDES=/home/b/bartho/backup_include

Script file : snapshot backup (exclude file)

Provision is made for lists of directories to be included or
excluded from the backups.

Directories can be fully rooted (/home/...) starting with a / , or
starting with the last element of $SNAP_ORG as defined above.

Here is the content of the backup_exclude file

bartho/YESTERDAY_FILES
bartho/public
bartho/public_html
bartho/sm2_4_7

Script file : snapshot backup (Initialization)

Who is running the script ?

------------- the script itself -----------------
make sure we’re running as root
#if [‘$ID -u‘ != 0] ; then
$ECHO "Sorry, must be root. Exiting..."
exit
#fi

Should be uncommented !

Script file : snapshot backup (Rotating snapshots)

Rotating backups, deleting oldest one :

step 1: delete the oldest snapshot, if it exists:
echo "----- Step 1 : ‘date‘"
if [-d $SNAP_RW/backup.3] ; then
$RM -rf $SNAP_RW/backup.3

fi ;

step 2: shift the middle snapshots(s) back by one
if they exist
echo "----- Step 2 : ‘date‘"
if [-d $SNAP_RW/backup.2] ; then

$MV $SNAP_RW/backup.2 $SNAP_RW/backup.3
fi;
if [-d $SNAP_RW/backup.1] ; then

$MV $SNAP_RW/backup.1 $SNAP_RW/backup.2
fi;

Script file : snapshot backup (Changed files)
Copy backup 0 with hard-links, and make new backup 0 :

step 3: make a hard-link-only (except for dirs)
copy of the latest snapshot...
echo "----- Step 3 : ‘date‘"
if [-d $SNAP_RW/backup.0] ; then

$CP -al $SNAP_RW/backup.0 $SNAP_RW/backup.1
fi

step 4: rsync from the system into the latest snap
rsync is like cp --remove-destination by default,
so the destination is unlinked first.
If it were not so, this would copy over the other
snapshot(s) too!
echo "----- Step 4 : ‘date‘"
$RSYNC -valH --delete --delete-excluded \

--exclude-from="$EXCLUDES" \
--include-from="$INCLUDES" \

$SNAP_ORG $SNAP_RW/backup.0

Script file : snapshot backup (Finishing)

Update time of backup 0 and close :

step 5: update the mtime of backup.0 to reflect
the snapshot time
echo "----- Step 5 : ‘date‘"
$TOUCH $SNAP_RW/backup.0

and thats all.

echo "===== All done : ‘date‘"

exit 0

Dear Mouse. . .

	Shell Programming
	Introduction
	Simple examples
	Question
	Introduction (real)
	Shell Syntax
	Parameters
	Comments and Continuation
	Quotes
	Quote Examples
	Variables
	Global Variables
	Special Variables
	Environment Variables
	Remarks for PATH
	envv to modify PATH
	envv (2)
	File Name Modifiers (csh)
	Conditionals (bash, csh)
	Case (bash, csh)
	Loops (bash, csh)
	Conditional loops (bash, csh)
	Conditional Expression (bash, ksh)
	Unary operators
	Examples of Conditionals (bash)
	Examples of Conditionals 2 (bash)
	Examples of Loops (bash)
	Trapping Signals (bash, sh)
	List of Signals
	Script file: KillMeAfter
	Script file: KillMeAfter
	Script file: KillMeAfter (2)
	Script file: KillMeAfter (3)
	Script file: KillKillMeAfter
	Script file: snapshot backup
	Script file: snapshot backup (Definitions)
	Script file: snapshot backup (exclude file)
	Script file: snapshot backup (Initialization)
	Script file: snapshot backup (Rotating snapshots)
	Script file: snapshot backup (Changed files)
	Script file: snapshot backup (Finishing)

