
2057-8

First Workshop on Open Source and Internet Technology for
Scientific Environment: with case studies from Environmental

Monitoring

Paul Bartholdi

7 - 25 September 2009

Observatoire de Geneve
Chemin des Maillettes 51

CH-1290 Sauverny
Switzerland

Shell Programming

1 Shell programming

When a set of commands is repeated more than 2 or 3 times, then it is
usually worth putting them into a file and executing the file, passing possibly
parameters. Such files are called script files in Unix.

All Unix shells offer lots of usual programming constructs, as variables, con-
ditionals and loops, input and output, and even some rudimentary arith-
metic. Shell programming cannot replace C programming, in particular it is
much slower, but it can be very effective in organizing together the repetitive
and possibly conditional execution of programs.

Writing script files can have two other advantages:

– they can be edited until they work, even once . . .

– they keep track of what was done, either as a log, or as an example for a
similar problem in the future.

To be executable, a file just needs the x bit set in its permissions. This is
done with the chmod +x script command.

As many different shells can be used in Unix, it is preferable to add as a
first line a comment indicating to the system which shell is used. So the first
line of a script file should look like #!/bin/sh or whatever other shell is used
(remember they have different syntax, and should not be confused).

1.1 Comments

Any character between the # and the end-of-line is treated as a comment.
The example just above is really a comment, and is understood by the shell
as a possible indication about which shell should be used. In such a case, the
is called the magic number.

1

1.2 Quotes

Two types of quote symbols can be used: ’ and ".

Inside ’ ’, no special characters are interpreted.

Inside " ", only $, ‘, !, and \ are interpreted.

Any special character can be transformed into a normal one with a \ in front.

Try:

Test="NoGood"
echo 1. Test # just ascii string
echo 2. $Test # $ in front
echo 3. \$Test # \$ in front
echo 4. \\$Test # \\$ in front

1.3 Parameter passing

A command can be followed by parameters as “words” separated by spaces
or tabs. The end-of-line, a ;, redirections or pipes, end the command.

Inside a script, $n, where n is a digit, will be replaced by the corresponding
parameter. Notice that $0 corresponds to the name of the command itself.

As a very simple example, here is a script that will compile a C program,
and execute it immediately. The name of the program is passed to the script
as a parameter.

#!/bin/sh -x
gcc -O3 -o $1 $1.c
$1

To compile and execute threads.c, one would type ccc threads where ccc

2

is the name of the script.

1.4 Variables

Variables can be defined inside a shell. Except if exported, they are not seen
outside the shell. Variable names are made of letters, digits and underscores
only, starting with a letter or an underscore.

They can be defined with =, without any spaces around the = sign, or read
from the terminal or a file, as in the following:

Test="Order==$1"
read answer

and used, as for parameters, with a $ in front for them to be replaced with
their content.

if ["x$answer" = "xY"]; then
SetPower $level

fi
select "$Test"

1.5 Environment variables PATH, MANPATH and LD_LIBRARY_PATH

When the name of a program (a file name effectively) is given for execution,
the system will look in successive directories, and execute the first one found.

In the same way, man looks in successive directories and prints the first
corresponding pages found, and the loader looks in the list of directories for
dynamic libraries.

These lists of directories are given in PATH , MANPATH and LD_LIBRARY_PATH
.

3

The directory names are separated by colon (“: ”) characters.

To add a new directory, use command (in bash):

PATH=${PATH}: <my_dir>

or

PATH= <my_dir>:${PATH}

The first version puts the new directory at the end, and the second in front,
of the list. Both versions have some advantages.

tcsh keeps a hash table of all executables found in the PATH . This table is
setup at login, but it is not automatically updated when PATH changes. The
command rehash can be used to update manually the hash table.

• a “generous” PATH is predefined in most Linux systems

• the current directory “. ” is usually part of the PATH . It is better to
put it at the end of the list to avoid replacing a system program.

• you can put all your executables in a directory called ˜/bin and add
˜/bin to your PATH (in the file ˜/.login or ˜/.profile).

• you can do the same for your personal man pages.

• to see the full PATH as defined now, use the command:
echo $PATH

• to see all environment variables:
env

• to find where an executable is:
which my_program

• to find where are all copies of a program (in the list defined by PATH):
whereis your_program

You may have to redefine whereis in an alias to search the full PATH :
alias=whereis "whereis -B $PATH -f"

4

• If you add directories in an uncontrolled way, the same directory may
appear in different places . . . To avoid this, you can use the program
envv available in the public domain:

eval ‘envv add PATH my_dir 1‘

The last number, if present, indicates the position of the new directory
in the list. Without a number, the new directory is put at the right
end of the list.

Notice that envv is insensitive to the shell used (same syntax in tcsh,
bash and ksh).

1.6 Reading data

Variables can be read from the keyboard with the read command as seen
in section 1.4. Any file can be redirected to the standard input with the
command exec 0<file. Then the read command gets lines form the file
into the variables. The arguments can be individualy recovered with the set
command:

exec 0< Classes
read head
set $head
echo The heads are: $1 $2 $3

1.7 Loop – for command

In bash , the command for permits to loop over many commands with
a variable taking successive values from a list (see section 2.1 for a csh
equivalent).

The syntax is:

for <variable name> in <list of values> ; do
<commands>

5

<commands>
...
done

Here are a few examples using for in bash scripts. You may want to try to
rewrite them for csh.

1. Repeat 10 times a benchmark:

for bench in 1 2 3 4 5 6 7 8 9 10 ; do
echo Benchmark Nb: $bench
benchmark | tee bench.log_$bench

done

2. Doing ftp to a set of machines. We assume that the commands for
ftp have been prepared in a file ftp.cmds :

for station in 1 2 3 7 13 19 27 ; do
echo "Connecting to station infolab-$station"
ftp infolab-$station < ftp.cmds

done

Such commands enable us to update a lot of stations in a relatively
easy way.

1.8 File name modifiers

The variable names can be modified with the following modifiers:

<variable name>:r suppresses all the possible suffixes.

<variable name>:s/ <old>/ <new>/ substitutes <new> for <old>.

Many more modifiers exist; man pages of csh gives a complete list.

The following code saves all executables and recompiles:

6

for file in *.c ; do
echo $file
cp $file:r $file:r_org
gcc -g -o $file:r $file

done

2 Shell Programming

2.1 bash and csh command syntax compared

Today, many people use tcsh for interactive work. Others prefer bash or ksh
. They have so many goodies. But for shell programming, writing scripts,
the choice is really open between sh and its offsprings (ksh, bash . . .) on
one side, and csh on the other. ksh or bash are now the default standard on
Linux. They are simpler yet most powerful of all. csh on the other hand has
the advantage of being a subset of tcsh, with which the user is probably more
comfortable. As with many other choices with computers, it has become a
question of religion. The choice is really very much yours!

If your problem is very complex, requiring you to handle arrays or to manip-
ulate many files, then probably neither bash nor csh is sufficient.

awk is an ideal tool to manipulate text in any form, but it is not really
intended for shell programming. It has only few interactions with the system,
with the file system, etc.

perl provides almost everything you may ever wish, including, in the script
language, all facilities of awk and sed, both indexed and context addressed
arrays, etc. perl 5 is now available with most Linux distributions. As for
tcsh, it is not part of the base system and has to be installed specifically by
the “system manager”.

Python is a rather different scripting language. It is fully object oriented, with
a clean and simple syntax. It can be expanded extensively using libraries,
written either in Python, in C or many other programming languages. As

7

with shells, it can be used both interactively and through script files. More-
over, code written in Python are probably the most readable.

Table 1 compares the main commands used in bash and csh. As you will
see, some are missing in one or the other, others are definitely simpler in one,
and many others are quite similar in both.

2.2 Signals used with shells

The main signals used in shells are: INT (2), QUIT (3), KILL (9), TERM (15),
STOP (23) and CONT (25). KILL cannot be caught or ignored, and will bring
your shell to an end. STOP and CONT allow to stop a shell (or any task)
temporarily and then restart it without losing anything.

Here is a full list of signals as used in Linux. It is extracted from the file
/usr/src/linux/include/asm/signal.h

#include <linux/types.h>

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGIOT 6
#define SIGBUS 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGUSR1 10
#define SIGSEGV 11
#define SIGUSR2 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGSTKFLT 16
#define SIGCHLD 17
#define SIGCONT 18
#define SIGSTOP 19

8

Table 1: Comparison between bash and csh

bash csh

Arithmetic
$((...)) @var=expr
expr expression

Loops
for id in words ; do foreach var (words)

list ; . . .
done end

Repeated command
– repeat count command

Menu input
select id in words ; –

do list ;
done

Case
case word in switch (string)

pattern) list ;; case label :
pattern) list ;; . . .
*) list ;; breaksw

esac default:
endsw

Conditionals
if list ; then if (expression) then

list ; . . .
elif else if (expression) then

list ; . . .
else else

list ; . . .
fi endif

Conditional loops
while list ; do while (expression)

list ; . . .
done end

until list ; do
list ;

done

Function
function id () { list ; }

Signal capture
trap command signal onintr label

Breaking loops
break break

continue

9

#define SIGTSTP 20
#define SIGTTIN 21
#define SIGTTOU 22
#define SIGURG 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGIO 29
#define SIGPOLL SIGIO
/*
#define SIGLOST 29
*/
#define SIGPWR 30
#define SIGSYS 31
#define SIGUNUSED 31

/* These should not be considered constants from userland. */
#define SIGRTMIN 32
#define SIGRTMAX (_NSIG-1)

2.3 Sample shell scripts

The following pages list some shell scripts that present various aspects of shell
programming. Almost every construction is present, though not necessarily
with every option. Some are just toy scripts (calc) whereas others are real
programs used daily for system maintenance (crlicense, png1 and png2).
flist has been used to create this listing.

Table 3 shows commands and corresponding scripts in which they are used.
The scripts below are in alphabetical order. Their names appear in the listing
at the right, after a long dashed line separating the various scripts. They are
written in ksh or bash, but are easily converted to csh.

10

Table 3: Commands and corresponding scripts
arithmetic calc calc2 guess1 guess2 minutes

awk KillKillMeAfter
loops convert convert2 flist tolower toupper
select term1 term2
case convert minutes term2
if KillKillMeAfter KillMeAfter convert ddmf_check

filinfo flist grep2 guess1 guess2 term1 term2
while calc2 convert guess1 guess2 minutes

function convert3
trap calc2 guess1

Sample listing

Tue Oct 3 11:41:33 MEST 2000
-- KillKillMeAfter
#!/bin/ksh -f
Kill the KillMeAfter started by pid $1
Also kill the sleep started by KillMeAfter

GAWK=/usr/bin/gawk

KMApid=‘ps -ef | \
tr -s ’ ’ | \
egrep KillMeAfter | \
egrep -v KillKillMeAfter | \
egrep -v egrep | \
$GAWK -v pid=$1 ’$10 == pid { print $2 } ’ ‘

ps -ef | \
tr -s ’ ’ | \
egrep sleep | \
egrep -v egrep > /tmp/KMA_$$

if [-s /tmp/KMA_$$] && ["X${KMApid}" != "X"] ; then
sleeppid=‘cat /tmp/KMA_$$ | $GAWK -v pid=$KMApid ’$3 == pid { print $2 } ’ ‘
\rm -f /tmp/KMA_$$

else
\rm -f /tmp/KMA_$$
exit 0

fi

11

echo $$: $KMApid / $sleeppid

if ["X$KMApid" != "X"] || ["X$sleeppid" != "X"] ; then
kill -9 $KMApid $sleeppid 2> /dev/null

fi

exit 0
-- KillMeAfter
#!/bin/ksh
called by some script, with pid as parameter $1,
expected to kill it after $2 sec

echo $0 : pid=$1
echo $0 go to sleep for $2 sec
sleep $2
echo $0 weak up
if ‘ps -ef -o pid | egrep $1 > /dev/null ‘ ; then

kill -9 $1
echo pid : $1 should be dead now
else
echo pid : $1 was already killed
fi
exit 0
-- calc
#!/bin/bash
Very simple calculator - one expression per command

echo $(($*))
exit 0
-- calc2
#!/bin/bash
simple calculator, multiple expressions until ^C

trap ’echo Thank you for your visit ’ EXIT

while read expr’?expression ’; do
echo $(($expr))

done
exit 0
-- convert
#!/bin/bash
convert tiff files to ps

echo there are $# files to convert :

12

echo $*
echo Is this correct ?

done=false
while [[$done == false]]; do

done=true
{

echo ’Enter y for yes’
echo ’Enter n for no’

} >&2
read REPLY?’Answer ?’
case $REPLY in

y) GO=y ;;
n) GO=n ;;
*) echo ’***** Invalid’

done=falase ;;
esac

done
if [["$GO" = y\"y"]]; then

for filename in "$@"; do
newfile=${filename%.tiff}.ps
eval convert $filename $newfile

done
fi
exit 0
-- convert2
#!/bin/bash
simple program to convert tiff files into ps

for filename in "$@" ; do
psfile=${filename%.tiff}.ps
eval convert $filename $psfile

done
exit 0
-- convert3
#!/bin/bash
simple program to convert tiff files into ps

function tops {
psfile=${1%.tiff}.ps
echo $1 $psfile
convert $1 $psfile
}

for filename in "$@" ; do

13

tops $filename
done
exit 0
-- copro
#!/bin/bash
coprocess in ksh

ed - memo |&
echo -p /world/
read -p search
echo "$search"
exit 0
-- copro2
#!/bin/bash
coprocess 2 in ksh

search=eval echo /world/ | ed - memo
echo "$search"
exit 0
-- filinfo
#!/bin/bash
print informations about a file

if [[! -a $1]] ; then
echo "file $1 does not exist !"
return 1

fi

if [[-d $1]] ; then
echo -n "$1 is a directory that you may"
if [[! -x $1]] ; then

echo -n " not "
fi
echo "search."

elif [[-f $1]] ; then
echo "$1 is a regular file."

else
echo "$1 is a special file."

fi

if [[-O $1]] ; then
echo "You own this file."

else
echo "You do not own this file."

fi

14

if [[-r $1]] ; then
echo "You have read permission on this file."

fi

if [[-w $1]] ; then
echo "You have write permission on this file."

fi

if [[-x $1]] ; then
echo "You have execute permission on this file."

fi
exit 0
-- flist
#!/bin/ksh

list files separated with name and date as header

ECHO=/unige/gnu/bin/echo

narg=$#
if test $# -eq 0
then

$ECHO "No file requested for listing"
exit

fi

if test $# -eq 2
then

head=$1
shift

fi

$ECHO ‘date‘
for i in $* ; do

$ECHO ’ ’
$ECHO -n ’-- ’
if test $narg -ne -1
then head=$i
fi
$ECHO $head
cat $i

done
$ECHO ’ ’
$ECHO ’-- end’

15

exit 0
-- grep2
#!/bin/ksh

search for two words in a file

filename=$1
word1=$2
word2=$3
if grep -q $word1 $filename && grep -q $word2 $filename
then

echo "’$word1’ and ’$word2’ arre both in file: $filename."
fi
exit 0
-- guess1
#!/bin/ksh

simple number guessing program

trap ’echo Thank you for playing !’ EXIT

magicnum=$(($RANDOM%10+1))

echo ’Guess a number between 1 and 10 : ’

while read guess’?number> ’; do
sleep 1
if (($guess == $magicnum)) ; then

echo ’Right !!!’
exit

fi
echo ’Wrong !!!’

done
exit 0
-- guess2
#!/bin/ksh

an other number guessing program

magicnum=$(($RANDOM%100+1))

echo ’Guess a number between 1 and 100 :’

while read guess’?number > ’; do

16

if (($guess == $magicnum)); then
echo ’Right !!!’
exit

fi
if (($guess < $magicnum)); then

echo ’Too low !’
else

echo ’Too high !’
fi

done
exit 0
-- minutes
#!/bin/bash
count to 1 minute

i=0
date
while test $i -le 60; do

case $(($i%10)) in
0) j=$(($i/10))

echo -n "$j" ;;
5) echo -n ’+’ ;;
*) echo -n ’.’ ;;

esac
sleep 1
let i=i+1

done
echo
date
-- term1
#!/bin/bash
setting terminal using select

PS3=’terminal? ’
oldterm=$TERM
select term in vt100 vt102 vt220 xterm dtterm ; do

if [[-n $term]]; then
TERM=$term
echo TERM was $oldterm, is now $TERM
break

else
echo ’***** Invalid !!!’

fi
done
-- term2

17

#!/bin/bash
set terminal using select and case

PS3=’terminal? ’
oldterm=$TERM
select term in ’DEC vt100’ ’DEC vt220’ xterm dtterm; do

case $REPLY in
1) TERM=vt100 ;;
2) TERM=vt220 ;;
3) TERM=xterm ;;
4) TERM=dtterm ;;
*) echo ’***** Invalid !’ ;;

esac
if [[-n $term]]; then

echo TERM is now $TERM
break

fi
done
-- tolower
#!/bin/bash
convert file names to lower case

for filename in "$@" ; do
typeset -l newfile=$filename
eval mv $filename $newfile

done
-- toupper
#!/bin/ksh
convert file names to upper case

for filename in "$@" ; do
typeset -u newfile=$filename
echo $filename $newfile
eval mv $filename $newfile

done
-- end

18

Index
awk, 7

bash, 7

character
quote, 2
special, 2

csh, 7

documentation
comment, 1

dynamic library, 3

envv, 5
example

shell scripts, 10

file
name modifier, 6

kill, 8
ksh, 7

ld_library_path, 3

man, 3
manpath, 3

path, 3
perl, 7
python, 7

sed, 7
shell, 7

example, 10
loop, 5
parameter, 2
reading data, 5

script, 10
variable, 3

shell programming, 7
signal, 8

tcsh, 7

19

