

2058-S-6

Pseudochaos and Stable-Chaos in Statistical Mechanics and Quantum Physics

21 - 25 September 2009

Quantum chaos and unpredictability in quantum systems

U. SMILANSKY

Weizmann Institute of Science Rehovot Israel

Trieste September 2009

Quantum Chaos and Unpredictability in Quantum Systems

Organizers, is this in earnest?

- 1. The importance of being quantal
- 2. The importance of being irrational.
- 3. The importance of being well-connected

Quantum Scrambling

1. The importance of being quantal

The Quantum chaos paradigm: Level statistics

Nearest neigbour spectral distribution

$$s_n = \frac{\lambda_n - \lambda_{n-1}}{\text{mean spacing}}$$
; $P(s) = \frac{1}{K} \sum_{k=N+1}^{N+K} \delta(s - s_k)$

$$N(E) = \frac{\mathcal{A}}{4\pi}E - \frac{\mathcal{L}}{4\pi}E^{\frac{1}{2}} + \mathcal{O}(1)$$
$$+ \sum_{p} a_{p} \cos(l_{p} E^{\frac{1}{2}} + \phi_{p})$$

 \mathcal{A} : The area of the drum.

 \mathcal{L} : The length of its circumference.

p : periodic orbit of length l_p .

 a_p : "stability amplitudes".

Key-word: interference

Fig. 1.4. Level spacing distributions for (a) the Sinai billiard[7], (b) a hydrogen atom in a strong magnetic field [20], (c) an NO₂ molecule [16], (d) a vibrating quartz block shaped like a three-dimensional Sinai billiard [21], (e) the microwave spectrum of a threedimensional chaotic cavity [22], (f) a vibrating elastic disc shaped like a quarter stadium [23]. Courtesy of Stöckmann

Can one hear the shape of a drum?

A TEST OF A NEW TYPE OF STELLAR INTERFEROMETER ON SIRIUS

By R. HANBURY BROWN

Jodrell Bank Experimental Station, University of Manchester

AND

Dr. R. O. TWISS

Services Electronics Research Laboratory, Baldock DELAY RECTIFIED R.M.S FLUCTUATION-LEVEL CORRELATION RECORDING MOTOR MOTOR

Fig. 1. Simplified diagram of the apparatus

Fig. 2. Comparison between the values of the normalized correlation coefficient $\Gamma^2(d)$ observed from Sirius and the theoretical values for a star of angular diameter 0 0063". The errors shown are the probable errors of the observations

VOLUME 10, NUMBER 3

PHYSICAL REVIEW LETTERS

1 February 1963

PHOTON CORRELATIONS*

Roy J. Glauber

Lyman Laboratory, Harvard University, Cambridge, Massachusetts

It is easily shown that coherent states of the field lead to no photoionization correlations at all.

Chaotic scattering version of the Hanbury-Brown Twiss experiment

Measure: Intensity (not amplitude!) correlations at the detectors As a function of their angular distance average over the table angle θ

$$\langle \cdot \rangle \equiv \int_{0}^{2\pi} \frac{d\theta}{2\pi} (\cdot)$$

$$C_{1,2}(\epsilon) = \left\langle \frac{I(\alpha + \epsilon/2; \theta)I(\alpha - \epsilon/2; \theta) - \langle I(\alpha) \rangle^{2}}{\langle I(\alpha) \rangle^{2}} \right\rangle$$

$$f(\theta, \theta + \alpha) = \sum_{p} a_p(\theta, \theta + \alpha) e^{ikS_p(\theta, \theta + \alpha)}$$

p: classical scattering trajectory $\theta \to \theta + \alpha$ a_p semiclassical amplitude associated with p

$$\langle I(\alpha) \rangle = \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} |f(\theta, \theta + \alpha)|^2 = \sum_{p,q} \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} a_p a_q^* \mathrm{e}^{ik(S_p - S_q)}$$

For chaotic trajectories

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} \mathrm{e}^{ik(S_p - S_q)} \approx \delta_{p,q} \quad \text{("diagonal approximation")}$$

$$\langle I(\alpha)\rangle \approx \sum_{p} |a_p|^2 \ p$$
: class. traj. deflected by an angle α

$$\left\langle I(\alpha + \frac{\epsilon}{2})I(\alpha - \frac{\epsilon}{2}) \right\rangle = \sum_{p,q,r,s} \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} a_p a_q^* a_r a_s^* \mathrm{e}^{ik(S_p - S_q + S_r - S_s)}$$

p,q: classical scattering trajectory $\theta \to \theta + \alpha + \frac{\epsilon}{2}$

r, s: classical scattering trajectory $\theta \to \theta + \alpha - \frac{\bar{\epsilon}}{2}$

$$S_p(\theta, \theta + \alpha \pm \frac{\epsilon}{2}) \approx S_p(\theta, \theta + \alpha) \pm \frac{\epsilon}{2} l_p^{(f)}$$

$$\left\langle I(\alpha + \frac{\epsilon}{2}) \left\langle I(\alpha - \frac{\epsilon}{2}) \right\rangle = \sum_{p,q,r,s} \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} a_p a_q^* a_r a_s^* \mathrm{e}^{ik(S_p - S_q + S_r - S_s)}$$

p, q: classical scattering trajectory $\theta \to \theta + \alpha + \frac{\epsilon}{2}$ r, s: classical scattering trajectory $\theta \to \theta + \alpha - \frac{\epsilon}{2}$

$$S_{p}(\theta, \theta + \alpha \pm \frac{\epsilon}{2}) \approx S_{p}(\theta, \theta + \alpha) \pm \frac{\epsilon}{2} l_{p}^{(f)}$$

$$\left\langle I(\alpha + \frac{\epsilon}{2}) \langle I(\alpha - \frac{\epsilon}{2}) \rangle \approx \sum_{p,q,r,s} a_{p} a_{q}^{\star} a_{r} a_{s}^{\star} (\delta_{p,q} \delta_{r,s} + \delta_{p,s} \delta_{q,r} e^{ik(l_{p}^{(f)} - l_{q}^{(f)})\epsilon}) \right\rangle$$

p,q: Calssical trajectories which deflect by an angle α $l_p^{(f)}$ outgoing angular momentom on the trajectory p

$$\approx \langle I(\alpha) \rangle^2 \left(1 + \left| \sum_p |a_p|^2 e^{ikl_p^{(f)} \epsilon} \right|^2 \right) \approx \langle I(\alpha) \rangle^2 \left(1 + \left| \int dl \rho(l) e^{ikl\epsilon} \right|^2 \right)$$

 $\rho(l)$: probability that a class. traj. emerges with an angular momentum l supported on an interval of length kD, D: diameter of the scatterer.

$$C_{1,2}(\epsilon = 0) = 1.$$

Nodal domains

1.Separable (integrable)
Checker board strucrure

2. Non-separable (Integrable)

3. "Chaotic"

The transition from an integrable to a chaotic domain

Random waves

Random Gaussian fields $\psi(\mathbf{r}) : \mathbf{r} \in \Omega \in \mathbb{R}^2 \to \mathbb{R}$

$$\Delta\psi(\mathbf{r}) = k^2\psi(\mathbf{r})$$

$$\langle \psi(\mathbf{r})\psi(\mathbf{r}')\rangle = J_0(k|\mathbf{r} - \mathbf{r}'|)$$

Realization:

Nodal domains of stadium with E = 10092.029

function with k = 100

$$\psi(\mathbf{r}) = \sum_{l=0}^{L} J_l(kr)(a_l \sin l\theta + b_l \cos l\theta) , L = k|\Omega|$$

 a_l, b_l independent identically distributed Gaussian variables.

Random Gaussian fields $\psi(\omega)$: $\omega \in S^2 \to R$

$$\Delta\psi(\omega) = l(l+1)\psi(\omega)$$

$$\langle \psi(\omega)\psi(\omega')\rangle = P_l(|\omega - \omega'|)$$

Realization:

$$\psi(\omega) = \sum_{m=-l}^{l} a_m Y_l^{(m)}(\omega) , \ a_{-m} = (-1)^m a_m^*$$

 $Re(a_m), Im(a_m)$ independent identically distributed Gaussian variables.

Random waves on the sphere

M. Berry Conjecture (1977): The statistical properties of wave functions of chaotic billiards are faithfully described by the random wave model at the appropriate wave-number range.

The network on various scales:

The intersection-points of the nodal set with a reference line.

Amit Aronovitch and Uzy Smilansky

The statistics of the points where nodal lines intersect a reference curve.

J. Phys. A: Math. Theor. 40 97439770 (2007)

The intersections are considered as a point process and studied statistically

Intersections in the bulk

Intersections with the boundary

Short range statistics

Nearest spacing distribution:

Long range correlations

The number variance:

Let δ be the mean distance between successive intersections. Denote by N(x) the number of intersections in an interval of length x.

$$var(n) = \langle (N(\delta \cdot n) - n)^2 \rangle$$
.

 $var(n) \approx n \log n \text{ for } n \to \infty$

Compare: Poisson $var(n) \approx n$, RMT $var(n) \approx \log n$

Nodal domains and percolation theory

Nodal domains of stadium with E = 10092.029

Gaussian random wave

Nodal domains distribution.

E. Bogomolny and C. Schmit, Phys Rev Lett. 88, 114102 (2002). Percolation theory:

$$\langle \nu_n \rangle / n = \frac{3\sqrt{3}-5}{\pi} = 0.0624 << \text{Pleijel's bound.}$$

 $var(\nu_n) / n = \frac{1}{\pi} (\frac{18}{\pi} + 4\sqrt{3} - \frac{25}{2}) = .0502$

Predictions of percolation theory, comparison with the random waves model

FIG. 4. Mean values of the nodal domains (dots) and their variances (squares) for random functions divided by N versus N. The solid and dashed horizontal lines represent theoretical asymptotic values (13) and (14), respectively.

FIG. 5. Distribution of nodal domain areas. The solid line has the slope $\tau = 187/91$ predicted by the percolation theory.

And with a microwave experiment

PHYSICAL REVIEW E 70, 056209 (2004)

Experimental investigation of nodal domains in the chaotic microwave rough billiard

Nazar Savytskyy, Oleh Hul, and Leszek Sirko Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland

FIG. 7. Distribution of nodal domain areas. Full line shows the prediction of percolation theory $\log_{10}(\langle n_s/n \rangle) = -\frac{187}{91} \log_{10}(\langle s/s_{min} \rangle)$.

SLE: A theory which provides a uniform description of conformally invariant self avoiding random lines in 2d

(Bogomolny et al, Keating et al.)

Can one count the shape of a drum?

k=2: Random walk

k=6: Critical percolation

2. The importance of being irrational

PHYSICAL REVIEW A

VOLUME 29, NUMBER 4

APRIL 1984

Quantum dynamics of a nonintegrable system

D. R. Grempel* and R. E. Prange†

Department of Physics and Center for Theoretical Physics, University of Maryland, College Park, Maryland 20742

Shmuel Fishman

Department of Physics, Israel Institute of Technology (Technion), 32000 Haifa, Israel (Received 11 July 1983)

$$T_m u_m + \sum_{r \ (\neq 0)} W_r u_{m+r} = E u_m$$

with

$$T_m = \tan \left[\frac{E_m}{2}\right] = \tan \left[\frac{\omega - K(m)}{2}\right]$$
 $K(m) = \frac{\tau}{2}m^2$

FIG. 4. Two quasienergy eigenstates for the same potential as in the previous plot. Quasienergies are $\omega = 2\pi j/2^{10}$ with j = 323 (solid circles) and j = 621 (open circles).

FIG. 1. Power spectrum of (a) the sequence $K_n = \sqrt{5}n^2$ (mod 1) and (b) a sequence of random numbers with uniform distribution in [0,1].

The Laplace operator on metric graphs ("Quantum Graphs")

A graph \mathcal{G} is made of V vertices and B bonds.

Figure 1. V = 6 graph.

Connectivity matrix:

 $C_{i,j}(\mathcal{G}) = \#$ bonds connecting i and j.

Simple graph: $C_{i,j} \in [0,1]$; $C_{i,i} = 0 \ \forall i$, j (No parallel bonds, no loops).

Bond : b = [i, j],

Directed bond : d = (i, j), $\hat{d} = (j, i)$.

B: Total number of bonds = $\frac{1}{2} \sum_{i,j=1}^{V} C_{i,j}$

 v_i : Valency of a vertex = $\sum_{j=1}^{V} C_{i,j}$

The Schroedinger operator on graphs:

1. The wave function

$$\Psi(x) = \psi_b(x_b)$$
 for $x \in b$, $b = 1, \dots, B$

 $\Psi(x)$ continuous at the verices,

 $\psi_b(x_b)$ doubly differentiable in $(0, L_b)$

2. The wave equation

On each bond:
$$\left(\frac{1}{i}\frac{\mathrm{d}}{\mathrm{d}x_b}-A_b\right)^2\psi_b(x_b)=k^2\psi_b(x_b)$$

3. The boundary conditions at the vertices i = 1,...V

Neumann:
$$\sum_{b \in S^i} \left(\frac{1}{i} \frac{\mathrm{d}}{\mathrm{d} x_b} - A_b\right) \psi_b(x_b) \bigg|_i = 0 \quad \text{. Dirichlet:} \quad \psi_b(x_b)|_i = 0$$

The Schroedinger operator is self – adjoint with real and non-negative discrete spectrum $\{k_n^2\}_{n=1}^{\infty}$

The 1st surprising numerical evidence (Tsampikos Kottos, U.S., (1997))

$$I(s) = \int_0^s p(x) \mathrm{d}x$$
 = cumulative level-spacing distribution

Only works when the bond-lengths are rationally independent. For sufficiently well connected graphs Spectral statistics -> RMT in the limit $B \to \infty$

Figure 3. Integrated nearest neighbor distribution I(s) for a fully connected V=4 graph (Neumann boundary conditions), using the lowest 80,000 eigenvalues. Inset: the deviation from the exact GOE/GUE results;

The Secular equation

$$\zeta(k) = \det(I - U(k)) = 0.$$

$$U_{d',d}(k) = e^{ikL_{d'}} \sigma_{d',d} \delta_{o(d'),t(d)}$$

On the Distribution of the Values of Real Almost Periodic Functions

M. Kac, E. R. van Kampen, Aurel Wintner American Journal of Mathematics, Vol. 61, (1939), pp. 985-99

 $\zeta(k)$ is quasi-periodic in k through the phases $\phi_b = kL_b$. Ergodicity:

$$\frac{1}{K} \int_0^K F(\zeta(k)) dk \rightarrow \frac{1}{(2\pi)^B} \int_0^{2\pi} d\phi_1 \cdots \int_0^{2\pi} d\phi_B F(\zeta(\phi_1, \cdots, \phi_B))$$

Which is true only if the bond lengths are rationally independent

Can on hear the shape of a graph?

3. The importance of being well-connected

Quantum chaos on discrete graphs

A short reminder

A graph \mathcal{G} is a set \mathcal{V} of vertices connected by a set \mathcal{E} of edges.

The number of vertices : $V = |\mathcal{V}|$

The number of edges : $E = |\mathcal{E}|$.

The $V \times V$ adjacency (connectivity) matrix A:

 $A_{i,j} = 1$ if the vertices i, j are connected and 0 otherwise, $A_{i,i} = 0$.

degree d_i (valency): \sharp { edges emanating from the vertex}, $d_i = \sum_{j=1}^{V} A_{i,j}$

d-regular graph:

$$d_i = d \ \forall \ i : 1 \le i \le V,$$

E = Vd/2 Hence Vd is even.

d-regular graphs : Expanders, Ramanujan

 $\mathcal{G}_{V,d}$. The ensemble of all the d regular graphs with V vertices.

For fixed
$$d$$
 and $V \to \infty$: $|\mathcal{G}_{V,d}| \approx \sqrt{2} e^{\frac{1-d^2}{4}} \left(\frac{d^d V^d}{e^d (d!)^2}\right)^{\frac{V}{2}}$

 $\langle \cdots \rangle_{\mathcal{G}}$: Ensemble average taken with uniform probability distribution.

The spectrum and spectral statistics

The discrete Laplacian for d-regular graphs:

$$(L\mathbf{f})_i = -\sum_{j \sim i} (f_j - f_i) \Rightarrow L = -A + d I^{(V)}$$

Since L differes from the adjacency matrix A by a constant diagonal matrix, \Rightarrow we study the spectrum of $A: \sigma(\mathcal{G}) = \lambda_0 (=d) \geq \lambda_1 \geq \cdots, \geq \lambda_{V-1}$.

$$\rho(\lambda) = \frac{1}{V-1} \sum_{k=1}^{V-1} \delta(\lambda - \lambda_k)$$

The mean spectral density for d regular graphs, $(V \to \infty, d = const)$

Kesten MacKay limit distribution: (Supported in $|\lambda| < 2\sqrt{d-1}$):

$$\rho_{KM}(\lambda) = \lim_{V \to \infty} \frac{1}{V - 1} \left\langle \sum_{k=1}^{V-1} \delta(\lambda - \lambda_k) \right\rangle_{\mathcal{G}} = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2}$$

(a) Cubic graph on 2000 vertices. (b) 5-valent graph on 500 vertices.

Figure 1. Eigenvalue distributions of random graphs vs McKay's law

EIGENVALUE SPACINGS FOR REGULAR GRAPHS

DMITRY JAKOBSON, STEPHEN D. MILLER, IGOR RIVIN AND ZEÉV RUDNICK

Unfolding the spectrum with the Kesten-McKay density

$$s_j = \mathcal{N}_{KM}(\lambda_j)$$
 ; $\frac{d\mathcal{N}_{KM}}{d\lambda} = \rho_{KM}(\lambda)$

 \mathcal{N}_{KM} : The mean spectral counting function.

12 JAKOBSON, MILLER, RIVIN AND RUDNICK

Figure 2. Level spacing distribution of a cubic graph on 2000 vertices vs GOE

The "Magnetic" Adjacency Matrix:

$$A_{i,j}^{(M)} = A_{i,j} e^{i\phi_{i,j}}$$
 ; $\phi_{j,i} = -\phi_{i,j}$

Spectral 2-points correlations:

$$\theta_j = 2\pi \frac{\mathcal{N}_{MK}(\lambda_j)}{V-1}$$
 (mapping the spectrum on the unit circle)

$$K(\tau) = \frac{1}{V-1} \left\langle \sum_{i,j=1}^{V-1} \cos(\theta_i - \theta_j) t \right\rangle , \text{ and } t = (V-1)\tau$$

The Problem to be addressed:

Why random graphs display the canonical spectral statistics

Counting statistics of cycles vs Spectral statistics

The main tool: Trace formulae connecting

spectral information and counts of periodic walks on the graph

The periodic walks to be encountered here are special: Backscattering along the walk is forbidden.

Notation: non-backscattering walks = n.b. walks

Finite (but large) d-regular graphs in a nut-shell

The R-neighbourhood of every vertex for $R \leq log_{d-1}V$ is almost surely a d-regular tree.

In other words, non-backscattering periodic walks of such period are rare.

Denote by C_t the number of t- cycles (prinitive, non backscatter, non self intersecting t-periodic orbits).

For $t < log_{d-1}V$, the C_t distribute as independent Poisson variables with a mean: $\langle C_t \rangle_{\mathcal{G}} = \frac{(d-1)^t}{2t}$

The Kesten-McKay distribution is derived by computing the spectral density for an infinite d-regular tree and using the local – tree property in the limit of large V.

Note: all the periodic walks on a tree must have at least two backscattering.

The trace formula:

$$\rho(\lambda) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} + \frac{1}{\pi} \mathcal{R}e \left[\sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} e^{it \arccos \frac{\lambda}{2\sqrt{d-1}}} \right]$$

Kesten McKay

Sum over t-periodic non-backscattering walks.

$$y_t = \frac{1}{V} \frac{[\text{Number of t periodic n.b. walks}] - [(d-1)^t - 1]}{(d-1)^{\frac{t}{2}}}.$$

 y_t : The deviation of the number of t-periodic non-backscattering walks from its mean. (properly normalized)

Note: $\langle y_t \rangle_{\mathcal{G}} = 0$ for $t \leq \log_{d-1} V$ (Bollobas, McKay, Wormald)

"Action" per single step on the orbit: $\arccos \frac{\lambda}{2\sqrt{d-1}}$

Alternatively:

$$\rho(\lambda) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} + \frac{1}{\pi} \sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} T_t \left(\frac{\lambda}{2\sqrt{d-1}}\right)$$

 $T_l(x)$: Chebyshev Polynomials of the first kind.

Spectral Statistics

The fluctuating part of the spectral density:

$$\tilde{\rho}(\lambda) = \rho(\lambda) - \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} = \frac{1}{\pi} \sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} T_t \left(\frac{\lambda}{2\sqrt{d-1}}\right)$$

Using the Orthogonality of the Chebyshev Polynomials:

$$y_t = 2 \int_{-2\sqrt{d-1}}^{2\sqrt{d-1}} d\lambda \ \tilde{\rho}(\lambda) \ T_t \left(\frac{\lambda}{2\sqrt{d-1}}\right) = 2 \int_{-1}^1 du \ \tilde{\rho}(u) \ T_t(u)$$

$$\langle y_t^2 \rangle_{\mathcal{G}} = 4 \int_{-1}^1 \int_{-1}^1 T_t(u) T_t(v) \langle \tilde{\rho}(u) \tilde{\rho}(v) \rangle_{\mathcal{G}} du dv$$

Map the spectrum to the unit circle: $\phi = \arccos u$, $\phi \in [0, \pi]$

Two-point correlation function. However: the spectral variables are not distributed uniformly and need **unfolding**

$$\bigcirc$$

$$\langle y_t^2 \rangle_{\mathcal{G}} = 4 \int_0^{\pi} \int_0^{\pi} \cos t\phi \cos t\psi \ \langle \tilde{\rho}(\phi)\tilde{\rho}(\psi) \rangle_{\mathcal{G}} \ d\phi d\psi$$

Define:
$$\widetilde{K}_V(t) \equiv \frac{2}{V-1} \left\langle \left(\sum_{k=1}^{V-1} \cos(t\phi_k)\right)^2 \right\rangle_{\mathcal{G}}$$
 The (not unfolded) Spectral formfactor

Therefore

$$\langle y_t^2 \rangle_{\mathcal{G}} = \underbrace{\frac{1}{V} \widetilde{K}_V(t)}_{-}$$

Spectral form factor = variance of the number of t-periodic nb - walks

Since $\phi \in [0, \pi]$, the mean-spacing is $\frac{2\pi}{2(V-1)}$.

Therefore define $\tau = \frac{t}{2(V-1)}$.

$$C_t = \left\{ \begin{array}{c} \text{\# t-periodic} \\ \text{nb orbits} \end{array} \right\}$$

For t < log V/log (d-1) C_t are distributed as a Poissonian variable variance/mean =1 (Bollobas, Wormald, McKay)

$$\langle y_t^2 \rangle_{\mathcal{G}} = \frac{1}{V} \left\langle \frac{(C_t - \langle C_t \rangle_{\mathcal{G}})^2}{\langle C_t \rangle_{\mathcal{G}}} \right\rangle_{\mathcal{G}} \frac{2t}{V} \xrightarrow{\tau \to 0} \frac{1}{V} 2\tau$$

$$\tilde{K}_V(t) = 2\tau \text{ for } \tau \to 0$$

The magnetic adjacency spectral statistics

The non-backtracking magnetic connectivity:

$$Y_{e',e}^{(M)} = e^{i\phi_{e'}/2} B_{e',e} e^{i\phi_{e}/2} - J_{e',e}$$
$$\operatorname{tr}((Y^{(M)})^{t}) = \sum_{L_{t}} e^{i\Phi} + \sum_{R_{t}} e^{-i\Phi} + |S_{t}|$$

 L_t = the set of t-periodic nb-walks going clockwise

 R_t = the set of t-periodic nb-walks going counter-clockwise

 S_t = the set of self-tracing t-periodic nb-walks

These are nb-walks which traverse each edge both ways

$$\langle \operatorname{tr}((Y^{(M)})^t) \rangle_{\mathcal{M}} = |S_t| \approx 0 \text{ for } t < \log_{d-1} V ; \text{ Denote } \langle \cdot \rangle_{\mathcal{G}M} = \langle \cdot \rangle .$$

$$\left\langle \left(\operatorname{tr}((Y^{(M)})^t) - \left\langle \operatorname{tr}((Y^{(M)})^t) \right\rangle \right)^2 \right\rangle \approx |L_t| + |R_t| \approx 2\langle C_t \rangle \cdot t^2$$

$$\approx 4(d-1)^t \left\langle \left(\sum_k \cos\left(\phi_k\right)\right)^2 \right\rangle = 8t \langle C_t \rangle \left\langle \left(\sum_k \cos\left(\phi_k\right)\right)^2 \right\rangle$$

$$\rightarrow \left\langle \left(\sum_{k} \cos\left(\phi_{k}\right)\right)^{2} \right\rangle \approx \frac{t}{4}$$

By multiplying by $\frac{2}{V-1}$ we get that for short times: $\widetilde{K}(\tau) \approx \tau$.

Going in the reverse direction: Assuming RMT and computing deviations from the Poisson distribution of t-periodic cycles

$$\widetilde{K}_{V}(\tau) = \frac{1}{2\pi} \int_{0}^{2\pi} d\eta K_{RMT} \left(2\tau S'(\eta) \right)$$

Scaling with d

Scaling with d
$$D(d) = \frac{(d-1)^2}{d(d-1)}$$

$$(\widetilde{K}(\tau) - 2\tau) \cdot \frac{\sqrt{D}}{C_O} = \tau^{3/2} + \mathcal{O}(\tau^2) \qquad (\widetilde{K}(\tau) - \tau) \cdot \frac{\sqrt{D}}{C_U} = \tau^{3/2} + \mathcal{O}(\tau^2)$$

$$C_O = -2\left(1 + \frac{2}{\pi}\left(\frac{\sqrt{2}}{3} - \log\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)\right) \qquad C_U = -\frac{2\sqrt{2}}{3\pi}$$

Nodal domains vs Percolation on random v-regular graphs

The discrete Laplacian for d-regular graphs:

$$(L\mathbf{f})_i = -\sum_{j \sim i} (f_j - f_i) \Rightarrow L = -A + d I^{(V)}$$

Since L differes from the adjacency matrix A by a constant diagonal matrix, \Rightarrow we study the spectrum of $A: \sigma(\mathcal{G}) = \lambda_0 (=d) \geq \lambda_1 \geq \cdots, \geq \lambda_{V-1}$.

We consider random regular G(V,d) graphs in the limit $V \to \infty$

Percolation on Graphs

(Erdos and Renyi, Alon et. al., Nachmias and Peres)

Start with a random d-regular graph on V vertices.

Perform an independent p-bond percolation:

Retain a bond with a probability p
Delete a bond with a probability 1- p

Phase transition at $p_c = 1/(d-1)$:

Denote by L the number of vertices in the largest connected component

$$p < p_{c}$$

$$p > p_{c}$$

$$-1/V^{1/3} \rightarrow$$

$$E(L) \sim o(V^{2/3})$$

$$E(L) \sim V^{2/3}$$

$$E(L) \sim o(V^{2/3}) V^{1/3}$$

Bond percolation ~ Vertex percolation

Level sets:

Given an eigenvector \mathbf{f} normalized it such that $-1 < f_i < 1$ For any $0 select the sub graph <math>\widetilde{G}$ where $f_i > -1+2p$ Compute the ratio between the cardinality of the largest connected component of the subgraph \widetilde{G}_{max} and the cardinality of \widetilde{G} .

$$|\widetilde{G}|=5$$

3

2

phase transition?

The shape of the critical surface

 $\alpha_c(\lambda, d)$: the height of the critical level set Normalization: $\langle f_i^2 \rangle_{\mathcal{G}} = 1$.

"Unpredictability" is the rule and "predictability" is the exception when we observe it in the realm of Quantum Chaos

Yet much information is encoded into the seemingly scrambled Quantum signal

