

2058-S-4

Pseudochaos and Stable-Chaos in Statistical Mechanics and Quantum Physics

21 - 25 September 2009

Aspects of Quantum Transport (I & II)

I. GUARNERI Universita' dell'Insubria, Como, Italy

KR Resonances

An updated review of a few famous and other less famous issues concerning low-dimensional quantum dynamics and the absence of "chaos" therein

Italo Guarneri

September 22, 2009

Kicked Dynamics

Center for Nonlinear and Complex Systems - Universita' dell'Insubria a Como

Table of contents

- Micked Dynamics
- 2 Spectra vs transport.
 - Spectral Bounds on Propagation.
 - A model of Smilansky.
 - Dynamical Localization.
- 3 KR Resonances
- Mixed Phase Space
 - Transporting Islands.
 - Kicked Accelerator.
 - Pseudo-quasi-classics.
 - Quasi-classics with multi-component waves.

Kicked Cold Atoms

Kicked Hamiltonians

$$e^{-\frac{i}{\hbar}t(\hat{T}+\hat{V})} = \lim_{N\to\infty,\tau\to0,N\tau=t} \left(e^{-\frac{i}{\hbar}\tau\hat{T}}e^{-\frac{i}{\hbar}\tau\hat{V}}\right)^{N}$$

For fixed N, τ , the rhs is the propagator from time $t = 0_-$ to time $t = N\tau_-$ of the **Kicked Hamiltonian**:

$$\hat{H}(t) = \hat{T} + \tau \hat{V} \sum_{n \in \mathbb{Z}} \delta(t - n\tau)$$

The kicked dynamics may be drastically different from the dynamics which is generated by $\hat{T}+\hat{V}$. In the 1-freedom case, the latter is classically integrable , but the former has , generically, a mixed phase space.

Path integrals for kicked dynamics are ordinary N-fold integrals.

Instances of Kicked Dynamics

 $(\hat{X}, \hat{P}:$ canonical position & momentum operators for a point particle moving in a line)

Pendulum → Kicked Rotor

$$\hat{T} = \frac{1}{2}\hat{P}^2$$
, $\hat{V} = \mu\cos(\hat{X})$

Harper → "Kicked Harper"

$$\hat{T} = \lambda \cos(\hat{P}) , \ \hat{V} = \mu \cos(\hat{X})$$

Wannier-Stark → Kicked Accelerator

$$\hat{T} = \frac{1}{2}\hat{P}^2 + \frac{\eta}{\hat{X}}, \ \hat{V} = \mu\cos(\hat{X})$$

From Atoms to Rotors

In experiments, atoms move in (approximately) straight lines. However, the kicking potential is periodic in space.

Quasi-momentum is then conserved. If the spatial period is 2π , then q.mom. = fractional part of momentum := β and the Brillouin zone is $\mathbb{B}^{(P)} = [0,1[$. $\hbar = 1$.

Bloch theory

$$L^2(\mathbb{R}) \simeq L^2(\mathbb{B}^{(\mathrm{P})}) \otimes L^2(\mathbb{T}) \ , \ \hat{U} = \int_{\mathbb{B}^{(\mathrm{P})}}^{\oplus} d\beta \ \hat{U}_{\beta}$$

Each \hat{U}_{β} formally defines a rotor's dynamics. It is obtained by the replacement $X \to \theta := X \operatorname{mod}(2\pi), \ \hat{P} \to -i\partial_{\theta} + \beta$

Example

Kicked Atom :
$$\hat{U} = e^{-i\mu\cos(\hat{X})}e^{-i\tau\hat{P}^2/2}$$

Kicked Rotor $\hat{U}_{\beta} = e^{-i\mu\cos(\theta)}e^{-i\tau(-i\partial_{\theta}+\beta)^2/2}$

Spectral Bounds 1

 $\psi(x,t)$: a wave packet propagating over the discrete lattice \mathbb{Z}^n under any unitary dynamics, in discrete or continuous time. For $1>\epsilon>0$ and any time T let $R_\epsilon(T)>0$ the minimal radius of a ball in \mathbb{Z}^n centered at 0, such that the probability outside it (averaged in time from time 0 to time T) is less than ϵ .

Theorem

(IG 89, JM Combes 93, Y Last 96) There is C > 0 independent of t so that

$$R_{\epsilon}(T) > C T^{d_{\mathrm{H}}^+/n}$$
.

where $d_{\rm H}^+$ is the (upper) Hausdorff dimension of the spectral measure of ψ .

Reminder: The spectral measure of a state ψ attaches to any Borel set $B \subseteq \mathbb{R}$ the probability that a measurement of energy in state ψ yields a result $E \in B$.

Corollary:

Kicked Dynamics

Growth of *q*-th moment :

$$M_{q}(T) = \frac{1}{T} \int_{0}^{T} dt \sum_{x \in \mathbb{Z}^{n}} |\psi(x, t)|^{2} ||x||^{q}$$

$$> C' T^{qd_{H}^{+}/n}$$

$$(1)$$

⇒ In the 1-dim case sub-ballistic propagation possible only with a singular spectrum.

"Quantum Suppression of chaotic diffusion"

Dynamical Localization over the lattice \mathbb{Z}^n : $M_2(T)$ bounded in time.

dynamical localization ⇒ pure point spectrum

← false in general.

Semi-uniform exponential localization: Del Rio Jitomirskaya Last Simon

Spectral Bounds II

Information about decay (in space) of (generalized) eigenfunctions affords improved lower bounds. Pioneered by heuristic results by R Ketzmerick, K Kruse, S Kraut, T Geisel 97.

Theorem

A. Kiselev, Y. Last 2000 Let the generalized eigenfunctions $u_F(x)$ satisfy

$$\sum_{\|x\| < R} |u_E|^2(x) \leq \nu(R)$$

for some strictly nondecreasing function ν and for all E in a set of positive spectral measure. Then

$$R_{\epsilon}(t) > C \nu^{-1}(t^{d_{\mathrm{H}}^+}).$$

Warning: the above Thm. is somewhat loosely stated.

Smilansky's "irreversible" model.

A rotor (angular coordinate θ), coupled to a linear harmonic oscillator (coordinate q) by point interaction:

$$\hat{H} = -\frac{1}{2} \frac{\partial^2}{\partial \theta^2} - \frac{1}{2} \frac{\partial^2}{\partial q^2} + \frac{1}{2} q^2 + \alpha q \delta(\theta - \theta_0).$$
 (2)

 $\alpha > 0$ a parameter, θ_0 a fixed point.

Theorem

(M Solomyak 04; SN Naboko, M Solomyak 06) If $\alpha < 1$, H has pure point spectrum in $[\frac{1}{2}\sqrt{1-\alpha^2},+\infty)$. If $\alpha > 1$, the spectrum has a pure absolutely continuous component that coincides with \mathbb{R} .

WD Evans, M Solomyak 05 generalize the result to the case of n > 1 oscillators (interacting at different points).

Exponential instability.

Absolute Continuity of the spectrum + Solomyak's estimates on eigenfunctions + Kiselev & Last \Rightarrow

Proposition

For $\alpha > 1$ the oscillator's energy grows exponentially fast in time.

total energy =
$$\frac{1}{2} \int_{0}^{2\pi} d\theta \int_{-\infty}^{\infty} dq \left| \frac{\partial \psi}{\partial \theta} \right|^{2}$$

+ $\frac{1}{2} \int_{0}^{2\pi} d\theta \int_{-\infty}^{\infty} dq \left\{ \left| \frac{\partial \psi}{\partial q} \right|^{2} + q^{2} |\psi(\theta, q)|^{2} \right\}$
+ $\alpha \int_{-\infty}^{+\infty} dq \ q |\psi(0, q)|^{2}$. (3)

Below: Case of 2 oscillators. Lowest energy band for $\alpha=0.7$ (left) and for $\alpha=1.3$ (right).

accumulated numerical evidence + assimilation to tight-binding models with disorder : whenever τ is sufficiently incommensurate to 2π , the kinetic energy of the KR stays bounded in time.

KR Resonances

What is proven:

(Bourgain 02) For all sufficiently small μ :

- 1) U_{β} has p.p. spectrum, with exponentially localized eigenfunctions in momentum space. (If ϕ is an eigenfunction in momentum representation, and $|\phi(n_0)| > \epsilon$, then $|\phi(n)| < e^{-10^{-5}|n|}$ whenever $|n| > |n_0|^{C} + e^{(\log \log \frac{1}{\epsilon})^2}$.)
- 2) Dynamical Localization follows : if $\psi \in \mathcal{H}_1(\mathbb{T})$ then

$$\sup_{t\in\mathbb{Z}}||U_{\beta}^t\psi||_{\mathcal{H}_1}<+\infty$$

for all (τ, β) in $[0, 2\pi] \times [0, 1]$ with the exception of a "small" set, the measure of which tends to 0 as $\mu \to 0$.

KR Resonances

A KR resonance is said to occur whenever \hat{U}_{β} commutes with a momentum translation \hat{T}^Q (Q a strictly positive integer), where $\hat{T}: \psi(\theta) \to e^{i\theta}\psi(\theta)$. This happens if β is rational and τ is commensurate to 2π .

KR Resonances

Proposition

(Izrailev, Shepelyansky 1980; Dana, Dorofeev 06) \hat{U}_{β} commutes with \hat{T}^Q if, and only if, (i) $\tau = 2\pi P/Q$ with P integer, (ii) $\beta = \nu/P + Q/2 \mod(1)$, with ν an arbitrary integer.

If P/Q = p/q with p, q coprime then q is the order of the resonance. Resonances with Q = q are termed primitive. At resonances, "Quasi-Position" ϑ is conserved: $\vartheta \equiv \theta \mod 2\pi/Q$ and $\vartheta \in \mathbb{B}_q^{(\mathbf{x})} \equiv [0, 2\pi/Q]$.

" θ changes by multiples of $2\pi/Q$ "

Theorem

(Izrailev , Shepelyansky 1980) Identify $L^2(\mathbb{T})$ and $L^2(\mathbb{B}_q^{(\mathbf{x})}) \otimes \mathbb{C}^Q$ through $\psi(\theta) \rightleftharpoons \{\psi(\vartheta + 2\pi(n-1)/Q)\}_{n=1,\dots,q}$. Then at a resonance with $\tau = 2\pi P/Q$ and $\beta = \beta_r$,

$$\hat{U}_{\beta_r} = \int_{\mathbb{B}_q^{(\mathrm{X})}}^{\oplus} d\vartheta \ \mathfrak{X}(\beta_r, \mu, \vartheta) \ ,$$

where $\mathfrak{X}(\beta_r,\mu):[0,2\pi]\to \mathbb{U}(Q)$ is defined by :

$$\mathfrak{X}_{jk}(\beta_r,\mu,\vartheta) = e^{-i\mu\cos(\vartheta + 2\pi(j-1)/Q)} G_{jk} , \qquad (4)$$

$$G_{jk} = \frac{1}{Q} \sum_{l=0}^{Q-1} e^{-\pi i p(l+\beta_r)^2/q} e^{2\pi i (j-k)l/Q}.$$
 (5)

Transporting islands: Accelerator Modes.

Mixed Phase Space

Transporting Islands

Accelerator modes quantally decay due to tunneling but their presence results in much larger localization length.

Hanson, Ott, Antonsen 1984; Iomin, Fishman, Zaslavsky 2002....

Eigenstates may ignore classical islands

Hufnagel,Ketzmerick, Otto, Schanz 02; Bäcker, Ketzmerick,

Monastra 06:...

The chaotic sea recoils

Schanz, Dittrich, Ketzmerick 05;....

Kicked Accelerator.

Quantum Accelerator Modes

QAMs were first discovered in experiments at Oxford.

M.K. Oberthaler, R.M. Godun, M.B. d'Arcy, G.S. Summy and K. Burnett, PRL 83, 4447, (1999)

 $(\eta \tau/2\pi \text{ irrational})$

 η increases through \blacksquare \blacksquare . Dashed lines: linear and quadratic growth.

KR Resonances

Ballistic growth at intermediate times is due to Quantum Accelerator modes

Pseudoclassical Action

Hamiltonian "in the falling frame"

$$\frac{1}{2}(\hat{P} + \frac{\eta}{\tau}t)^2 + k\cos(\hat{X})\sum_{-\infty}^{\infty}\delta(t-n\tau).$$

From the t-th kick to the (t+1)-th kick: Unitary Propagator:

$$\begin{split} \widehat{U}_t &= e^{-ik\cos(\theta)} e^{-i\frac{\tau}{2}(-i\partial_\theta + \phi_t)^2} \;, \\ & \phi_t = \beta + \eta/2 + \eta t \;. \end{split}$$

Near Resonance: $au = 2\pi \frac{p}{q} + \epsilon$

$$\hat{U}_{t}\psi(\theta) = e^{-ik\cos(\theta)} \sum_{s=0}^{q-1} G_{s} e^{-i\frac{\epsilon}{2}(-i\partial_{\theta}+\beta)^{2}} \psi(\theta - 2\pi s/q - \tau \phi_{t}) =$$

$$\frac{1}{\sqrt{2\pi i\epsilon}} \sum_{m\in\mathbb{Z}} \sum_{s=0}^{q-1} G_{s} \int_{0}^{2\pi} d\theta' e^{-\frac{i}{\epsilon}S(\theta,\theta',s,m,t)} \psi(\theta')$$

Action $(\tilde{k} := \epsilon k)$:

$$S(\theta, \theta', s, m, t) = -\tilde{k}\cos(\theta) + \frac{1}{2}(\theta - \theta' - 2\pi s/q - 2\pi m - \tau\phi_t)^2$$

Propagation over t kicks: sum over paths. Each path is specified by $(\theta_0, \theta_1, \dots, \theta_t)$, (m_0, \dots, m_t) , (s_0, \dots, s_t) .

Pseudoclassical Asymptotics

$$\epsilon \to 0$$
 ; $k \to \infty$; $\tilde{k} = k\epsilon = const.$

Stationary Phase selects paths with (m_0, \ldots, m_t) and (s_0, \ldots, s_t) arbitrary, and rays $(\theta_0, \theta_1, \ldots, \theta_t)$ that obey:

$$\theta_{t+1} = \theta_t + I_t + \tau \phi_t + 2\pi s_t/q \mod 2\pi ,$$

$$I_{t+1} = I_t + \tilde{k} \sin(\theta_{t+1}) .$$

S Fishman, IG, L Rebuzzini PRL 89 (2002) 0841011; J Stat Phys 110 (2003) 911; A

Buchleitner, MB d'Arcy, S Fishman, SA Gardiner, IG, ZY Ma, L Rebuzzini and GS Summy,

PRL 96 (2006) 164101; IG, S Fishman, L Rebuzzini Nonlinearity 19 (2006); RHihinashvili,

TOliker, YS Avizrats, A Iomin, S Fishman, IG Physica D 226 (2007)

Multiples of $2\pi/q$ drop out. Time dependence is removed by changing variable to:

$$J_t = I_t + \frac{\eta}{2} + \delta\beta + \tau \eta t$$

(Difference linearly grows with time)

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}),$$

$$\theta_{t+1} = \theta_t + J_t.$$

Rays are trajectories of a classical dynamical system on $\mathbb{T} \times \mathbb{R}$. Stable Periodic Orbits of the map on $\mathbb{T} \times \mathbb{T} \rightsquigarrow$ Stable Accelerating Rays \rightsquigarrow Quantum Accelerator Modes.

Phase Diagram of QAMs: Arnol'd Tongues

Farey approximation of Gravity

The observed modes along the "experimental path" are the rational (Farey) approximants to

$$\omega^* = \frac{2\pi M^2 g}{\hbar^2 G^3} .$$

q > 1: Near Higher-Order Resonances

Partial Similarity to quasiclassics with multi-component wavefunctions (e.g. spinors): Littlejohn, Flynn 1991

IG, L Rebuzzini PRL 100 (2008) 234103; L.Rebuzzini, IG, R Artuso PR-A 79 (2009)

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}) + \delta_t,$$

$$\theta_{t+1} = \theta_t + J_t,$$

$$\delta_t = \frac{2\pi}{q} (s_{t+1} - s_t).$$

Rays are not trajectories of a unique classical system anymore. There is a ray for each choice of an integer string $\mathbf{s} := (s_0, \dots, s_t)$: so rays exponentially proliferate with the number t of kicks. Each ray contributes an amplitude:

$$\frac{1}{\sqrt{q^t\epsilon|\mathrm{det}(\mathfrak{M}_t)|}}\,e^{rac{i}{\epsilon}S_{\mathsf{s},\mathsf{m}}+i\Phi_{\mathsf{s},\mathsf{m}}}.$$

Stable Rays?

\mathfrak{M}_t is the stability matrix :

Herbert-Jones-Thouless formula:

$$\log(|\det(\mathfrak{M})|) = t \int dn(E) \log(|E|) = t \times \text{Lyapunov exponent}$$

As t increases, most sequences δ_t are random and so are θ_t : \Rightarrow LE positive \Rightarrow Each such ray yields an exponentially small contribution.

Stable Rays

Distinguished individual contributions expected of rays, whose matrices $\mathfrak M$ have extended states.

How to find stable rays

IG, L Rebuzzini PRL 100 (2008) 234103

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}) + \delta_t,$$

$$\theta_{t+1} = \theta_t + J_t,$$

$$\delta_t = \frac{2\pi}{q} (s_{t+1} - s_t).$$

whenever δ_t is a periodic sequence of period T, T-fold iteration of the above equations defines a dynamical system on the 2-torus. Each stable periodic orbit of that system defines a stable ray that gives rise to an accelerator mode.

Acceleration

$$\frac{1}{\epsilon} \left\{ \frac{2\pi}{T} \frac{\mathbf{j}}{\mathfrak{p}} - \tau \eta - \frac{1}{T} \sum_{t=0}^{T-1} \delta_t \right\} .$$

- (a) q=2, p=1, T=2. Orbit with period 3 index 1.
- (b) q=2, p=1, T=1. Orbit with period 5 index 1.
- (c) q = 13, p = 10, T = 1. Orbit with period 1 index 1.

 $k = 0.8\pi$, $\eta = 0.126\tau$.

More Kicks Ahead

Experiments with Kicked Ultra-Cold Atoms still being done. Relevant Theoretical Issues:

- Directed Transport (Quantum "Ratchet Effect")
- Terra Incognita: Multiple Kicks
 connection between Kicked-Harper and certain doubly-kicked rotors: J.Wang,
 J.Gong, T.Monteiro...
- Many-Body Kicked Systems: Hubbard Model ...

Mixed Phase Space