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Kicked Cold Atoms
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Kicked Hamiltonians

e−
i
~ t(T̂+V̂ ) = lim

N→∞,τ→0,Nτ=t

(
e−

i
~ τ T̂ e−

i
~ τ V̂

)N

For fixed N, τ , the rhs is the propagator from time t = 0− to time
t = Nτ− of the Kicked Hamiltonian :

Ĥ(t) = T̂ + τ V̂
∑
n∈Z

δ(t − nτ)

The kicked dynamics may be drastically different from the
dynamics which is generated by T̂ + V̂ . In the 1-freedom case, the
latter is classically integrable , but the former has , generically, a
mixed phase space.
Path integrals for kicked dynamics are ordinary N-fold integrals.
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Instances of Kicked Dynamics

(X̂ , P̂: canonical position & momentum operators for a point
particle moving in a line)

Pendulum → Kicked Rotor

T̂ =
1

2
P̂2 , V̂ = µ cos(X̂ )

Harper → ”Kicked Harper”

T̂ = λ cos(P̂) , V̂ = µ cos(X̂ )

Wannier-Stark → Kicked Accelerator

T̂ =
1

2
P̂2 + ηX̂ , V̂ = µ cos(X̂ )
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From Atoms to Rotors

In experiments, atoms move in (approximately) straight lines.
However, the kicking potential is periodic in space.
Quasi-momentum is then conserved. If the spatial period is 2π,
then q.mom. = fractional part of momentum := β and the
Brillouin zone is B(P) = [0, 1[. ~ = 1.

Bloch theory

L2(R) ' L2(B(P))⊗ L2(T) , Û =

∫ ⊕

B(P)
dβ Ûβ

Each Ûβ formally defines a rotor’s dynamics. It is obtained by the

replacement X → θ := Xmod(2π), P̂ → −i∂ϑ + β

Example

Kicked Atom : Û = e−iµ cos(X̂ )e−iτ P̂2/2

Kicked Rotor Ûβ = e−iµ cos(θ)e−iτ(−i∂θ+β)2/2
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Spectral Bounds 1

ψ(x , t): a wave packet propagating over the discrete lattice Zn under any unitary

dynamics, in discrete or continuous time. For 1 > ε > 0 and any time T let

Rε(T ) > 0 the minimal radius of a ball in Zn centered at 0, such that the probability

outside it (averaged in time from time 0 to time T ) is less than ε.

Theorem

(IG 89, JM Combes 93, Y Last 96) There is C > 0 independent of
t so that

Rε(T ) > C T d+
H/n .

where d+
H is the (upper) Hausdorff dimension of the spectral

measure of ψ.

Reminder: The spectral measure of a state ψ attaches to any Borel set B ⊆ R the

probability that a measurement of energy in state ψ yields a result E ∈ B.
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Corollary:

Growth of q-th moment :

Mq(T ) =
1

T

∫ T

0
dt

∑
x∈Zn

|ψ(x , t)|2‖x‖q

> C ′T qd+
H/n (1)

⇒ In the 1-dim case sub-ballistic propagation possible only with a
singular spectrum.
”Quantum Suppression of chaotic diffusion”

Dynamical Localization over the lattice Zn: M2(T ) bounded in
time.

dynamical localization ⇒ pure point spectrum
⇐ false in general.
Semi-uniform exponential localization: Del Rio Jitomirskaya Last Simon
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Spectral Bounds II

Information about decay (in space) of (generalized) eigenfunctions
affords improved lower bounds. Pioneered by heuristic results by R
Ketzmerick, K Kruse, S Kraut, T Geisel 97 .

Theorem

A. Kiselev, Y. Last 2000 Let the generalized eigenfunctions uE (x)
satisfy ∑

‖x‖<R

|uE |2(x) ≤ ν(R)

for some strictly nondecreasing function ν and for all E in a set of
positive spectral measure. Then

Rε(t) > C ν−1
(
td+

H
)
.

Warning: the above Thm. is somewhat loosely stated.
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Smilansky’s ”irreversible” model.

A rotor (angular coordinate θ), coupled to a linear harmonic
oscillator (coordinate q) by point interaction:

Ĥ = −1

2

∂2

∂θ2
− 1

2

∂2

∂q2
+

1

2
q2

+ α q δ(θ − θ0) . (2)

α > 0 a parameter, θ0 a fixed point.

Theorem

(M Solomyak 04; SN Naboko, M Solomyak 06) If α < 1, H has
pure point spectrum in [12

√
1− α2,+∞). If α > 1, the spectrum

has a pure absolutely continuous component that coincides with R.

WD Evans, M Solomyak 05 generalize the result to the case of
n > 1 oscillators (interacting at different points).
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Exponential instability.

Absolute Continuity of the spectrum + Solomyak’s estimates on eigenfunctions +

Kiselev & Last ⇒
Proposition

For α > 1 the oscillator’s energy grows exponentially fast in time.

total energy =
1

2

∫ 2π

0
dθ

∫ ∞

−∞
dq

∣∣∣∣∂ψ∂θ
∣∣∣∣2

+
1

2

∫ 2π

0
dθ

∫ ∞

−∞
dq

{∣∣∂ψ
∂q

∣∣2 + q2|ψ(θ, q)|2
}

+ α

∫ +∞

−∞
dq q|ψ(0, q)|2 . (3)
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Below: Case of 2 oscillators. Lowest energy band for α = 0.7 (left) and for α = 1.3

(right).
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Dynamical Localization: what is known

accumulated numerical evidence + assimilation to tight-binding
models with disorder : whenever τ is sufficiently incommensurate
to 2π, the kinetic energy of the KR stays bounded in time.

What is proven:

(Bourgain 02) For all sufficiently small µ:
1) Uβ has p.p. spectrum, with exponentially localized
eigenfunctions in momentum space. (If φ is an eigenfunction in momentum

representation, and |φ(n0)| > ε, then |φ(n)| < e−10−5|n| whenever |n| > |n0|C + e
(log log 1

ε
)2

.)

2) Dynamical Localization follows : if ψ ∈ H1(T) then

sup
t∈Z

||Ut
βψ||H1 < +∞

for all (τ, β) in [0, 2π]× [0, 1] with the exception of a ”small” set,
the measure of which tends to 0 as µ→ 0.
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KR Resonances

A KR resonance is said to occur whenever Ûβ commutes with a

momentum translation T̂Q (Q a strictly positive integer), where
T̂ : ψ(θ) → e iθψ(θ). This happens if β is rational and τ is
commensurate to 2π.

Proposition

(Izrailev, Shepelyansky 1980; Dana, Dorofeev 06) Ûβ commutes

with T̂Q if, and only if, (i) τ = 2πP/Q with P integer,
(ii) β = ν/P + Q/2 mod(1), with ν an arbitrary integer.

If P/Q = p/q with p, q coprime then q is the order of the
resonance . Resonances with Q = q are termed primitive.
At resonances, ”Quasi-Position” ϑ is conserved: ϑ ≡ θ mod 2π/Q

and ϑ ∈ B(X)
q ≡ [0, 2π/Q[.
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”θ changes by multiples of 2π/Q”

Theorem

(Izrailev , Shepelyansky 1980) Identify L2(T) and L2(B(X)
q )⊗ CQ

through ψ(θ)� {ψ(ϑ+ 2π(n − 1)/Q)}n=1,...,q. Then at a
resonance with τ = 2πP/Q and β = βr ,

Ûβr =

∫ ⊕

B(X)
q

dϑ X(βr , µ, ϑ) ,

where X(βr , µ) : [0, 2π] → U(Q) is defined by :

Xjk(βr , µ, ϑ) = e−iµ cos(ϑ+2π(j−1)/Q)Gjk , (4)

Gjk =
1

Q

Q−1∑
l=0

e−πip(l+βr )2/q e2πi(j−k)l/Q . (5)
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Transporting islands: Accelerator Modes.

Mixed Phase
Space

Transporting Islands

Accelerator modes quantally decay due to tunneling but

their presence results in much larger localization length.

Hanson, Ott, Antonsen 1984; Iomin, Fishman, Zaslavsky

2002,...

Eigenstates may ignore classical islands

Hufnagel,Ketzmerick, Otto, Schanz 02; Bäcker, Ketzmerick,

Monastra 06;...

The chaotic sea recoils

Schanz, Dittrich, Ketzmerick 05;....



Kicked Dynamics Spectra vs transport. KR Resonances Mixed Phase Space

Kicked Accelerator.
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Quantum Accelerator Modes

QAMs were first discovered in
experiments at Oxford.
M.K. Oberthaler, R.M. Godun, M.B.

d’Arcy, G.S. Summy and K. Burnett, PRL

83, 4447, (1999)
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Destruction of localization

(ητ/2π irrational)

η increases through � � �. Dashed lines: linear and quadratic growth.

Ballistic growth at intermediate times is due to Quantum Accelerator modes
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Pseudoclassical Action

Hamiltonian ”in the falling frame”

1

2

(
P̂ +

η

τ
t
)2

+ k cos(X̂ )
∞∑
−∞

δ(t − nτ) .

Near Resonance: τ = 2π p
q + ε
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Ûtψ(θ) = e−ik cos(θ)
q−1∑
s=0

Gs e−i ε
2
(−i∂θ+β)2ψ(θ − 2πs/q−τφt) =

1√
2πiε

∑
m∈Z

q−1∑
s=0

Gs

∫ 2π

0
dθ′ e−

i
ε
S(θ,θ′,s,m,t)ψ(θ′)

Action (k̃ := εk):

S(θ, θ′, s,m, t) = −k̃ cos(θ) +
1

2
(θ − θ′ − 2πs/q − 2πm − τφt)

2

Propagation over t kicks: sum over paths. Each path is specified
by (θ0, θ1, . . . , θt), (m0, . . . ,mt), (s0, . . . , st).
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Pseudoclassical Asymptotics

ε → 0 ; k → ∞ ; k̃ = kε = const.

Stationary Phase selects paths with (m0, . . . ,mt) and (s0, . . . , st)
arbitrary, and rays (θ0, θ1, . . . , θt) that obey:

θt+1 = θt + It + τφt + 2πst/q mod 2π ,

It+1 = It + k̃ sin(θt+1) .
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q = 1: the Pseudoclassical Limit

S Fishman , IG, L Rebuzzini PRL 89 (2002) 0841011; J Stat Phys 110 (2003) 911; A

Buchleitner, MB d’Arcy, S Fishman, SA Gardiner, IG, ZY Ma, L Rebuzzini and GS Summy,

PRL 96 (2006) 164101; IG, S Fishman, L Rebuzzini Nonlinearity 19 (2006); RHihinashvili,

TOliker, YS Avizrats, A Iomin, S Fishman, IG Physica D 226 (2007)

Multiples of 2π/q drop out. Time dependence is removed by
changing variable to:

Jt = It +
η

2
+ δβ + τηt

(Difference linearly grows with time)

Jt+1 = Jt + τη + k̃ sin(θt+1) ,

θt+1 = θt + Jt .

Rays are trajectories of a classical dynamical system on T× R.
Stable Periodic Orbits of the map on T× T   Stable Accelerating
Rays   Quantum Accelerator Modes.
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Phase Diagram of QAMs: Arnol’d Tongues
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Farey approximation of Gravity

The observed modes along the
”experimental path” are the
rational (Farey) approximants
to

ω∗ =
2πM2g

~2G 3
.
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q > 1 : Near Higher-Order Resonances

Partial Similarity to quasiclassics with multi-component wavefunctions (e.g. spinors):

Littlejohn, Flynn 1991

IG, L Rebuzzini PRL 100 (2008) 234103; L.Rebuzzini, IG, R Artuso PR-A 79 (2009)

Jt+1 = Jt + τη + k̃ sin(θt+1) + δt ,

θt+1 = θt + Jt ,

δt =
2π

q
(st+1 − st) .

Rays are not trajectories of a unique classical system anymore.
There is a ray for each choice of an integer string s := (s0, . . . , st):
so rays exponentially proliferate with the number t of kicks. Each
ray contributes an amplitude:

1√
qtε|det(Mt)|

e
i
ε
Ss,m+iΦs,m .
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Stable Rays?

Mt is the stability matrix :

Mt =

∣∣∣∣∣∣∣
2 + k̃ cos(θ0) −1 0 ... ... 0

−1 2 + k̃ cos(θ1) −1 0 ... 0

0 −1 2 + k̃ cos(θ2) −1 ... 0
0 0 ... ... ... 0

0 0 ... −1 2 + k̃ cos(θt−1) −1

0 0 ... ... −1 2 + k̃ cos(θt )

∣∣∣∣∣∣∣
Herbert-Jones-Thouless formula:

log(|det(M)|) = t

∫
dn(E ) log(|E |) = t × Lyapunov exponent

As t increases, most sequences δt are random and so are θt : ⇒⇒⇒
LE positive ⇒⇒⇒ Each such ray yields an exponentially small
contribution.

Stable Rays

Distinguished individual contributions expected of rays, whose
matrices M have extended states.
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How to find stable rays

IG, L Rebuzzini PRL 100 (2008) 234103

Jt+1 = Jt + τη + k̃ sin(θt+1) + δt ,

θt+1 = θt + Jt ,

δt =
2π

q
(st+1 − st) .

whenever δt is a periodic sequence of period T , T-fold iteration of
the above equations defines a dynamical system on the 2-torus.
Each stable periodic orbit of that system defines a stable ray that
gives rise to an accelerator mode.

Acceleration

1

ε

{
2π

T

j

p
− τη − 1

T

T−1∑
t=0

δt

}
.
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More Kicks Ahead

Experiments with Kicked Ultra-Cold Atoms still being done.
Relevant Theoretical Issues:

Directed Transport (Quantum ”Ratchet Effect”)

Terra Incognita: Multiple Kicks
connection between Kicked-Harper and certain doubly-kicked rotors: J.Wang,

J.Gong, T.Monteiro...

Many-Body Kicked Systems: Hubbard Model ...
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