

2058-S-9

Pseudochaos and Stable-Chaos in Statistical Mechanics and Quantum Physics

21 - 25 September 2009

Pseudo-chaos in piecewise isometric systems

F. VIVALDI Queen Mary, University of London, U.K.

pseudo-chaos in piecewise isometric systems

Franco Vivaldi

Queen Mary, University of London

with J H Lowenstein (New York)

Mathematics:

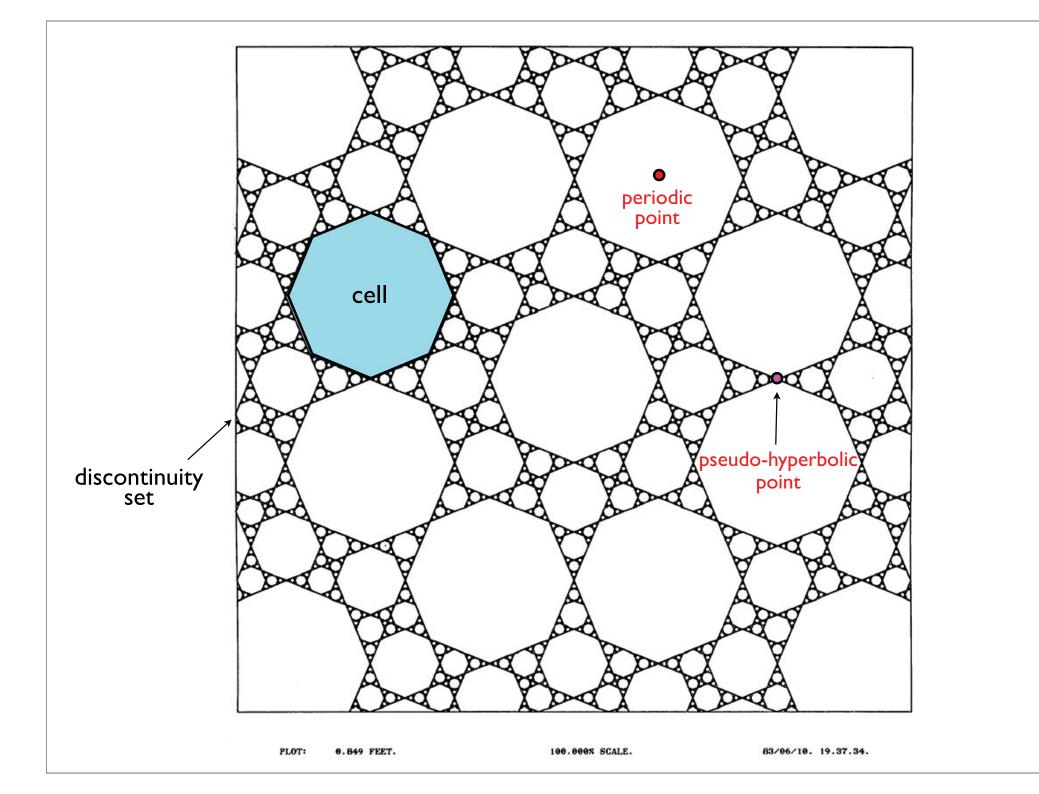
polygonal outer billiards
polygon-exchange maps
non-ergodic rotations on tori
piecewise isometries

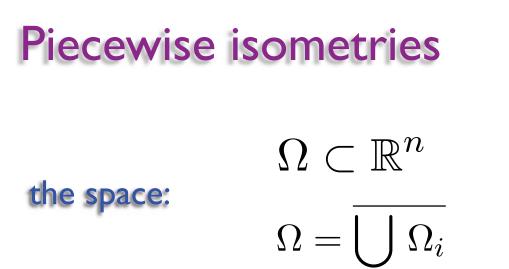
Applications:

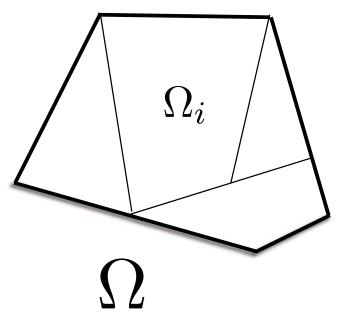
- digital filters
- sigma-delta modulators
- digital printing
 - micro electromechanical systems
 - voltage-controlled oscillators
- dynamics of round-off errors

pretty pictures

ugly proofs







a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces), called the <u>atoms</u>.

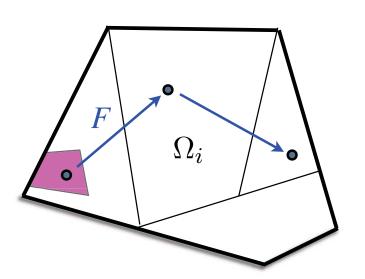
the dynamics: $F: \Omega \to \Omega$ $F|_{\Omega_i}$ is an isometry

Theorem (Gutkin & Haydin 1997, Buzzi 2001) The topological entropy of a piecewise isometry is zero.

Cells

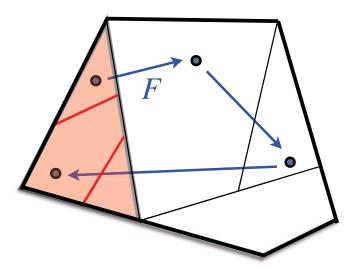
The points of an orbit visit atoms in succession, defining a symbolic dynamics.

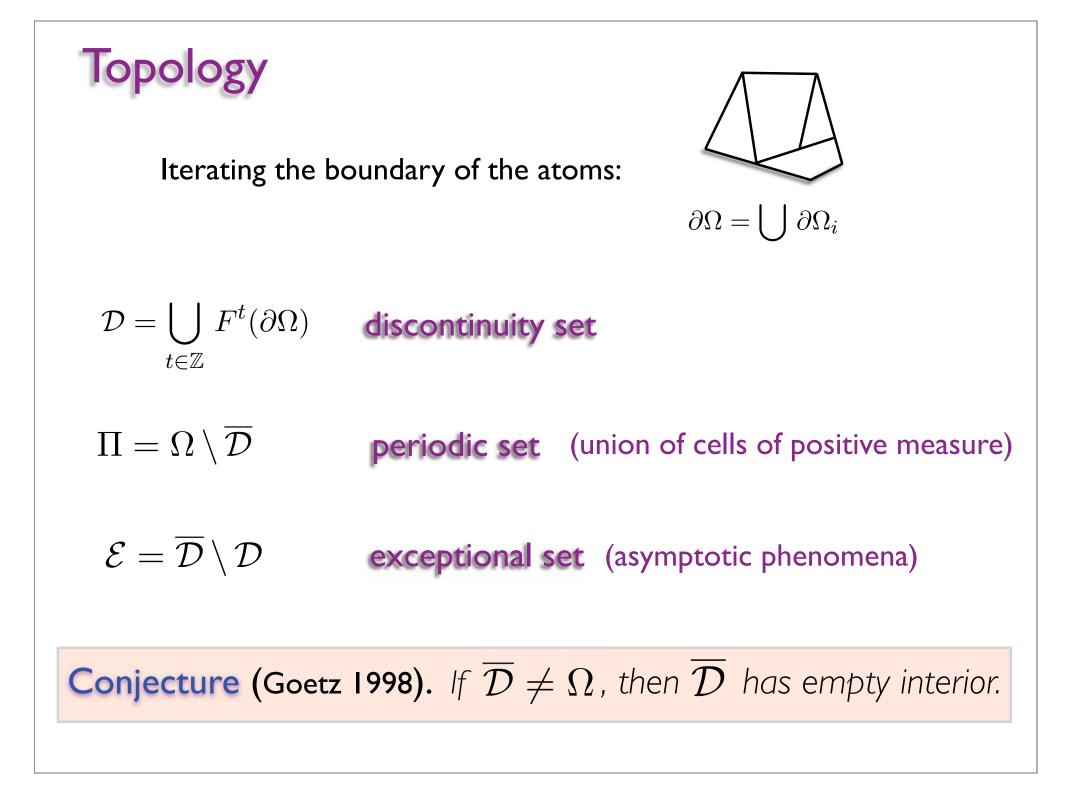
A cell is a set of points with the same symbolic dynamics; cells are convex sets.

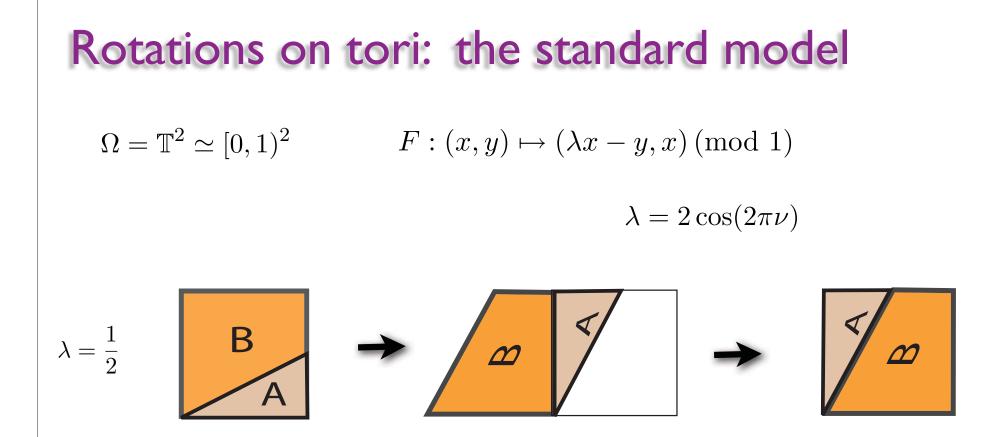


Induced maps

The first return map to an atom defines a new PWI on a smaller domain. This process may be continued recursively.







Adler, Kitchens and Tresser, ETDS (2000):

"What surprised us most about these maps, is how quickly we ran out of cases which are amenable of any detailed analysis" The relevant arithmetical environment is the field

$$\mathbb{Q}(\lambda)$$
 $\lambda = 2\cos(2\pi\nu)$

There are two basic cases:

 $\nu \in \mathbb{Q}$

 $\nu \not \in \mathbb{Q}$

rational rotations

cells are polygons field is algebraic

irrational rotations

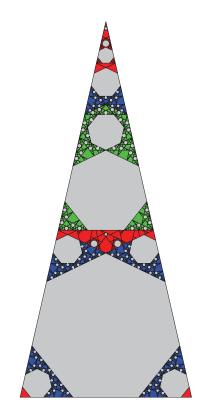
cells are ellipses field may be algebraic or transcendental

Rational rotations

$$\lambda = 2\cos(2\pi\nu) \qquad \nu \in \mathbb{Q}$$

Some rigorous results.

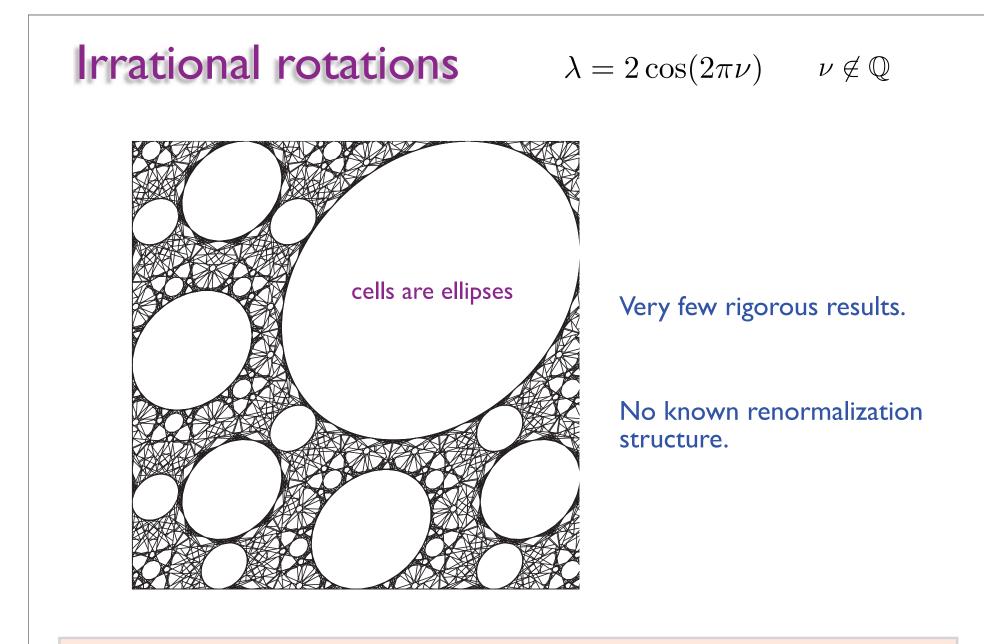
Self-similarity for quadratic fields (8 cases in all).



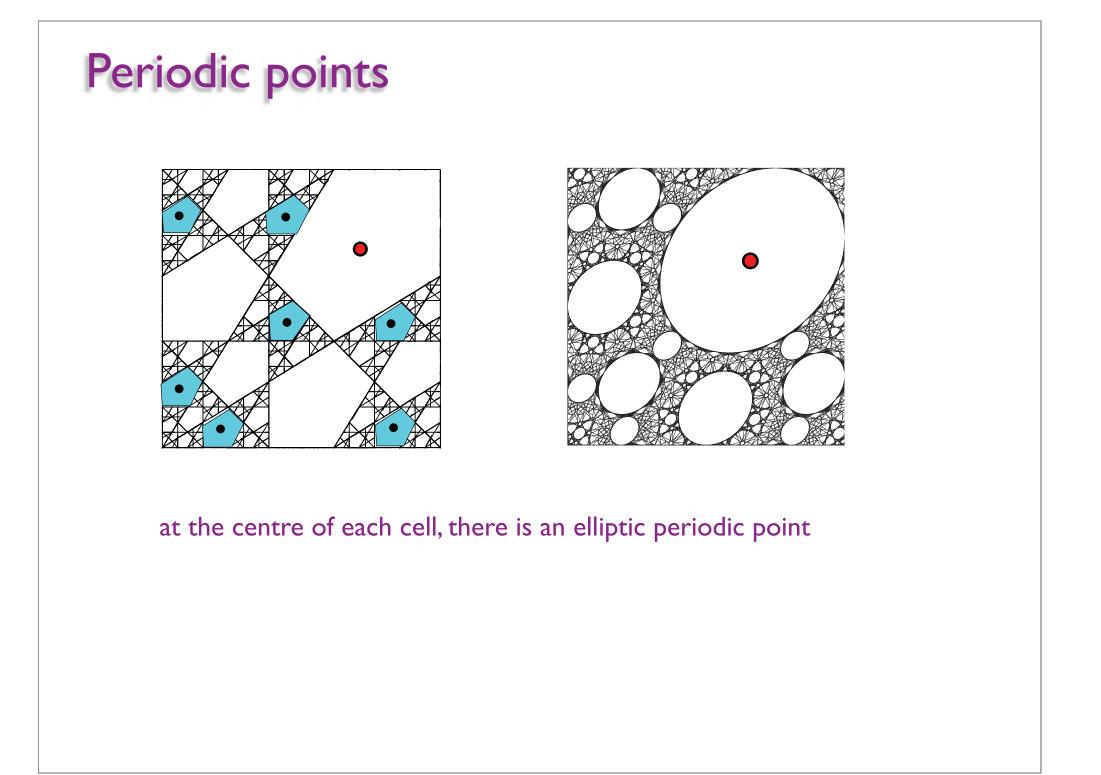
cells are polygons

discontinuity set

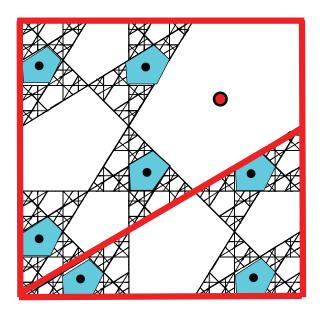
One known cubic case: finitely-generated renormalization structure

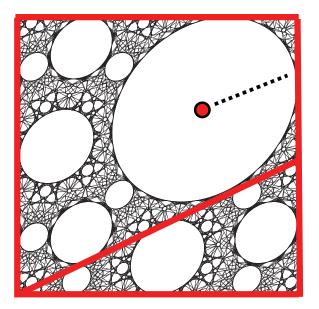


Conjecture (Ashwin 1997) *The exceptional set of a 2-D irrational piecewise isometry has positive Lebesgue measure.*



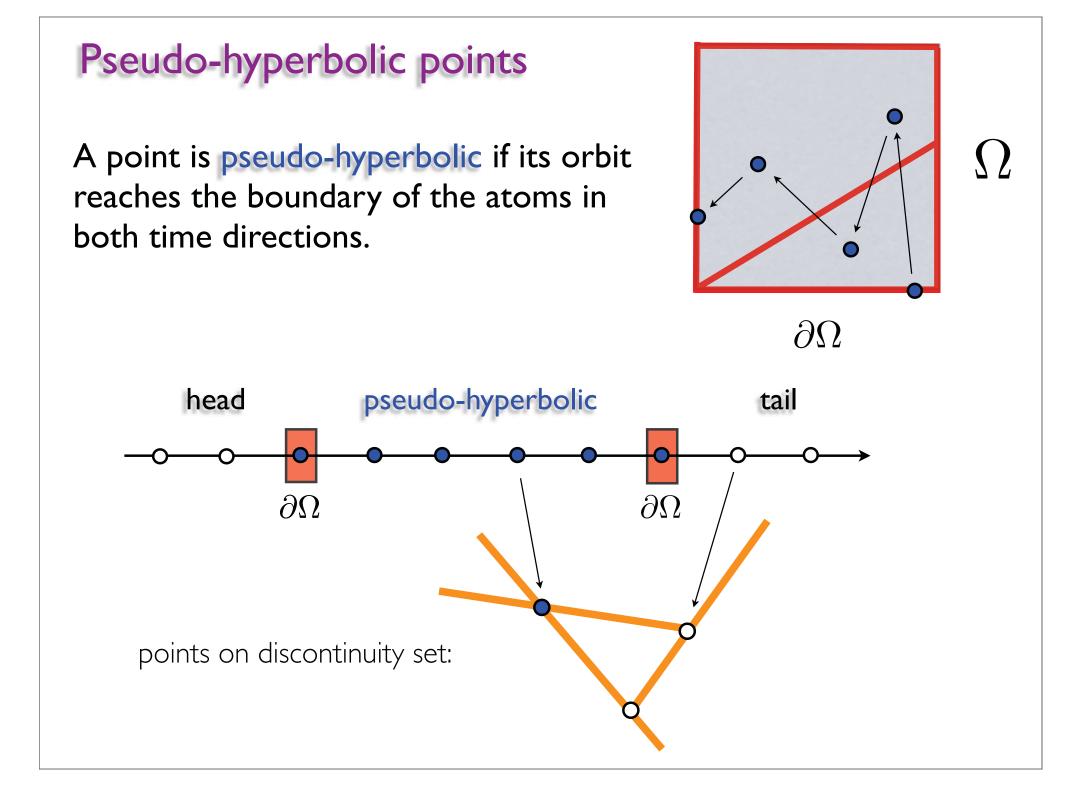
Periodic points





at the centre of each cell, there is an elliptic periodic point

the size of a cell is determined by the minimal distance of the periodic orbit from the boundary of the atoms



Non-archimedean absolute values provide a natural way of measuring the size of elliptic and pseudo-hyperbolic points.

Standard model: $x_{t+1} \equiv \lambda x_t - x_{t-1} \pmod{1}$

 λ rational: Under iteration, the primes dividing the denominator of λ will occur with increasing exponents in the denominator of x_t . Need a concept of size, for which x_t becomes bigger.

Fix a prime p. The *p*-adic value $\nu_p(m)$ of an integer m is defined to be the largest k such that p^k divides m, with $\nu_p(0) = \infty$.

Letting $\nu_p(m/n) = \nu_p(m) - \nu_p(n)$, we extend the definition of ν_p to the rationals.

Define:

$$|r|_p = e^{-\nu_p(r)} \quad r \in \mathbb{Q}$$

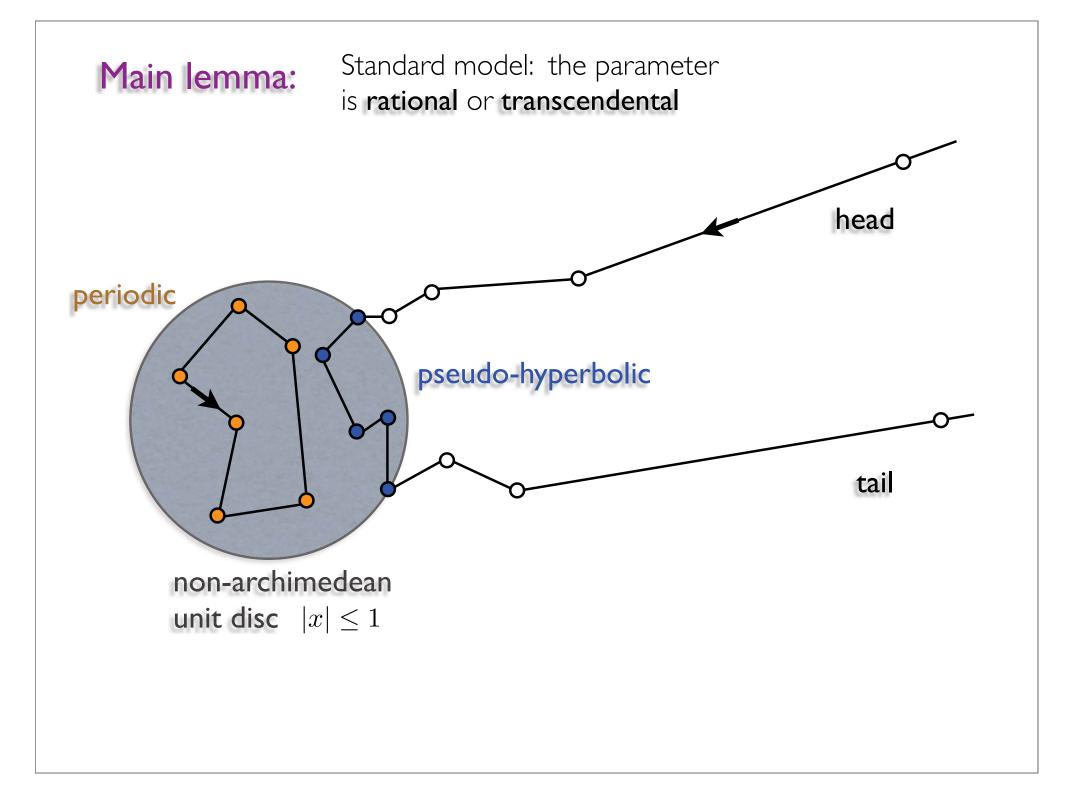
 λ transcendental: The point x_t depends polynomially on λ . Under iteration, the degree increases.

For a polynomial $f(\lambda)$ with rational coefficients we let $\nu_{\infty}(f) = -\deg(f)$, with $\nu_{\infty}(0) = \infty$.

We extend the definition of ν_{∞} to rational functions $r(\lambda) = f(\lambda)/g(\lambda)$ via $\nu_{\infty}(r) = \nu_{\infty}(f) - \nu_{\infty}(g)$.

e:
$$|r|_{\infty} = e^{-\nu_{\infty}(r)}$$
 $r \in \mathbb{Q}(\lambda)$

Defin



Theorem (Lowenstein & FV) For rational or transcendental values of λ , the standard model has no unstable periodic orbits.

- Except for trivial cases, all parameters correspond to irrational rotations.
- Unstable periodic orbits do exist for algebraic parameter values, for both rational and irrational rotations.



