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Open dynamics
Define a “hole” as a subset of phase space, at which trajectories escape. This
has many applications:

• Illuminating structures and Poincare recurrence in the corresponding closed
system, for example fractal measures in a Hamiltonian phase space for
which the invariant measure is uniform.

• Describing metastability and rare events, for example chemical reaction
rates, migration of asteroids.

• Relating dynamics to thermodynamics via the escape rate formalism of
Gaspard et al

• Physical escape or scattering problems, eg microlasers, room acoustics

• Nondestructive investigation of internal dynamics by measurements of
escaping particles.



Open billiards
An open billiard is a dynamical system consisting of point particle moving with
constant velocity in a domain except for specular collisions with the boundary
and absorption at a hole. We are typically interested in the survival probability
given an initial equilibrium distribution as a function of time and hole shape
and size. Almost all this work is for t→∞.

• Open billiards: Applications and theory

• Hyperbolic example: Diamond, small hole, expansion in correlation func-
tions. Bunimovich and CD, EPL 80, 40001 (2007).

• Integrable example: Circle, small hole, expansion involving the Riemann
zeta function. Bunimovich and CD, Phys Rev Lett 94, 100201 (2005).

• Intermittent example: Stadium, arbitrary hole on the straight section,
leading coefficient. CD and Georgiou, Physica D (to appear);
arxiv.org/0812.3095

• Pseudochaos example: Finite Ehrenfest gases. CD and Cohen, J Stat
Phys 101 775-817 (2000).



Motivation
Open billiards provide:

• Examples of open dynamical systems covering many cases from integrable
to strongly hyperbolic.

• Connections with number theory.

• A description of many physical systems and experiments involving a par-
ticle or small(ish) wavelength wave in a cavity.

• Models for statistical mechanics and molecular dynamics.



Dynamical classification of billiards

Integrable Circle, ellipse, rectangle, three triangles.

Pseudo-integrable Polygons with rational angles.

Parabolic Polygons with irrational angles.

Mixed Mushroom, generic curved.

Hyperbolic Stadium, Sinai, Cardioid.

Exotic External field, Riemannian metric, global topology, thin barrier, un-
bounded domain, alternative reflection laws, moving boundary.

Open Trajectories absorbed at hole(s), subset of boundary, incidence angles,
or the interior.



Application: Microlasers

Microlasers are cavities containing an active (lasing) medium that trap light
due to total internal reflection. Thus the “hole” is the entire boundary, but
only trajectories sufficiently close to the normal direction can escape. Placing
a small scatterer (right) breaks the symmetry and allows strong directivity in
conjunction with low losses. Here we have an internal wavelength about 1/6
the radius, ie not too small, yet geometric optics is still useful in determining
the optimal position of the scatterer. [CD, Morozov, Sieber, Waalkens, 2008-
9; numerous theoretical and experimental papers in the physics literature]



Open dynamical systems
Given a map Φ on a set M , of which part H ⊂ M denotes the “hole”, we
can distinguish four types of points x in M\H, depending on whether x has
images and/or preimages in H. Typically we have

• The repeller, set of points with neither images nor preimages in H.

• The unstable manifold of the repeller (contains the set of points with no
preimages in H).

• The stable manifold of the repeller (contains the set of points with no
images in H).

• The transient set, set of points with both images and preimages in H.

In the case of a billiard, Φ is reversible, so there are obvious statements
relating the forward and backward iterations of the map. Measures are then
defined supported on one or more of these sets. Example: triadic Baker map,
repeller dimension 2 ln 2/ ln 3, manifolds dimension ln 2/ ln 3+1, transient set
dimension 2.



Conditionally invariant measures
For a review see Demers & Young, Nonlinearity 2006. A conditionally invari-
ant measure is a Borel probability measure μ on M\H that satisfies

Φ∗μ(A)

Φ∗μ(M\H)
= μ(A)

for all Borel subsets A of M\H, where Φ∗μ(A) = μ(Φ−1(A)). There are
many such measures, obtained by giving an arbitrary measure on Φ−1(H) and
iterating backwards. The most common approach is to start with a uniform
measure μ0 and generate a “natural” conditionally invariant measure

μ = lim
n→∞

Φn∗μ0

|Φn∗μ0|
Φ∗μ = |Φ∗μ|μ

if it can be shown that the limit exists and that Φ∗ is continuous at μ in some
topology. The survival probability given the initial uniform measure decays
like |Φ∗μ|n. The measure μ is supported on the repeller together with its
unstable manifold. It is possible to give an invariant measure on the repeller
alone by a suitable restriction of μ. The theory has many features in common
with that of SRB measures, eg for uniformly hyperbolic systems μ is smooth
in the unstable direction and the measure on the repeller satisfies generalised
Pesin theorems.



Beyond uniform hyperbolicity
Most systems are not uniformly hyperbolic, and do not have an exponential
escape rate. For example the survival probability P (n) = |Φn∗μ0| could have

• P (n) = 0 for finite n, eg if the hole is large, or some models with square
scatterers.

• P (n) decays superexponentially, eg the map Φ(x) =
√
x+ x on a finite

interval containing zero.

• P (n) ∼ 1/n, eg a marginal family of orbits in a 2D billiard such as the
stadium.

• P (n) → C, a constant, eg an elliptical billiard with a small hole at one
end; no orbits passing between the foci escape.

A variety of methods is needed.



Basic facts/notation for 2D billiards
The most convenient approach is usually the collision map Φ(x) where x
denotes arc length l and angle ψ at the boundary. There is a function T (x)
giving the continuous time from x to Φ(x), from which continuous time
properties may be calculated.

The equilibrium measure and mean collision time for a billiard with domain
D ⊂ R2 are

dμ0 =
cosψdldψ

2|∂D|
∫
T (x)dμ0 =

π|D|
|∂D|

〈〉 will indicate an average with respect to μ0, so that correlation functions
are written 〈fg ◦Φn〉 − 〈f〉〈g〉 for functions f, g : M → R.



Example 1: diamond billiard
Four circular arcs with centres at the vertices of a unit square, radius R.

R = 1/2 Tangential singular points, C/n correlations (Chernov, 2008).

1/2 < R < 1/
√

2 Exponential decay of correlations (Chernov, 1999).

R→ 1/
√

2 Square, integrable and no decay of correlations.

For R = 1/
√

3 we have

|∂D| = 2π

3
√

3
, |D| = 1−

√
4√
3
− 1− π

9
, 〈T 〉 = π|D|

|∂D|
We look for exponential escape in continuous time

γ = − lim
t→∞

1

t
lnP (t)





Phase functions

T Time to next collision

χ Characteristic function, 1 on boundary, 0 on hole

τk = 〈Tkχ〉/〈χ〉 Power of time, restricted to non-hole dynamics.

χs = esTχ Weighted characteristic function

χ̂s = χs/〈χs〉 − 1 Zero average version of χs

T̂ = T − τ1 Non-hole zero average version of T

τ̂k = 〈T̂ kχ〉/〈χ〉



The generating function
The escape rate is the leading pole of∫ ∞

0
estP (t)dt =

∫ ∞

0
est〈χ0χ1 . . . χNt〉dt

with superscripts indicating discrete time evolution. Up to a bounded factor
this is ∫ ∞

0
〈χ0

sχ
1
s . . . χ

Nt

s 〉dt =
∞∑

N=0

〈χ0
sχ

1
s . . . χ

N
s T

N〉

Assuming escape is not dominated by T → 0 orbits we come to

G(s) =
∞∑

N=0

GN(s) =
∞∑

N=0

〈χ0
sχ

1
s . . . χ

N
s 〉

Extracting the leading behaviour,

GN(s) = 〈χs〉N+1

⎡
⎣1 +

∑
0≤j<k≤N

〈χ̂jsχ̂ks〉+
∑

0≤j<k<l≤N
〈χ̂jsχ̂ksχ̂ls〉+ . . .

⎤
⎦

with problematic convergence...



The cumulant expansion
G(s) diverges at the first zero of

g(s) = lim
N→∞

ln
GN+1(s)

GN(s)

so taking the difference of the logarithms of the previous series gives

g(s) = ln 〈χs〉+
∞∑
n=2

Qn(s)

Q2(s) =
∑
0<j

〈χ̂0
s χ̂

j
s〉

Q3(s) =
∑

0<j<k

〈χ̂0
s χ̂

j
sχ̂

k
s〉

Q4(s) =
∑

0<j<k<l

[〈χ̂0
s χ̂

j
sχ̂

k
sχ̂

l
s〉 − 〈χ̂0

s χ̂
j
s〉〈χ̂ksχ̂ls〉 − . . .

]− 3

2
Q2(s)

2

which each term is now convergent, given sufficiently fast decay of multiple
correlations.



Piecewise linear example
Consider 2x(mod1) map, with hole at [0,1/4),

T =

⎧⎨
⎩

T1 1/4 ≤ x < 1/2
T2 1/2 ≤ x < 3/4
T3 3/4 ≤ x < 1

Then we find

g(s) = ln[(esT3 +

√
e2sT3 + 4es(T1+T2))/4]

Expanding in s, the series converges at least to the escape rate

eγ(T1+T2) + 2eγT3 = 4

Expanding in the order of correlation also appears to converge. This does
not tell us about the small hole limit.



Small s expansion
The hole, and hence the escape rate s are expected to be small...

χ̂s = χ̂+ sT̂ (1 + χ̂) +
s2

2
(T̂ 2 − τ̂2)(1 + χ̂)

+
s3

6
(T̂ 3 − 3T̂ τ̂2 − τ̂3)(1 + χ̂) + . . .

ln 〈χs〉 = ln 〈χ〉+ sτ1 +
s2

2
τ̂2 +

s3

6
τ̂3

+
s4

24
(τ̂4 − 3τ̂2

2 ) + . . .

Q2(s) =
∑
0<j

〈χ̂0χ̂j〉+ s
∑
0<j

[
T̂ 0(1 + χ̂0)χ̂j〉+ . . .

]
+ . . .



How big are the correlations?
Let h denote the size of the hole relative to the boundary.

ln 〈χ〉 ∼ h

T̂ ∼ 1

χ̂ ∼
{
h boundary
1 hole

Thus 〈χ̂0χ̂j〉 is of order h2 unless the measure of phase space returning to
the hole after j collisions is large. For chaotic billiards with small holes, the
outgoing angle needs to be precisely specified, so the return probability is also
of order h2. Higher correlations will also be of order h2 if the hole(s) lie on
short periodic orbits, otherwise smaller.



The expansion of g(s)
The leading behviour is

g(1)(s) = ln 〈χ〉+ sτ1

which has a zero at s proportional to h as expected. Continuing with s ∼ h...

g(2)(s) =
s2τ̂2

2
+

∑
0<j

〈χ̂(1)0
s χ̂(1)j

s 〉+Q3(0) + . . .

where χ̂(1)
s = χ̂+sT̂ (1+χ̂) is the first order part of χ̂s and the higher cumulants

only contribute for short periodic orbits. Finally we have the first main result:

γ(1) = −ln 〈χ〉
τ1

γ(2) = −g
(2)(γ(1))

τ1
The correlation sum contains

χ̂(1)
γ(1) ≈ χ̂+

h

〈T 〉T̂ (1 + χ̂) ≡ u



One vs two holes
We can compare the escape rate of a system with holes A and B to the
individual escape rates. We have

χAB = χA + χB − 1

giving the second main result:

γAB = γA + γB

− 1

〈T 〉

⎧⎨
⎩

∞∑
j=−∞

〈u0
Au

j
B〉

+
∞∑
n=3

[QnAB(0)−QnA(0)−QnB(0)]

}

The higher cumulants are small unless both holes are on the same periodic
orbit.



Numerics

• Diamond billiard with R = 1/
√

3

• Trajectory of 108 collisions sampled

• Chosen hole size is R/20
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Example 2: The circle
Dynamics (ϕ,ψ) → (ϕ + π − 2ψ,ψ) is just rotation on a circle, periodic for
ψ/π = 1/2−m/n, dense and uniform for irrational ψ/π. For the open problem,
put holes at ϕ ∈ [0, ε]∪ [θ, θ+ ε] and find time to escape t = 2cosψ0N(ϕ0, ψ0)
where N counts collisions. Starting from the equilibrium measure at time
zero, consider the probability P (t) of remaining until time t, specifically

P∞ = lim
t→∞ tP (t)

�

��

�

�



Long lived orbits are nearly periodic

• The N + 1 values ϕ0, ϕ1, . . . ϕN contain two at a distance less than ε if
N + 1 > 2π/ε.

• Define the period n to be the smallest positive integer so that |ϕn−ϕ0| < ε.
Thus n < 2π/ε.

• In units of n collisions, the orbit precesses slowly enough to be captured
by the holes.

• All very long living orbits have small precession and are close to a periodic
orbit.

Precisely: Let t > 4[2π/ε], then every connected component of the set of
(ϕ,ψ) that survive to time t contains a unique interval of never escaping
periodic orbits.



Counting long lived orbits

ψ = ψm,n + η, η � ε

Orbit will survive for at least time t, t/2cosψm,n collisions if

ϕ′0 =

(
ε+

ηt

cosψm,n
, θ′

)
∪

(
θ′ + ε+

ηt

cosψm,n
,
2π

n

)
if η > 0. Adding up these contributions:

tP (t) ∼ 1

4π

∑
m,n

n[g

(
2π

n
− θ′ − ε

)
+ g(θ′ − ε)] sin2 πm

n

where

g(x) =

{
x2 x > 0
0 x ≤ 0

and the sum is over 1 ≤ m < n < 2π/ε, gcd(m,n) = 1. The symbol ∼ means
take t→∞, in which limit upper and lower bounds converge.



Finite time scaling
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Summation over m
Use Ramanujan

n−1∑
m=1

exp(2πim/n) = μ(n)

where the sum is over gcd(m,n) = 1, μ is the Möbius function

μ(n) =

⎧⎪⎨
⎪⎩

1 n = 1
−1 n prime

μ(a)μ(b) n = ab, gcd(a, b) = 1
0 a2|n, a > 1

and we find

P∞ =
1

8π

∞∑
n=1

n[φ(n)− μ(n)][g
(

2π

n
− θ′ − ε

)
+ g(θ′ − ε)]

where

φ(n) = n
∏
p|n

(1− p−1)

is the Euler totient function, the number of positive integers ≤ n which are
coprime to n. Note φ(1) = 1, so the n = 1 term vanishes.



Small hole limit
Mellin transforms:

P̃ (s) =

∫ ∞

0
P∞εs−1dε

P∞ =
1

2πi

∫ c+i∞

c−i∞
ε−sP̃ (s)ds

leads to

P∞ =
1

2πi

∫ c+i∞

c−i∞

ds ε−s(2π)s+1

2s(s+ 1)(s+ 2)

∞∑
n=1

φ(n)− μ(n)
ns+1

×
{[

1− f
(
nθ

2π

)]s+2

+ f

(
nθ

2π

)s+2
}

where f denotes fractional part. The small ε expansion is obtained by sum-
ming residues.



Final expression
For two holes separated by angle θ = 2πr/q, we find

P∞ =
∑
j

Ress=sjP̃ (s)ε−s

P̃ (s) =
(2π)s+1

2s(s+ 1)(s+ 2)

×
q∑

a=1

[1− f(ap
q
)]s+2 + f(ap

q
)s+2

bs+1φ(q′)

×
∑
χ

χ̄(a′)[φ(b)L(s, χ)− μ(b)]
L(s+ 1, χ)

∏
p|b[1− χ(p)p−s−1]

with b = gcd(a, q), a′ = a/b, q′ = q/b, characters χ modulo q′, f is the fractional
part, L is a Dirichlet L-function.



Special cases
Odd characters cancel, so when q = 1,2,3,4,6 only Riemann zeta functions
appear. The one and symmetric two hole cases are

P̃1(s) =
(2π)s+1[ζ(s)− 1]

2s(s+ 1)(s+ 2)ζ(s+ 1)

P̃2(s) =
(π)s+1ζ(s)

s(s+ 1)(s+ 2)ζ(s+ 1)

with poles at odd s ≤ 1 and at Re s = −1/2 assuming the Riemann Hypothesis,
and for q = 1 also s = −2.
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Steps as sums over zeta zeros
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Riemann reformulated
The Riemann hypothesis is thus

lim
ε→0

lim
t→∞ ε

δ(tP1(t)− 2/ε) = 0

for every δ > −1/2 where P1(t) is the probability of remaining after time t
from an initial equilibrium distribution in the one hole problem.

An equivalent formulation is

lim
ε→0

lim
t→∞ ε

δt[P1(t)− 2P2(t)] = 0

with P2(t) the symmetric 2-hole probability.

The generalised Riemann hypothesis implies that the statement is also true
for two holes with rational θ, but the converse statement is open, as is the
case of irrational θ.



Irrational θ in 2-hole
The fractional parts are uniformly distributed, so make a “mean field” ap-
proximation, replacing the sum by an integral:

〈g
(

2π

n
− θ′ − ε

)
+ g(θ′ − ε)〉 =

n

3π

(
2π

n
− ε

)3

〈φ(n)〉 =
6n

π2

〈μ(n)〉 = 0

so that

tP (t) ≈ 1

24π2

∫ 2π/ε

0
n26n

π2

(
2π

n
− ε

)3

dn =
1

ε

which is the same as all tested values of rational θ �= 0. Taking an irrational
θ as a limit of rational θ suggests that P̃ (s) cannot be continued past a line
of singularities at Re s = −1/2.



Example 3: The stadium
The stadium is a defocusing billiard, with strong ergodic properties (Buni-
movich 1979; Chernov and Haskell 1996) but “bouncing ball” orbits that
lead to 1/n decay of correlations (Vivaldi, Casati and Guarneri 1983, Markar-
ian 2004, Chernov 2008). A major interest (and difficulty) of the stadium is
its strong reinjection into the bouncing ball region; an orbit with small angle
θ will be reinjected with angle in [θ/3,3θ].



Reflections from the circular arcs



Contributions to the survival probability
In the case that the hole is on the straight segment, there are two contribu-
tions for t > 32ar/ε

1. Orbits that move directly toward the hole:

P1(t) =
(a+ h1)2 + (a− h2)2

(8a+ 4πr)t
+O(1/t2)

2. Orbits that move away from the hole, reflect from a circular arc and
return to the hole, result obtained by summing a linear approximation to
the hyperbolas:

P2(t) =
(3 ln 3 + 2)

[
(a+ h1)2 + (a− h2)2

]
(16a+ 8πr)t

+O(1/t2)



Numerical tests

Pd Probability from direct simulation

Ph Probability from integrating exact region (hyperbolas).

Ps Probability from integrating straight line approximation (previous slide)

Left: Pd and Ps

Right: Ps − Ph is order 1/t2.



Example 4: Extended billiards
Why does statistical mechanics work? What dynamical properties are re-
quired? Consider a single particle colliding with a large collection of non-
overlapping convex scatterers and investigate diffusion properties. In de-
creasing strength of statistical properties, we have:

1. Periodic circles with finite horizon (Lorentz gas)

2. Random circles

3. Random squares (modified Ehrenfest model)

4. Periodic collections of squares with finite horizon

5. Fixed squares (original Ehrenfest model)



Diffusion in infinite extended billiards

All these but the fixed squares appear to approach the Weiner process in the
relevant limit (λ2x, λt as λ → ∞), cf the infinite horizon Lorentz gas with
logarithmic superdiffusion. [H van Beijeren, E G D Cohen and CD, 1999-
2001; more recent work on polygons has looked at instability (van Beijeren
2004), fields (Bianca and Rondoni 2009), many particles (Cecconi, Cencini,
Vulpiani 2007; Hoover, Hoover and Bannerman 2009)]



Open Extended billiards
However if we consider an open collection of scatterers, ie fixed x while
t→∞, it is clear the square scatterers will not give the exponential decay of
the diffusion equation. The results are:

• Circles (Lorentz): e−γt, cf diamond

• Randomly oriented squares: C/t, cf circle

• Fixed orientation squares: Complete decay in finite time (generically no
periodic orbits)

Observation: A mixture of circles and squares should behave similar to the
stadium (not necessarily ergodic): Instability determined by chaotic orbits
(from circles), while escape determined by slowest decay (from squares).





Summary of results
• Diamond (cf extended circles):

γ = − lim
t→∞

1

t
lnP (t) =

ε

〈T 〉 +O(ε2)

γAB = γA + γB − 1

〈T 〉

⎧⎨
⎩

∞∑
j=−∞

〈u0
Au

j
B〉+

∞∑
n=3

[QnAB(0)−QnA(0)−QnB(0)]

⎫⎬
⎭

• Circle (cf extended random squares):

P∞ = lim
t→∞ tP (t)

=
1

8π

∞∑
n=1

n[φ(n)− μ(n)][g
(

2π

n
− θ′ − ε

)
+ g(θ′ − ε)]

=
2

ε
+ o(ε1/2−δ) 1 hole; assumes RH

• Stadium (cf extended circles and squares):

P∞ =
(3 ln 3 + 4)

[
(a+ h1)2 + (a− h2)2

]
(16a+ 8πr)



Other remarks
The combination εt appears in P (t) for

• All billiards, sufficiently small t.

• The diamond, small ε and large t (at least).

• The circle, small ε and all t (numerically).

• The stadium, not for large t.

Periodic orbits play an important role for

• The diamond, correlations increase when the hole covers short periodic
orbits

• The circle, is completely determined by periodic orbits at long times

• The stadium, is dominated by its marginal family of periodic orbits plus
the neighbourhood.

• Fixed squares: No periodic orbits, no long time survival probability!



The future

• Finite time scaling and dynamical effects.

• Other dynamical behaviour, eg mixed systems.

• Higher dimensions.

• Exotic billiards.

• Quantum connections.

• Applications.

Thank you for your attention!


