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chaos ↔ “small” perturbation ↔ metric (distance)

Finite-dimensional systems: all metrics (Euclid, max-norm, ...) are
equivalent

“small” = “small”
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Infinite-dimensional vector spaces: inequivalent norms:

• sup norm:
||x||sup = sup

i
|xi|

• Lp, lp norms:

||x||p = [
∑

i

|xi|
p]1/p

•

||x||loc =

∞∑

i=−∞

|xi|

2|i|

Last example: not translation invariant, i.e. if (Tx)i = xi+1, then

||Tx||loc �= ||x||loc.

Nevertheless, it is a good norm (positive, symmetric, triangle inequal.,
...)
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Conjecture:

All examples of “stable” chaos are bona fide chaotic systems, if

• limit system size →∞ is taken first
(“transients” become strictly stationary invariant states)

• A suitably defined “local” norm like ||x||loc is used.
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Comments:

1) LimN → ∞ is as natural as taking infinitely many digits in, say, the
Roessler equations.

2) Some constructions familiar from finite dimensional chaos pass through:

a) Lyapunov exponents = velocitites of left-, right-moving perturbations

b) KS entropy of finite subsystem of ∞ system: = Shannon information
needed per time step to specify state

c) (information) Dimension density = information needed to specify state
at one site, at fixed time

d) Pesin-Ledrappier-Young formula (S. Wolfram, Physica D, 1984):

KS entropy ≤
∑

+ Lyapunov exp. × dimension density
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Main difference to “unstable” chaos:

In ordinary (“unstable”) chaos, KS entropy is extensive (finite entropy
density, produced locally)

In “stable” chaos: uncertainty is carried in from outside
→ KS entropy is proportional to or smaller than surface

1 dimension: entropy = const.

“non-extensive chaos”
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New insight besides new words, new results, ...:

???

Therefore .....
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Outline:

• What is a zebra?
Mutual Information: a universal indicator of similarity & independency

• Intelligent reductionism:
decomposing a complex systems into independent parts

• Slaves, masters & genes
Who influences whom? Does similarity indicate dependency?

• Putting similar things together:
Constructing a tree of Life

• Zipping & BLASTing:
Another way of finding similarities between DNA or amino acid se-

quences
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What is a zebra?
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What is a zebra?

a horse with stripes!
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If we have two very similar objects, & we know already one of them

→ little additional information is needed to specify the other!
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H(X) = information needed to specify object X

H(Y ) = information needed to specify object Y

H(XY ) = information needed to specify both X and Y

H(Y |X) = additional information needed to specify Y , if we have already
a complete description of X

= H(XY )−H(X)

Mutual Information between X & Y :

MI(X ; Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(XY )

= information about X which is also useful for describing Y & vice versa
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MI(X ; Y ) ≥ 0,

= 0 only, when X, Y completely independent
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What means H(X) really?

How can we measure / estimate it?
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1) “Algorithmic Information Theory” [Kolmogorov, Chaitin, ...]
choose a computer (e.g. PC, mainframe, ...);
choose and operating system (LINUX, Windows, Apple, ...);
choose a compression algorithm (zip, gzip, bzip2, ...)

X = file
H(X) = length of compressed file of best possible compression algorithm
E.g. X = Romeo & Juliet (project Gutenberg): 159789 bytes

after compression with gzip: 54208 bytes
after compression with bzip2: 47572 bytes

→ H(Romeo & Juliet) ≤ 47572 bytes

Estimation of MI:
first compress X, Y seperately, add their compressed lengths,
then concatenate them to XY & compress also XY,
subtract the two results

NB: never exact, since no “best possible” compression algorithm !
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2) Probabilistic Information Theory [Carnot, Clausius, Boltzmann,
... Shannon]
X, Y are random variables
(xi, yi) are realizations (i = 1, 2, . . .N)
→ estimate probabilities!
→ calculate log-likelihoods for observing xi, yi

H(X) = −
∑

x

px log px

= average negative log-likelihood.

Thm.: If {xi; i = 1 . . . N} are random realizations of X , then
1
N× {algor. inform. for describing all of them} → H(X) as N →∞
with probability 1.
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Reductionism = dealing with a problem by
decomposing it into “its parts”

• Frequent criticism: a human being cannot be meaningful dealt
with by describing it in terms of atoms & quarks

• Reply: “its parts” is too naive & is not meant literally by any
intelligent reductionist;

A complex object has so many possible decompositions that “its”
parts really should read “our choice of its” parts

Better definition:

Intelligent Reductionism = dealing with a problem by
decomposing it into adequate parts
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Examples:

• Fourier decomposition

• Principle component decomposition

• Independent component decomposition

• Least dependent component decomposition

X = multivariate signal, e.g.:

• acoustic signal received by party guest at a party

• radio signal obtained by a cellular phone transmission station

• EEG (brain) signal

• ECG (heart) signal
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Decompose X as well as possible into independent components!

Measure of independence: MI
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Assume that X(t) is linear mixture of sources S(t) with constant (time
independent) “mixing matrix M:

X(t) = MS(t)

Task: given X(t), find M and S(t) so that components si(t) have mini-
mal MI!

NB: PCA corresponds to minimal linear dependencies between si(t)
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Special example: ECG of pregnant woman

(mother’s ECG) + (fetal ECG) + noise

Task: extract clean fetal ECG!

H. Stögbauer, A. Kraskov, S.A. Astakhov, and P.G., PRE 2004:

• Use novel MI estimator (A. Kraskov, H. Stoegbauer, P.G., PRE
2004)

• Allow also for non-instantaneous (delayed) mixing

• Minimize also delayed MI with same delays

• Lump together components which cannot be made independent
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Figure 1: Short segment from the original ECG (a), of the mother and
fetus contributions estimated without delay embedding (b,c), and of the
two contributions estimated with delay embedding (d,e).
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Who influences whom?
Slaves, masters & genes

“Wie der Herr, so es G’scherr”

[German proverb: “as is the master, so is the servant”]

• Can one turn this around?
Is it true that A controls B, if A, B are similar?

• Can one use this for finding out who controls whom?

• Can one apply this to improve regulatory gene networks by means
of large scale gene expression data?

• Gives MI better results than linear similarity measures (Pearson,
Spearman)?
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Problems:

• MI is symmetric:
no distinction between A → B, B → A.

• If a master has two slaves, then they are also similar, but they
don’t control each other

• In gene regulation networks: often one gene needs two or more
transcription factors, i.e. pairwise similarity can’t be enough
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Helpful:

• causality arrow = time arrow (if no delays in observation)

• Change from passive observation to active experimentation
(gene knock-out experiments)

• If MI(A; B) > 0, MI(B; C) > 0, MI(A; C) = 0: then A → B ←
C

is more likely than other three possibilities (A → B → C etc.)

• Same new algorithm for MI estimation works also for generalized
MI between > 2 genes
(A. Kraskov, H. Stoegbauer, P.G., PRE 2004;
S. Frenzel and B. Pompe, PRL 99, 2007)
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MI gives more information than linear correlations:

K. Basso et al., Nature Genetics 2005:
Human blood cells (healthy & cancer),
12600 different gene loci
300 different B-cells
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Figure 2: Mutual informations between gene BCL6 and all other 12500
genes, plotted versus Spearman coefficient. The green dashed line gives
the theoretical lower bound. The spread of points below this curve gives
a rough error estimate. Points high above it indicate nonlinear depen-
dencies between the two genes.
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Figure 3: Expressions over all 300 cell types of genes BCL6 and gene #
10795, the latter corresponding to one of the four high & central points
in the previous figure.
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Figure 4: Same as previous, but for another of the four high & central
points.
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E. coli:

Large fraction of pairs shows significant MI > 0
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Strongest MI between genes in same operon:
co-regulation more important than active/passive regulation

Co-regulated gene pairs have also large positive Pearson coefficient
→ transcription factors/regulated genes are enhanced in pairs where
MI > lower bound, Pearson coeff. is negative

Using conditional MI should be better than “data processing inequality”
(ARACNE) in eliminating fake (indirect) interactions, but so far results
unclear

• Data Processing Inequality (DPI): if A ↔ B ↔ C without direct
A ↔ C, then

MI(A; C) ≤ MI(A; B), MI(B; C)

.

• ARACNE (Califano et al. 2005): reverse argument, i.e.
if MI(A; C) ≤ MI(A; B), MI(B; C) then no direct A ↔ C.
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• If no direct A ↔ C, then

MI(A; C|B) = 0
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Not all MI decrease when conditioned!

Assume that neither X nor Y can regulate Z, but together they can:

MI(X ; Z) = MI(Y ; Z) = 0, MI((XY ); Z) > 0,

→ MI(X ; Y ; Z) = MIMI(X ; Z) + MI(Y ; Z)−MI((XY ); Z) < 0.

Can be checked for special triples (D. Anastasiou et al., 2008), but test
all possible triples (quadruples, ...)??
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Constructing a Tree of Life for Animals:

All animals: mitochondrial DNA has ≈ 16, 000 base pairs, relatively
similar

→ use mtDNA similarities to build phylogenetic trees!

Benedetto, Loreto, M. Li, Vitanyi, ....: use (algorithmic) MI!

1. estimate all pairwise MI’s by concatenating & zipping

2. turn this matrix into matrix of distances (“universal compression
distance”)

3. use this with your favorite hierarchical clustering algorithm to build
phylogenetic tree

It works!
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Also:

Classification of:
texts,
music,
languages,
snowball letters,
copied homework asignments,

attribution of texts to authors,
family trees,

...
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pigmy chimp
chimp
human
gorilla
gibbon
orangutan
baboon
elephant
platypus
bat
guinea pig
oppossum
wallaroo
armadillo
mouse
rat
dormouse
squirrel
aardvark
rabbit
blue whale
fin whale
cow
sheep
hippo
pig
dog
cat
grey seal
harbor seal
white rhino
indian rhino
donkey
horse

0.40.50.60.70.80.91
D(X,Y)

Figure 5: Phylogenetic tree for 34 mammals, based on mitochondrial
DNA compressed with bzip2. The heights of nodes are the distances
between the joining daughter clusters.
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Does this mean that existing data compression algorithms are perfect?

No!

All general purpose compression algorithms and most dedicated DNA
compression algorithms do badly for DNA

Exception: “XM” (“eXpert Model”), Cao et al. 2007
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Figure 6: Compression-based MI estimates for complete mitochondrial
DNA. x-axis: using XM; y-axis: using GenCompress.
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Alternative estimation of MI between DNA sequences:

Sequence Alignment (“BLASTing”)

Global pairwise alignment:

insert blanks at suitabled places in both sequences, so that agreements
at same position are maximized (“score” is maximized)

If good pairwise global alignment is given, then estimation of MI is easy!
(O. Penner, M. Paczuski, P. G., arXiv (2009))
In this estimate one needs also a compression algorithm, but its efficiency
is much less important
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Both estimates agree perfectly for similar species (e.g. primate / pri-
mate)

Alignment-based estimates slightly better for intermediate distances

XM-based estimates better for distant species (alignment breaks down)
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Figure 7: Zipping-based MI estimates (using XM algorithm) versus
blasting-based MI estimates (using MAVID alignment algorithm).
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Conclusions

• MI is a universal measure for interdependence with numerous ap-
plications (many here not even touched!)

• Estimating MI is in general not easy.

• Details depend much on whether algorithmic of probabilistic infor-
mation theory is more appropriate

• In both cases, use of MI allows a conceptually very simple clustering
algorithm

• Clustering of sequences using compression works surprisingly well,
given the huge imperfections of present compression algorithms

• independent component analysis with k-nearest neighbor MI esti-
mates & clustering gives excellent results

• Comparing MI with linear (Spearman) correlations allows to detect
nonlinear interdependences.
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Figure 8: Blasting-based MI estimates using KALIGN versus blasting-
based MI estimates using MAVID.
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• Conditional MI can improve network inference

• Best current compression & (global) alignment algorithms give very
similar numerical values for MI, when sequences are rather similar:
→ confirms compression method, gives objective and a priori (model-
free) success criteria for alignment.
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