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Transport and Anderson localization in disordered
two-dimensional photonic lattices

Tal Schwartz', Guy Bartal’, Shmuel Fishman' & Mordechai Segev'
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Figure 1| Transverse localization scheme. a, A probe beam entering a b 121 -
disordered lattice, which is periodic in the two transverse dimensions (x and
y) but invariant in the propagation direction (z). In the experiment described 10k T T
here, we use a triangular (hexagonal) photonic lattice with a periodicity of <
11.2 um and a refractive-index contrast of ~5.3 X 10~ *. The lattice is induced g_ 8- o |
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Figure 4 | Numerical (top row) and experimental (bottom row) results,
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Direct observation of Anderson localization of matter-waves in a controlled
disorder
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The Nonlinear Schroedinger (NLS)
Equation

.0
i =23+ Bl | v
1D lattice version
Hp(x) = - (x+D+y(x-1))+e(xn (x)

1D continuum version
1 9°
H P (x) L (%) + () (x)

\/ random  —— jf& Anderson Model
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p =0= |ocalization

Does Localization Survive the
Nonlinearity???

Work in progress, several open questions

Aim: find a clear estimate, at least for a
finite (long) time



Does Localization Survive the
Nonlinearity???

Yes, if there is spreading the magnitude of the
nonlinear term decreases and localization takes
over.

No, assume wave-packet width is Ax then the
relevant energy spacingis 1/ Ax , the
perturbatlon because of the nonlinear term is

\TM ~ 3/ Ax and all depends on f
(Shepelyansky)

No, but does not depend on g
No, but it depends on realizations

Yes, because some time dependent quasi-
periodic localized perturbation does not destroy
localization



Does Localization Survive the
Nonlinearity?

* No, the NLSE is a chaotic dynamical
system.

* No, but localization asymptotically
preserved beyond some front that is
logarithmic in time



Numerical Simulations

In regimes relevant for experiments looks that
localization takes place

Spreading for long time (Shepelyansky,
Pikovsky, Molina, Kopidakis, Komineas, Flach,
Aubry)

We do not know the relevant space and time
scales

All results in Split-Step
No control (but may be correct in some range)
Supported by various heuristic arguments



Pikovsky, Sheplyansky
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FIG. 2: (color online) Probability distribution w,, over lattice
sites n at W =4 for 3 =1, t = 10° (top blue/solid curve)
and t = 10° (middle red/gray curve); 3 = 0.t = 10° (bottom
black curve; the order of the curves is given at n» = 500).
At 3 =0afit Inw, = —(y|n| + x) gives v &= 0.3, y =~ 4.
The values of log,, wn are averaged over the same disorder
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FIG. 3: (color online) Same as in Fig. 2 but with W = 2.
At 3 =0 afit lnw, = —(v|n| + x) gives v == 006, y ==
—3. The values of Inw,, are averaged over the same disorder
realizations as in Fig. 1.

Slope does not change (contrary to Fermi-Ulam-Pasta)



Pikovsky, Shepelyansky

log < x° >
—=

L L L

I

S.Flach, D.Krimer and S.Skokos

log < x° >

l AL S [ T ] TN

1

—
-
P lllllll

1 1 lllllll

L | llllll'




Test of some arguments



Modified NLSE H- Veksler, Y. Krivolapov, SF
. O ,
ZEUJ =7 + Byl y

m, =<x2>~t“

Shepelyansky-Pikovsky original arguments —No spreading for p > 2

1
Flach, Krimer and Sokos o =
p+1

a=1 for p=0
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p=1.5,2, 2.5, 4, 8, 0 (top to bottom)

Also M. Mulansky



Summary of test:

1.Nothing happens at p =2
2. approach to localization at p = 0

Singular limit - crossover verified

These theories may have a range of validity



The role of double-humped states



A pair of double humped states for the linear system (8=0). The states
are marked with blue solid line and green dashed line.
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The second moment as function of time for a representative double
humped (solid blue) and broken (dashed green) realizations for wave
packets started in the vicinity of O.




Effective Noise Theories

* D. Shepeyansky and A. Pikovsky

 Ch. Skokos, D.O. Krimer, S. Komineas
and S. Flach
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Perturbation Theory

The nonlinear Schroedinger Equation on a Lattice in 1D
.0 2
i—y = Ay + B[y

Hpp (x) = =@ (x + D+ (x=1))+ e () (x)

87/1 random  e——p- f[a Anderson Model

Eigenstates ]—[Oum (x) = Emum (X)

Y (x,1)= E c, (t)e™"u, (x)

m



The states are indexed by their centers of localization

u., s a state localized near  x

8|xm| —y|x—xm| W — L
‘Mm (x )‘ < ijge e realization

for realizations of measure 1 —_ 5

This is possible since nearly each state has a
Localization center and in a box size M there are
approximately M states

Indexing by “center of mass” more stable
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perturbation expansion
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start at C;O) = 6710

Step 1
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Secular terms can be removed in all orders by

New ansatz wn(t) — E Cm (t)e—iE,'ntu;n

The problem of small denominators

1 . el(En _EO )t

En_EO

n
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The Aizenman-Molchanov approach (fractional moments)



Step 2
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Second
order 15
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In the first and the second rows of the figure are presented the
imaginary and real parts, respectively, of the numerical solution of
(1.1) (blue, solid) and the perturbative approximation (red, dashed)
as function of time for c¢g (left column) and ¢; (right column). In the
third row the relative difference, d;i (¢) , is plotted. The parameters
of the plot are, J = 0.25, A = 1 and 8 = 0.1 and lattice size of 128.
See (1.1) for the definition of the constants.



Order 4 red=approximate, blue exact
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Aim: to use perturbation theory
to obtain a numerical solution
that is controlled a posteriori



Perturbation theory steps

Expansion in nonlinearity

Removal of secular terms

Control of denominators
Probabilistic bound on general term
Control of remainder



An example of a graph that is used to construct the

general term. The graph describes an 8-th order term,
¢mamams (000000 mams0 - me00 700 -000-000,



Bounding the General Term
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Using Cauchy-Schwartz inequality
for member of product

Je=T)=

1/2

iy i3
2s < V

C myni, s
n

n

g >1/2
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E,-{E'},
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where 0 < s < —
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Small denominators

If the shape of the squares of the eigenfunctions sufficiently different,
using a recent result of Aizenman and Warzel we propose

Conjecture 3. For the Anderson model, the joint distribution of
R eigenenergies is bounded,

p(E17E27"'7ER) SDR

where D < R! < 0.

R
Corollary 4. Given 0 < s < 1, for f = ZC}CEZ'

k=1
integers the following mean is bounded from above

<#> < Dp < o0.

.» Where ¢, are

where DR X DR.



Assuming sufficient independence between states localized far away

Conjecture 5. In the limit of R — oo, for 0 < s < 1 and for
R

[ = chEik, where ¢, are integers
k=1
1\ 1

Conjecture 6. Corollary 4 and Conjecture 5 hold also if the E;
are replaced by the renormalized energies F.
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data 4
data 5
data 6
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data 8
data 9

0.5p=
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In(<f*>)
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The logarithm of <|f|_1/2> as a function of the logarithm of /2. The

lines designate denominators with £ = 0O, with the solid line (blue)
is for .J = 0.25 the dashed line (green) is for J = 0.5 and the dot-
dashed line (red) is for J = 1. The solid circles and the squares are
data with 8 = 1, and FE/, calculated up to the second in S, such that
different colors represent different .J, in the similar manner as for
the lines. The solid squares are for parameters similar to the ones
with the solid circles, but with the restriction that at least one of
the states that corresponds to £/, which is localized near the origin.



Probabilistic Bound on general term

Theorem 10. For a given k£ and d,¢,¢’,7 > 0

Pr (!cﬁ“)! > (Fék))keck”dke—(’y—e—g’—"’)xn') < eIk,

where F (ék) which is proportional to Ds and ¢ and ¢ are constants.
It can be seen that ¢ » 2 and later we set ¢ = ¢IV.

The Bound deteriorates with order



The remainder

c,(t)=c' " +BcV+BcP+. .+ B V4

B0,
Bound by a bootstrap argument

X,|

0, (l )‘ < M(t ).e‘(V—e—g')xnl _ Zt'Cée“Nze_(y_g_g!)




The Bound on the remainder

2 _ PSP |
‘BNQTL‘ S COTLSt°€66N —|—N1n6—|—lnt€ (y—e €)|xn|.

Note that for a given ¢ and [ there is an optimum /N for which the
remainder is minimal. Additionally, for any fixed time and order
N, limgo |V Q,| /B~ = 0, which shows that the series is in fact
an asymptotic one

One can show that for strong disorder C5 and the constant are multiplied by
J)—==—¢
It is probably proportional to exXp(—v)
_ 1
Front logarithmic in time x x—Int

Y



Bound on error

* Solve linear equation for the remainder of
order N

» If bounded to time perturbation
theory accurate to that time.

+ Order of magnitude estimate 8%, ~1 if
asymptotic pg'nv!~1 hence ¢, ~ N!
for optimal order (up to constants).



Perturbation theory steps

Expansion in nonlinearity

Removal of secular terms

Control of denominators
Probabilistic bound on general term
Control of remainder



asLbh-=

2

Summary

A perturbation expansion in g8 was developed
Secular terms were removed

A bound on the general term was derived
Results were tested numerically

A bound on the remainder was obtained,
iIndicating that the series is asymptotic.

For limited time tending to infinity for small
nonlinearity, front logarithmic in time x o In¢
or (In?)

Improved for strong disorder



Open problems

Can the logarithmic front be found for arbitrary long time?

Is the series asymptotic or convergent? Under what
conditions?

Can the series be re-summed?

Can the bound on the general term be improved?
Rigorous proof of the various conjectures on the linear,
Anderson model

How to use to produce an a posteriori bound?
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