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Experimental Relevance 

Nonlinear Optics 

Bose Einstein Condensates (BECs) 

Competition between randomness and nonlinearity 











The Nonlinear Schroedinger (NLS) 
Equation 

random Anderson Model 

1D lattice version 

1D continuum version 







Does Localization Survive the 
Nonlinearity??? 

localization 

Work in progress, several open questions 

Aim: find a clear estimate, at  least for a 
finite (long) time 



Does Localization Survive the 
Nonlinearity??? 

•  Yes, if there is spreading the magnitude of the 
nonlinear term decreases and localization takes 
over. 

•  No, assume wave-packet width is        then the 
relevant energy spacing is            , the 
perturbation because of the nonlinear term is 

                               and all depends on        
(Shepelyansky) 

•  No, but does not depend on   
•  No, but it depends on realizations     
•  Yes, because some time dependent  quasi-

periodic localized perturbation does not destroy 
localization  



Does Localization Survive the 
Nonlinearity? 

•  No, the NLSE is a chaotic dynamical 
system. 

•  No, but localization asymptotically 
preserved beyond some front that is 
logarithmic in time  



Numerical Simulations 

•  In regimes relevant for experiments looks that 
localization takes place 

•  Spreading for long time (Shepelyansky, 
Pikovsky, Molina, Kopidakis, Komineas, Flach, 
Aubry) 

•  We do not know the relevant space and time 
scales 

•  All results in Split-Step 
•  No control (but may be correct in some range) 
•  Supported by various heuristic arguments 



Pikovsky,  Sheplyansky  

Slope does not change (contrary to Fermi-Ulam-Pasta)  



S.Flach, D.Krimer and S.Skokos  Pikovsky,  Shepelyansky 

t 
b,    g,  r 
0.1, 1,  5 



Test of some arguments  



Modified NLSE 

Shepelyansky-Pikovsky original arguments –No spreading for  

Flach, Krimer and Sokos  

for  

H. Veksler, Y. Krivolapov, SF  





p= 1.5, 2, 2.5, 4, 8, 0 (top to bottom) 

Also M. Mulansky 



Summary of test: 

1. Nothing  happens at  
2.  approach to localization at  

These theories may have a range of validity  

Singular limit - crossover verified 



The role of double-humped states 





The second moment as function of time for a representative double 
humped (solid blue) and broken (dashed green) realizations for wave 

packets started in the vicinity of O. 



Effective Noise Theories 

•  D. Shepeyansky and A. Pikovsky 

•  Ch. Skokos, D.O. Krimer, S. Komineas 
and S. Flach 



Overlap  

of the range of the localization length  



Random uncorrelated 

Equilibrium  

Equilibration time 

Assume !!! 

Assume initially 



Consistent  

Can it go on forever? 



Perturbation Theory 

The nonlinear Schroedinger Equation on a Lattice in 1D 

random Anderson Model 

Eigenstates 



The states are indexed by their centers of localization  

Is a state localized near  

This is possible since nearly each state has a  
Localization center and in a box size M there are  
approximately M states 

realization 

for realizations of measure 

Indexing by “center of mass” more stable 



Overlap  

of the range of the localization length  

perturbation expansion 

Iterative calculation of   

start at  



start at  

Step 1 

Secular term to be removed by  

here  



Secular terms can be removed in all orders by  

The problem of small denominators 

The Aizenman-Molchanov approach (fractional moments) 

New ansatz 



Step 2 



Secular term removed 



Second 
order 



Order 4 red=approximate, blue exact 



Second order Third order 

Blue=exact, red=linear  





Aim: to use perturbation theory 
to obtain a numerical solution  
that is controlled a posteriori  



Perturbation theory steps 

•  Expansion in nonlinearity 

•  Removal of secular terms 

•  Control of denominators 

•  Probabilistic bound on general term 

•  Control of remainder 





Bounding the General Term 

results in products of the form 



Using Cauchy-Schwartz inequality  
for member of product 



Small denominators 
If the shape of the squares of the eigenfunctions sufficiently different, 
using a recent result of Aizenman and Warzel  we propose  



Assuming sufficient independence between states localized far away 





Probabilistic Bound on general term 

The Bound deteriorates with order 



The remainder  

Bound by a bootstrap argument  



One can show that for strong disorder  and the constant are multiplied by  

The Bound on the remainder 

It is probably  proportional to  

Front logarithmic in time 



Bound on error 

•  Solve linear equation for the remainder of 
order  

•  If bounded to time              perturbation 
theory accurate to that time. 

•  Order of magnitude estimate                    if 
asymptotic                   hence                    
for optimal order (up to constants). 



Perturbation theory steps 

•  Expansion in nonlinearity 

•  Removal of secular terms 

•  Control of denominators 

•  Probabilistic bound on general term 

•  Control of remainder 



Summary 

1.  A perturbation expansion in     was developed 
2.  Secular terms were removed 
3.  A bound on the general term was derived  
4.  Results were tested numerically 
5.  A bound on the remainder was obtained, 

indicating that the series is asymptotic. 
6.  For limited time tending to infinity for small 

nonlinearity, front logarithmic in time                   
or  

7.  Improved for strong disorder 



Open problems 

1.  Can the logarithmic front be found for arbitrary long time? 

2.  Is the series asymptotic or convergent? Under what 
conditions? 

3.  Can the series be re-summed? 

4.  Can the bound on the general term be improved? 

5.  Rigorous proof of the various conjectures on the linear,  
Anderson model 

6.  How to use to produce an a posteriori bound?   
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