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Reminder

two parts:

1 Normal deterministic diffusion:
simple maps and billiards, dynamical systems theory, and
zeolites

2 Anomalous deterministic diffusion:
some slightly more complicated maps, ergodic and
stochastic theory, and cell migration

Rainer Klages Queen Mary University of London 2
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Polygonal billiard channels

instead of convex scatterers, look at polygonal ones:
(a) (b)

(c) (d)

ψ

φ

• weak chaos: dispersion of nearby trajectories ∆(t) grows
weaker than exponential (Zaslavsky, Usikov, 2001)
• pseudochaos: algebraic dispersion ∆ ∼ tν , 0 < ν
(Zaslavsky, Edelman, 2002); above: special case ν = 1
‘highly non-trivial’ parameter dependence of diffusion in
simulations (→ Rondoni); relation to piecewise isometries
(→ Vivaldi) and to ergodic theory (→ Artuso, Gutkin, Prosen)
(∃ review about pseudochaotic diffusion in book by R.K., 2007)

Rainer Klages Queen Mary University of London 3
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Intermittency in the Pomeau-Manneville map

consider the nonlinear one-dimensional map
xn+1 = M(xn) = xn + axz

n mod 1 , z ≥ 1 , a = 1
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phenomenology of in termittency: long periodic laminar
phases interrupted by chaotic bursts; here due to an indifferent
fixed point, M ′(0) = 1 (Pomeau, Manneville, 1980)
⇒ map not hyperbolic (6 ∃N > 0 s.t. ∀x∀n ≥ N |(Mn)′(x)| 6= 1)
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From ergodic to infinite ergodic theory

choose a ‘nice’ observable f (x):
• for 1 ≤ z < 2 it is

∑n−1
i=0 f (xi) ∼ n (n → ∞)

Birkhoff’s theorem: if M is ergodic then 1
n

∑n
i=0 f (xi) =< f >µ

• but for 2 ≤ z we have the Aaronson-Darling-Kac theorem,

1
an

n−1
∑

i=0

f (xi)
d→ Mα < f >µ (n → ∞)

Mα: random variable with normalized Mittag-Leffler pdf
for M it is an = nα , α := 1/(z − 1); integration wrt to Lebesgue
measure m suggests

1
nα

n−1
∑

i=0

< f (xi) >m∼< f (x) >µ

note: for z < 2 , α = 1 ∃ absolutely continuous invariant
measure µ, and we have an equality; for z ≥ 2 ∃ infinite
invariant measure, and it remains a proportionality

Rainer Klages Queen Mary University of London 5
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Defining weak chaos quantities

This motivates to define a generalized Ljapunov exponent as

Λ(M) := lim
n→∞

Γ(1 + α)

nα

n−1
∑

i=0

< ln
∣

∣M ′(xi)
∣

∣ >m

(stretched exponential instability) and analogously a
generalized KS entropy,

hKS(M) := lim
n→∞

−Γ(1 + α)

nα

∑

w∈{W n
i }

µ(w) ln µ(w)

For a piecewise linearization of M one can show analytically
hKS(M) = Λ(M)

see Rokhlin’s formula, which generalizes Pesin’s theorem to
intermittent dynamics (Howard, RK, 2009)(→ Korabel)

open question: escape rate approach for anomalous
deterministic diffusion?

Rainer Klages Queen Mary University of London 6
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An intermittent map with anomalous diffusion

continue map by M(−x) = −M(x) and M(x + 1) = M(x) + 1:
(Geisel, Thomae, 1984; Zumofen, Klafter, 1993)
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deterministic random walk on the
line; classify diffusion in terms of
the mean square displacement

〈

x2
〉

= K nα (n → ∞)

if α 6= 1 one speaks of anomalous
diffusion ; here one finds

α =

{

1, 1 ≤ z ≤ 2
1

z−1 < 1, 2 < z
focus on generalized diffusion
coefficient K = K (z, a)
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Parameter dependent anomalous diffusion

K (z = 3, a) for M(x) = x + ax3 from computer simulations:
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Korabel, R.K. et al., 2005
∃ fractal structure
K (a) conjectured to be discontinuous (inset) on dense set
comparison with stochastic theory, see dashed lines
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CTRW theory I: Montroll-Weiss equation

Montroll, Weiss, Scher, 1973:

master equation for a stochastic process defined by waiting
time distribution w(t) and distribution of jumps λ(x):

̺(x , t) =

∫ ∞

−∞
dx ′λ(x − x ′)

∫ t

0
dt ′ w(t − t ′) ̺(x ′, t ′)+

+(1 −
∫ t

0 dt ′w(t ′))δ(x)

structure: jump + no jump for particle starting at (x , t) = (0, 0)
F̂ourier-L̃aplace transform yields Montroll-Weiss eqn (1965)

ˆ̺̃(k , s) =
1 − w̃(s)

s
1

1 − λ̂(k)w̃(s)

with mean square displacement ˜〈

x2(s)
〉

= −∂2 ˆ̺̃(k , s)

∂k2

∣

∣

∣

∣

∣

k=0
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CTRW theory II: application to maps

apply CTRW to maps (Geisel, Klafter, 1984ff): need w(t), λ(x)

• continuous-time approximation for the PM-map
xn+1 − xn ≃ dx

dt = axz , x ≪ 1
solve for x(t) with initial condition x(0) = x0, define jump as

x(t) = 1, solve for t(x0) and compute w(t) ≃ ̺in(x0)
∣

∣

∣

dx0
dt

∣

∣

∣
by

assuming uniform density of injection points, ̺in(x0) ≃ 1

• (revised) ansatz for jumps:
λ(x) = p

2δ(|x | − ℓ) + (1 − p)δ(x)
with jump length ℓ, escape probability
p := 2(1

2 − xc) , M(xc) := 1
CTRW machinery . . . yields exactly

K = pℓ2

{

aγ sin(πγ)
πγ1+γ

, 0 < γ < 1

aγ−1
γ , γ ≥ 1

, γ := 1/(z − 1) , z > 1

Rainer Klages Queen Mary University of London 10
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Dynamical crossover in anomalous diffusion

define average jump length:
ℓ1 :=< |M(x) − x | >̺0=1,escape ⇒ K ∼ a5/2 for ℓ1 ≫ 2
ℓ2 :=< |[M(x)]| >̺0=1,escape ⇒ K ∼ p(a) for ℓ2 ≪ 2
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∃ dynamical crossover between small and large a
∃ same crossover in periodic Lorentz gas (R.K., Dellago,
2002) and in maps of previous talk
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Phase transition from normal to anomalous diffusion

now K (z, 5); left fig.: compare CTRW approximation (blue line,
with integer jump length ℓ2) with simulation results
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right fig. with K (z, a) for fixed height h(z, a) := M(1/2) =
√

3
after different simulations times shows more clearly:
∃ full suppression of diffusion due to logarithmic corrections

< x2 >∼







n/ ln n, n < ncr and ∼ n, n > ncr , z < 2
n/ ln n, z = 2
nα/ ln n, n < ñcr and ∼ nα, n > ñcr , z > 2
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Time-fractional equation for subdiffusion

Montroll-Weiss equation for PM map in long-time and -space
asymptotic form reads

sγ ˆ̺̃− sγ−1 = − pℓ2aγ

2Γ(1 − γ)γγ
k2 ˆ̺̃

LHS is the Laplace transform of the Caputo fractional derivative

∂γ̺

∂tγ
:=

{

∂̺
∂t γ = 1

1
Γ(1−γ)

∫ t
0 dt

′

(t − t
′

)−γ ∂̺

∂t ′
0 < γ < 1

transforming the Montroll-Weiss eq. back to real space yields
the time-fractional diffusion equation

∂γ̺(x , t)
∂tγ

= K
Γ(1 + α)

2
∂2̺(x , t)

∂x2

Rainer Klages Queen Mary University of London 13
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Comparison with simulations

fractional diffusion equation can be solved exactly; compare
with simulation results for P = ̺n(x):

-20 0 20
x

10
-3

10
-2

10
-1

10
0

L
og

 P

0 0.5 1
x

0

1

2

r

Gaussian and non-Gaussian envelopes (blue) reflect
intermittency
fine structure due to density on the unit interval
r = ̺n(x) (n ≫ 1) (see inset)
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Application: dynamics of migrating cells

(Dieterich, R.K. et al., 2008)

single biological cell crawling on a substrate:

∃ Brownian motion in terms of Langevin dynamics

v̇ + κv =
√

ζ ξ(t) ?

Rainer Klages Queen Mary University of London 15
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Our cell types and how they migrate

MDCK-F (Madin-Darby
canine kidney) cells

two types: wildtype (NHE+)
and NHE-deficient (NHE−)

movie: NHE+: t=210min, dt=3min

note:
the microscopic origin of cell migration is a highly complex
process involving a huge number of proteins and signaling
mechanisms in the cytoskeleton, which is a complicated
biopolymer gel – we do not consider this here!

Rainer Klages Queen Mary University of London 16
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Measuring cell migration

Rainer Klages Queen Mary University of London 17
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Experimental results I: mean square displacement

• msd(t) :=< [x(t ) − x(0)]2 >∼ tβ with β → 2 (t → 0) and
β → 1 (t → ∞) for Brownian motion; β(t) = d ln msd(t)/d ln t

• solid lines: (Bayes) fits from our model
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Experimental results II: position distribution function

• P(x , t) → Gaussian
(t → ∞) and kurtosis

κ(t) := <x4(t)>
<x2(t)>2 → 3 (t → ∞)

for Brownian motion (green
lines, in 1d)

• other solid lines: fits from
our model; parameter values
as before
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⇒ crossover from peaked to broad non-Gaussian distributions
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The model

• Fractional Klein-Kramers equation (Barkai, Silbey, 2000):

∂P
∂t

= − ∂

∂x
[vP] +

∂1−α

∂t1−α
κ

[

∂

∂v
v + v2

th
∂2

∂v2

]

P

with probability distribution P = P(x , v , t), damping term κ,
thermal velocity v2

th = kT/m and Riemann-Liouville fractional
(generalized ordinary) derivative of order 1 − α
for α = 1 Langevin’s theory of Brownian motion recovered

• analytical solutions for msd(t) and P(x , t) can be obtained
in terms of special functions (Barkai, Silbey, 2000; Schneider,
Wyss, 1989)

• 4 fit parameters vth, α, κ (plus another one for short-time
dynamics)

Rainer Klages Queen Mary University of London 20
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Possible physical interpretation

• physical meaning of the fractional derivative?

fractional Klein-Kramers equation can approximately be related
to generalized Langevin equation of the type

v̇ +
∫ t

0 dt ′ κ(t − t ′)v(t ′) =
√

ζ ξ(t)

e.g., Mori, Kubo, 1965/66

with time-dependent friction coefficient κ(t) ∼ t−α

cell anomalies might originate from soft glassy behavior of the
cytoskeleton gel, where power law exponents are conjectured
to be universal (Fabry et al., 2003; Kroy et al., 2008)

Rainer Klages Queen Mary University of London 21
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Possible biological interpretation

• biological meaning of anomalous cell migration?

experimental data and theoretical modeling suggest slower
diffusion for small times while long-time motion is faster

compare with intermittent optimal search strategies of foraging
animals (Bénichou et al., 2006)

note: ∃ current controversy about modeling the migration of
foraging animals (albatross, fruitflies,...); work on foraging
bumblebees in progress (Lenz, R.K. et al. )

Rainer Klages Queen Mary University of London 22
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Summary

ergodic
hypothesis

Gibbs
ensembles

dynamical systems

statistical mechanics

thermodynamics

equilibrium nonequilibrium
steady states

microscopic chaos

complexity

nonequilibrium conditions

thermodynamic
properties

microscopic

macroscopic

general theory of nonequilibrium statistical physics
starting from weak microscopic chaos?

infinite measures

deterministic transport

weakstrong

fractal SRB measures

normal anomalous

nonequilibrium
non-steady states
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