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General Context

Main goal

Understanding the role of chaos in statistical mechanics
and, in particular, for  the establishment of 

good (robust) transport properties

Compare -- face to face -- a chaotic and a 
non-chaotic many body model able to 

generate diffusive motions
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Outline
• Motivations through a brief review on the

controversial interpretations of an analysis of an
experiment on Brownian motion

• Introduction of two models for Brownian Motion
– Chaotic: gas + impurity using hard disks
– Nonchaotic: gas+impurity using hard parallel squares

• Comparison between the transport & relaxation
properties of the two systems

• Some remarks and considerations
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Brownian Motion
Pollen (colloid) particles perform BM
as a consequence of collisions with
molecules of the fluid

What is the origin of the observed macroscopic
diffusive behavior?
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Is BM originating from Microscopic chaos?

With the assumption that the
System is deterministic we have

Total time record: 440min 
1.5·105 data points 
1/60s time resolution
20nm  spatial resolution

hKS>0 ==> Microscopic Chaos
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Basic mechanism
Lorentz gas model

BM is thus the result of microscopic 
Instabilities ensuring memory loss and 
“randomness” of particle trajectories, 
at the level of a single particle this 
can be understood using, e.g., 
the Lorentz gas  

This experiment, its analysis and interpretation raised some debate

Fixed, randomly placed, circular obstacles
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Some problem with the interpretation

1. Difficulties inherent to the data analysis method. This
is in the general longstanding issue of inferring the
deterministic (chaotic or regular) or stochastic
character of a given system from data analysis only

2. Theoretical difficulties due to the fact that the
considered system is infinite dimensional

The raised some criticism which can be summarized as follows
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Problem with finite time and finite resolution

non-chaotic Ehrenfest wind-tree model

Nonchaotic model: collisions with 
randomly placed square obstacles 

hKS=0 BUT on finite data 
sequence same features observed
in true BM experiment

To detect hKS=0 would require 
extremely long sequences and fine
spatial resolution

C.P. Dettmann, E.G.D. Cohen & H. van Beijren
Nature (1999)

Data analysis is inconclusive
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Effect of finite resolution

Chaotic diffusion

Chaotic or stochastic? Depends on the observation scale

MC, M. Falcioni, E. Olbrich, H. Kantz & A. Vulpiani PRE (2000)
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The problem of the norm &
of the exchange of limits

P. Grassberger & T. Schreiber
Nature (1999)
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Macroscopic diffusion out of microscopic chaos?

Is chaos a necessary or sufficient condition to macroscopic
diffusion and, more in general,  for good statistical behaviors? 

More in general, what are the requirements for the validity 
of statistical laws?

However, this experiment reinvigorated other interesting questions
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Mass and heat transport are possible 
also in non-chaotic models

Irrational angles: normal diffusion and
validity of Fourier law for heat transport
Rational angles: anomalous diffusion and
nonvalidity of Fourier law

Alonso, Artuso, Casati, Guarnieri PRL 1999
Casati & Prosen PRL 2000
Li, Wang & Hu PRL 2002
LLi, Casati & Wang PRE 2003

Low dimensional examples
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Low dimensional examples

(II) irrational

(I) Disorder in their length

F. Cecconi, D. Del Castillo Negrete, 
M. Falcioni & A. Vulpiani Physica D 2003

Genuine diffusion can be observed
But both (I) and (II) are required



M. Cencini Transport in chaotic and non-chaotic systems ICTP Sept. 2009

Two models for BM: gas+impurity
• Low dimensional models are very interesting but in any of

them the necessity to avoid periodic orbits requires some
mechanisms,  making them a bit artificial

• Studying many degrees of freedom systems could provide
also some insights on the role of chaos in other statistical
aspects

• We will thus consider two many degrees of freedom models
for BM

cchaotic nonchaotic
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Chaotic model: gas+impurity
[Hard Disks (HD)]

GGas + 1 impurity => N + 1 particlesGas + 1 impurity => N + 1 particles

Free streamingFree streaming

+ elastic collisions+ elastic collisions i

j

pi

pj

êij

Chaos stems from defocusing due to collisions
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Hard disk model
• well defined statistical mechanics behaviors controlled
  by energy (temperature),  density and volume fraction

We work in the �<<1 limit (Nr2<<L2) so that the
system is akin to a rarefied gas

r, m- gas particle radius & mass

R,M- impurity radius & mass Two well know limits: 

Lorentz gas (gas->fixed obstacles)

Rayleight-flight (most of collisions involve the impurity)
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Transport coefficients in HD
Diffusion of the impurity if M>>m R>>r but still the impurity is a negligible
perturbation (this poses constraints at a simulation level)

Effective Langevin equation

Green-Kubo

E.g. Dorfman “An Introduction to chaos in Nonequilibrium
Statistical Mechanics “(CUP 1999 ))

SSelf-diffusion (of a tagged particle)

NB. For self-diffusion no Langevin description (absence of scale separation)
And the formula works only if the impurity does not perturb the gas properties
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Some test on HD: relaxation to equilibrium

Pt=0(|v|)=1/2v0 t->� PMB(v)

N=300 & 1000 �=10 �=O(10-3) R=10r

The relaxation time is independent of the impurity =>
(1) the impurity is a small perturbation; 
(2) relaxation is fast and essentially due to collisions among gas particles

T=50
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Nonchaotic model: gas+impurity
[hard parallel squares  (HPS)]

j

nij

i

pi

pj

Here collisions are not defocusing & chaos is absent

NB. Squares do not rotate, i.e. the system is non-Newtonian

colliding gas particles exchange their velocity components in the impact 

direction (relabeling) 

Some history:Some history:
1956 Zwanzig
‘60s  Hoover, Adler
‘70s  Frisch & co
2009 Hoover & co

It can be seen as a 2d generalization of 1d hard rods 
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Hard parallel squares

In the absence of impurity, very well characterized as a statistical
mechanics model in terms of equation of state, phase transitions etc…

 for statistical mechanics very pathological

• particles are independent (no relaxation to equilibrium)

• x,y components do not mix, energy along x and y separately conserved

• non ergodic: infinite number of integral of motions (all velocity moments

  separately for the velocity components are conserved)

• only marginalization of velocity pdf  P(vx,vy)-->P(vx)P(vy) due to relabeling

 the impurity  somehow cures some of the pathologies

• effective coupling among gas particles allowing for energy exchanges

  during collisions with the impurity ==> equilibrium can be reached (but

separately for the two components)

  P(vx,vy)-->PMB(vx,Tx)PMB(vy,Ty)
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Relaxation to equilibrium in HPS

HD HPS

The relaxation time strongly depends on the mass impurity

M=m (N+1 equal squares) and M->� (fixed obstacle) no relaxation 

Tr(HD)
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Transport coefficients in HPS
Diffusion coefficient of the impurity

Effective Langevin equation

Self diffusion of tagged particles

From Szu, Bdzil, Carlier & Frisch PRA 1974

Computed assuming Maxwell-Boltzmann distribution

Finite size corrections also
Present in the HD case
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Impurity diffusion and gas self-diffusion

HHDHD

HPSHPS

Test of formula at 
different temperatures

Displacement vs time Velocity autocorrelation
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Self-diffusion without impurity

This is an a posteriori consistency test showing that even if the impurity is
crucially modifying the statistical mechanics of the system, it is a small
perturbation in terms of the transport properties

Same value as with the impurity
when holding the same parameters
and using MB distribution 
for velocity
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Relaxation close to equilibrium: FDT

To further test the robustness of the observed transport properties we
Also studied the relaxation properties close to equilibrium, i.e. the 
fluctuation dissipation relation

V->V+�V0

f(t)=F�(t)

On the impurity

V->V+�V0

On a gas particle

If �V0->0 

If �v0->0 

f(t)=F�(t)
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FDT for the impurity

HD HPS

Provided the perturbation is very small FDT is well satisfied for
the impurity
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FDT for tagged particles

HD HPS

The same numerical experiment is performed for HD and HPS 
in the absence of the impurity.

Note despite the absence of the impurity prevent the HPS from truly relaxing
FDT is fairly well verified, its validity is ensured by the presence of 
many degrees of freedom and thus it has a probabilistic origin!
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Summary & Conclusions

• Chaos does not seem to be crucial for the validity of robust transport
properties (at least from a numerical point of view the chaotic HD and
nonchaotic HPS are completely equivalent)

• Also more delicate statistical mechanics properties are very well
reproduced in the non-chaotic model with impurity (non-ergodic) and
even in the absence of the impurity (non-ergodic & no relaxation)

• The presence of many degrees of freedom seems to be more
fundamental in ensuring from a probabilistic point of view what chaos
naturally esures at a deterministic level

• We can interpret these results as an extension of Khinchin view
(ergodicity is not indispensable to the validity of equilibrium statistical
mechanics) to non-equilibrium transport properties
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Last remark

HPS with or without impurity is a nice model which
can be very  useful for testing ideas related to the

absence of  chaos in a very natural “physical” system.


