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The radiative heat transfer between two black bodies
separated by d > Ar = ch/kgT is given by the
Stefan-Boltzmann law:
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Evanescent electromagnetic waves
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Evanescent electromagnetic waves

Why at short separation the evanescent electromagnetic
waves give the most important contribution?

T(K)  Ar(um)

1 2298.8
4.2 545.2
100 22.9
273 8.4
1000 2.3

<

1/d  kgT /e

Table.Critical distance A\ as a function of temperature. For
surface separation d < Ap the heat transfer is dominated by
the contribution from the evanescent electromagnetic
modes.



Origin of the van der Waals friction




Theory of Brownian motion.

mi + mwiz + T'd = F(t)

1 ©.0)
:kBT 0

The random force that makes a small particle jitter would
also cause friction if the particle were dragged through the
medium

r (F(t)F(0))dt



Rytov’s theory of the fluctuating electromagnetic field

Rytov S.M. 1953




Application of Rytov’s theory

# Lifshitz E.M. Theory of the van der Waals interaction
1955

o Polder D. and Van Hove M. Theory of the radiative heat
transfer 1971

#® \olokitin A.l. and Persson B.N.J. Theory of the van der
Waals friction 1998.



log (thermal flux) (W/m 2)

Radiative heat transfer: Results.

(b)

log d (Angstrom)

(a) The heat transfer flux between two
semi-infinite silver bodies, one at
temperature 77 = 273 K and another
at 7, = 0 K, as a function of

the separation d.

(b) The same as (a) except that we
have reduced an electron mean free
path for solid 1 from a value

[ = 560 A to 20 A.

| (c) The same as (a) except that we

| have reduced [ to 3.4 A. The dashed
{ lines correspond to the results
| obtained within local optic

approximation.



Radiative Heat Transfer: Results.
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The thermal flux as a function of the conductivity of the
solids. The surfaces are separated by d = 10 A.
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Radiative Heat Transfer. Results.
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log (thermal flux) (W/m 2)
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The heat flux between two semi-infinite silver bodies coated
with 10 A high resistivity (p = 0.14 2 cm) material. Also
shown is the heat flux between two silver bodies, and two
high-resistivity bodies. One body is at zero temperature and
the other at T' = 273 K. (a) and (b) show the p— and s—wave
contributions, respectively.
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Resonant photon tunneling enhancement

Adsorbate Vibrational Mode Enhancement of the Radiative
Heat Transft
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with adsorbates

log (thermal flux) (W/m 2)
3

L clean surfaces
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T 2 3 4

log d (Angstrom)
The heat flux between two surfaces covered by potassium
atoms and between two clean surfaces, as a function of the
separation d. One body is at zero temperature and the
otherat T = 273 K.
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Vibrational heating by localized photon tunneling

1.2

adsorbate temperature

o 04 08 12
tip temperature

The adsorbate temperatures 7, and T; as a function of the
tip temperature Tj (all in units of Aw,/kg). For
Ty = 0.1hwy /kB.
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Resonant photon tunneling enhancement

Surface Phonon Polaritons Enhancement
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Radiative Heat Transfer. Experiment.

Rousseau E. ef al 2009;
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Shen S. et al 2009
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Van der Waals friction between two metal surfaces
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Left-The friction coefficient for two flat surfaces in parallel
relative motion as a function of separation d at 7' = 273 K

with parameters chosen to correspond to copper.
Right- The same as left figure but for normal relative motion.
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Adsorbate enhancement of van der Waals friction
_10 T T T T

_ with adsorbates

_20 L

log T" (kg/s)

clean surfaces

30+

0 2 4 6
log d (Angstrom)
The friction coefficient between the copper tip and copper
substrate the surfaces of which are covered by low
concentration of cesium atoms 6 ~ 0.1, as a function of the
separation d. The radius of curvature of the cylindrical tip
R =1pm and the width w = 7 um.
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Two ways to study Van der Waals friction

\
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Left:a metallic block is sliding relative to the metallic

substrate with velocity v.
Right: A drift motion of t he free carries of charge (electrons

or ions) is induced in the upper medium.
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Frictional Drag in 2D-electron systems

(V)
N

Theory. M. B. Pogrebenskii 1977, P. J. Rice 1983
Experiment. T. J. Gramila et.al 1991, U. Sivan et.al 1992
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Frictional drag between 2D-electron system
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Left-Low density 2D electron systems: n, = 1.5 x 10°m~—2,

T=3K d=175A,
Right-High density 2D electron systems:

ne =1.5x10"m2, T=300K, d =175 A
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Frictional Drag induced by liquid flow.
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M. B. Ghost, A. K. Sood, S. Ramaswamy, and N. Kumar
2004
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Frictional Drag induced by Brownian motion.
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Electrostatic friction
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Noncontact friction experiment.

1 1.5 2 25 E | 05 0 05
Time (s) V, (V)

Ffm'ctiOn =1V

I ~ 1071 —1071%kg/s at the separation 1 — 100 nm Stipe
et.al. 2001. '~ d " withn=1.3+0.3
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Clean surface

w(V2+ V)
S
For gold tip and gold sample this equation gives
I' = 2.4 x 10~2%g/s which is eight orders of magnitude
smaller than experimental value 3 x 10~ 12kg/s.

C
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Adsorbate noncontact friction

For the Cs/Cu(100) system experiment suggest the
existance of an acoustic film mode, even for the dilute
phase (# ~ 0.1). In this case

. wnMRO'5(V2 + VOQ)
ad — 24°5d1°57mae*2

For Cs/Cu(100) system we obtain agreement with
experiment at d = 20nm with n = 10's™!, n, = 10¥m~2,
R = 1um, w = 7um and with the electric charge of the Cs
lons e* = 0.28e.
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Dielectric fluctuations and noncontact friction
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S.Kuehn, J.A.Marohn, and R.F.Loring 2006
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