

The Abdus Salam International Centre for Theoretical Physics

2063-6

ICTP/FANAS Conference on trends in Nanotribology

19 - 24 October 2009

Pure adhesion in friction

HEISE Rainer Christof Institut fuer Mechanik Strasse des 17 Juni 135, D-10623 Berlin GERMANY

Introduction	Model 0000000000	Results 0000000000000	Discussion 000	Conclusions and Outlook

Pure Adhesion in Friction

Rainer Heise Valentin L. Popov

Technische Universität Berlin, Institute for Mechanics, Germany

Joint ICTP/FANAS Conference on Trends in Nanotribology, October 2009

Introduction	Model 00000000000	Results 0000000000000	Discussion 000	Conclusions and Outlook
Outline				

1 Introduction

- Model
- Statistics
- Physics

3 Results

- Forces
- Horizontal Averaging
- Height Averaging
- Friction Coefficient

4 Discussion

- Discontinuity
- Length Scales

Introduction	Model 00000000000	Results 0000000000000	Discussion 000	Conclusions and Outlook
Friation				

Friction Coefficient

- Macroscopic friction coefficient μ
- Amontons law 1699
- Defined as ratio between the frictional force and the normal force

Idea

Can friction be (partly) explained by a simple adhesive model?

Introduction	Model ●0000000000	Results 0000000000000	Discussion	Conclusions and Outlook
Model				
Friction				

Adhesion

- Attractive force between two bodies
- Van der Waals force
- Lennard-Jones Potential
- Surface energy density γ_{12}

JKR Theory

- Hertz contact theory for contact between rigid surface and elastic sphere 1882
- Johnson, Kendall and Roberts 1971
- Improvement by inclusion of surface effects
- Surface energy $\gamma_{12} \rightarrow 0$ gives back Hertz theory

Introduction	Model ○●○○○○○○○○	Results 0000000000000	Discussion	Conclusions and Outlook
Model				
The Geometri	c Model			

Geometrical Set up

Introduction	Model ooeooooooo	Results 0000000000000	Discussion 000	Conclusions and Outlook
Model				
Round Asperi	ties			

Parabolas

• Round spheres approximated to first order as parabolas

$$z_1(x) = Z_1 - \frac{(x - X_1)^2}{2R}$$
$$z_2(x) = Z_2 + \frac{(x - X_2)^2}{2R}$$

Introduction	Model 000●0000000	Results 0000000000000	Discussion	Conclusions and Outlook
Model				
Indentation De	epth			

Indentation

- Difference in z coordinates
- Indentation

$$\hat{d} \equiv z_1 \left(\frac{X_1 + X_2}{2} \right) - z_2 \left(\frac{X_1 + X_2}{2} \right) = Z_1 - Z_2 - \frac{(X_1 - X_2)^2}{4R}$$

- Actual indentation: Multiply by cosine of angle
- Approximated by unity

Introduction	Model ○○○○●○○○○○○	Results 0000000000000	Discussion 000	Conclusions and Outlook
Statistics				

Uniform Distribution of Asperities

- Uniform distribution of asperities along *x* axis
- Macroscopic length I

$$\Psi_1(X_1) = \frac{1}{2I}, \quad \Psi_2(X_2) = \frac{1}{2I}$$

Stochastic averaging

$$\langle g
angle_x = \int \mathrm{d}X_0 \; rac{1}{2I} \; g(X_0)$$

with

$$X_0 \equiv X_1 - X_2$$

Introduction	Model ○○○○○●○○○○○	Results 0000000000000	Discussion	Conclusions and Outlook
Statistics				

Normal Distribution of Heights

- Gaussian distribution of heights
- Standard deviation *L*, macroscopic distance *Z*₀

$$\Phi_1(Z_1) = \frac{1}{\sqrt{2\pi L}} e^{-\frac{Z_1^2}{2L^2}}, \quad \Phi_2(Z_2) = \frac{1}{\sqrt{2\pi L}} e^{-\frac{(Z_2 - Z_0)^2}{2L^2}}$$

- Inspired by Greenwood and Williamson 1966
- Stochastic averaging

$$egin{array}{rcl} \langle g
angle_{z} &=& \int_{-\infty}^{+\infty} rac{\mathrm{d}\gamma}{\sqrt{4\pi}} \; rac{\mathrm{d}_{c}}{L} \; e^{-rac{d_{c}^{2}}{4L^{2}}(\gamma+z_{0})^{2}} \; g(\gamma) \ \gamma &\equiv& rac{Z_{1}-Z_{2}}{\mathrm{d}_{c}}, \quad z_{0}\equivrac{Z_{0}}{\mathrm{d}_{c}} \end{array}$$

Introduction	Model ○○○○○●○○○○	Results 0000000000000	Discussion	Conclusions and Outlook
Physics				
JKR Theory				

Adhesion Theories

- Models for adhesion
- Johnson, Kendall and Roberts 1971
- Bradley 1932
- Derjaguin, Müller and Toporov 1975
- Tabor 1976
- Potential elastic energy
- Surface energy

Introduction	Model ○○○○○○●○○○	Results 0000000000000	Discussion 000	Conclusions and Outlook
Physics				
Formulation				

Content

- Force F due to elastic deformation and adhesion
- Indentation depth d
- Contact radius a

$$F = \frac{4E^{*}a^{3}}{3R} - \sqrt{8\pi\gamma_{12}a^{3}E^{*}}$$
$$d = \frac{a^{2}}{R} - \sqrt{\frac{2\pi\gamma_{12}a}{E^{*}}}$$

• Effective Young's modulus *E** if two different materials interact

$$\frac{1}{E^*} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}$$

 ν_i - Poisson number

• Radius R: harmonic mean if two round surfaces adhere

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

Introduction	Model ○○○○○○○○●○	Results 0000000000000	Discussion 000	Conclusions and Outlook
Physics				
Critical Values	;			

Critical Values for Detachment

- Maximal negative force F_c
- Associated contact radius a_c
- "Indentation" depth d_c length of neck

$$F_{c} = -\frac{3}{2}\pi\gamma_{12}R$$

$$a_{c} = \sqrt[3]{\frac{9\pi\gamma_{12}R^{2}}{8E^{*}}}$$

$$d_{c} = -\sqrt[3]{\frac{3\pi^{2}\gamma_{12}^{2}R}{64E^{*2}}}$$

Introduction	Model ○○○○○○○○○●	Results 0000000000000	Discussion 000	Conclusions and Outlook	
Physics					
Dimonoion					

Dimensionless relations

$$\tilde{a} \equiv \frac{a}{|a_c|}$$

$$\tilde{F} \equiv \frac{F}{|F_c|} = \tilde{a}^3 - 2 \tilde{a}^{\frac{3}{2}}$$

$$\tilde{d} \equiv \frac{d}{|d_c|} = 3 \tilde{a}^2 - 4 \tilde{a}^{\frac{1}{2}}$$

- Implicit F d relation: Solvable by Cardano's formula
- Instead: Approximation by power law

$$\begin{split} \tilde{F} &\approx & \alpha (\tilde{d}+1)^{\beta}-1, \quad -1 \leq \tilde{d} \leq 10 \\ \alpha &\approx & \frac{1}{9}, \quad \beta \approx \frac{5}{3} \end{split}$$

Introduction	Model 00000000000	Results ●oo	Discussion 000	Conclusions and Outlook
Forces				

Decomposition of Forces

Decomposition

- Adhesive force *F* acts along the line connecting the sphere centers
- Decomposition necessary
- Small angles first order approximation
- Normal force $F_N = F$

• Friction force
$$F_T = F \frac{X_0}{2R}$$

Introduction	Model 00000000000	Results o●ooooooooooo	Discussion 000	Conclusions and Outlook
Forces				
Contact Regional	on			

First Contact

- First Contact
- Intersection of parabolas

$$z_{1} = z_{2} \Rightarrow Z_{1} - \frac{(x - X_{1})^{2}}{2R} = Z_{2} + \frac{(x - X_{2})^{2}}{2R}$$
$$x_{1,2} = \frac{X_{1} + X_{2}}{2} \pm \sqrt{R(Z_{1} - Z_{2}) - \frac{(X_{1} - X_{2})^{2}}{4}}$$

Condition for just one intersection point

$$x = rac{X_1 + X_2}{2}, \qquad X_1 - X_2 = \pm 2\sqrt{R(Z_1 - Z_2)}$$

Introduction	Model	Results oo●oooooooooo	Discussion 000	Conclusions and Outlook
Forces				
Roundaries				

Contact

- First contact at intersection of parabolas
- Breaking of contact delayed by adhesion
- Scope of interaction extended by critical indentation d_c
- Boundary

$$X_{0,min} = -2\sqrt{R(Z_1 - Z_2)}$$

$$X_{0,max} = 2\sqrt{R(Z_1 - Z_2) + Rd_c}$$

 Normal and tangential forces are horizontally averaged quantities

$$\langle \tilde{F}_N \rangle_X = \frac{1}{2I} \int_{X_{0,min}}^{X_{0,max}} dX_0 \left[\alpha \left(1 + \frac{1}{d_c} \left(Z_1 - Z_2 - \frac{X_0^2}{4R} \right) \right)^\beta - 1 \right]$$

$$\langle \tilde{F}_T \rangle_X = \frac{1}{2I} \int_{X_{0,min}}^{X_{0,max}} dX_0 \left[\alpha \left(1 + \frac{1}{d_c} \left(Z_1 - Z_2 - \frac{X_0^2}{4R} \right) \right)^\beta - 1 \right] \frac{X_0}{2R}$$

Introduction	Model 00000000000	Results ○○○○●○○○○○○○	Discussion	Conclusions and Outlook
Horizontal Averaging				
Frictional for	e			

Horizontally averaged frictional force

• Integration of the frictional force F_T easily performed

$$\langle \tilde{F}_T \rangle_x = \frac{1}{2} \frac{d_c}{I} \left(\frac{\alpha}{1+\beta} - 1 \right)$$

Frictional force proportional to d_c but independent of R

Introduction	Model 00000000000	Results ○○○○○●○○○○○○○	Discussion	Conclusions and Outlook
Horizontal Averaging				
Normal Force				

Horizontally averaged normal force

Normal force

$$\langle \tilde{F}_N \rangle_x = \sqrt{\frac{R}{d_c}} \frac{d_c}{I} \left[\frac{\alpha}{2} (1+\gamma)^{\beta+\frac{1}{2}} \left[B\left(\frac{1}{2},\beta+1\right) + B\left(\frac{\gamma}{\gamma+1},\frac{1}{2},\beta+1\right) \right] -\sqrt{\gamma} - \sqrt{\gamma+1} \right]$$

• (Incomplete) Beta function

$$B(z, a, b) \equiv \int_0^z t^{a-1} (1-t)^{b-1} dt$$
$$B(a, b) \equiv B(1, a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Introduction	Model	Results ○○○○○●○○○○○	Discussion	Conclusions and Outlook
Height Averaging				
Height Mean				

Averaging of frictional force

- Stochastic mean over the height coordinates Z_i
- Frictional force

$$\langle \langle \tilde{F}_T \rangle \rangle = \int_0^\infty \frac{\mathrm{d}\gamma}{\sqrt{4\pi}} \frac{d_c}{L} e^{-\frac{d_c^2}{4L^2}(\gamma+z_0)^2} \frac{d_c}{2I} \left(\frac{\alpha}{1+\beta}-1\right)$$
$$= \frac{F_c}{4} \frac{d_c}{I} \left(\frac{\alpha}{1+\beta}-1\right) \operatorname{erfc}\left[\frac{d_c z_0}{2L}\right]$$

• Complementary error function erfc

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \mathrm{d}t \, \mathrm{e}^{-t^2}$$

Frictional force depends linearly on indentation depth d_c

Introduction	Model	Results	Discussion	Conclusions and Outlook
Height Averaging				
Height Mean				

Averaging of normal force

Normal force

$$\begin{split} \langle \langle \tilde{F}_{N} \rangle \rangle &= -\frac{\sqrt{d_{c}R}}{I} \int_{0}^{\infty} \frac{\mathrm{d}\gamma}{\sqrt{4\pi}} \frac{d_{c}}{L} e^{-\frac{d_{c}^{2}}{4L^{2}}(\gamma+z_{0})^{2}} \left[\sqrt{\gamma+1} + \sqrt{\gamma} \right. \\ &\left. -\frac{\alpha}{2} (1+\gamma)^{\beta+\frac{1}{2}} \left[B\left(\frac{1}{2},\beta+1\right) + B\left(\frac{\gamma}{\gamma+1},\frac{1}{2},\beta+1\right) \right] \right] \end{split}$$

- No closed analytic expression
- Numerically evaluated

Normal Force \tilde{F}_N as function of the normalized macroscopic distance Z_0/L and the normalized indentation depth d_c/L

Introduction	Model 00000000000	Results ○○○○○○○○○○○○○	Discussion	Conclusions and Outlook
Height Averaging				
Normal Force				

Normal force

- Normal force turns from negative to positive
- Negative: Adhesive effects prevail
- Positive: Compression takes over

Introduction	Model 00000000000	Results ○○○○○○○○○○	Discussion	Conclusions and Outlook
Height Averaging				
Frictional fo	rco			

Normalized friction force \tilde{F}_T as function of the normalized macroscopic distance Z_0/L and the normalized indentation depth d_c/L

• Macroscopic friction coefficient as statistical mean

$$\mu = \frac{\langle \langle F_T \rangle \rangle}{\langle \langle F_N \rangle \rangle}$$

$$\mu = \frac{\frac{\sqrt{\pi}}{2} \sqrt{\frac{L^2}{Rd_c}} \left(1 - \frac{\alpha}{1+\beta}\right) \operatorname{erfc}\left[\frac{Z_0}{2L}\right]}{\int_{0}^{\infty} d\gamma e^{-\left(\frac{d_{CY}+Z_0}{2L}\right)^2} \left[\sqrt{1+\gamma} + \sqrt{\gamma} - \frac{\alpha}{2}(1+\gamma)^{\beta+\frac{1}{2}} \left[B\left(\frac{1}{2},\beta+1\right) + B\left(\frac{\gamma}{\gamma+1},\frac{1}{2},\beta+1\right)\right]\right]}$$
• Numerically evaluated integral

Introduction	Model 00000000000	Results ○○○○○○○○○○○	Discussion 000	Conclusions and Outlook
Friction Coefficient				

Diagram of Friction Coefficient

Friction coefficient μ as function of the normalized macroscopic distance Z_0/L and the normalized critical indentation depth d_c/L

Introduction	Model	Results 0000000000000	Discussion ●○○	Conclusions and Outlook
Discontinuity				
Discontinuity				

- Discontinuity in friction coefficient
- Reason: Zero of normal force
- Not observed in experiments

Introduction	Model 00000000000	Results 0000000000000	Discussion ○●○	Conclusions and Outlook	
Discontinuity					
Zero of Normal Force					

Parametric plot of the values of the normalized macroscopic distance Z_0/L and the critical indentation depth d_c/L for vanishing normal force

Introduction	Model	Results 0000000000000	Discussion ○○●	Conclusions and Outlook
Length Scales				
Length Scales				

Hierarchy

- Macroscopic length /
- 2 Macroscopic separation Z_0
- Ourvature radius of asperities R
- Stochastic length scale L
- **(3)** Indentation depth d_c

Introduction	Model	Results	Discussion	Conclusions and Outlook

Conclusions and Outlook

- Too simplistic model
- Discontinuity in friction coefficient
- Vanishing of normal force at finite frictional force
- Inclusion of different physical effects necessary

Introduction	Model	Results 0000000000000	Discussion	Conclusions and Outlook
Thanks				

Thank you for your attention!