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Abstract

Nanofriction on a mesoscopic scale is considered with the help of an earthquakelike
(EQ) model. Kinetics of the EQ model with a distribution of static thresholds is
reduced to a master equation which can be considered analytically. This approach
naturally describes stick-slip and smooth sliding regimes of tribological systems
within a framework which separates the calculation of the friction force from the
studies of the properties of the contacts. The role of physical parameters which
determine stick-slip against smooth sliding is clarified. The model can explain
tribological experiments in considerable detail without the need of any special
properties of the lubricant film such as, e.g., its huge viscosity.

Trends in Nanotribology.: Joint ICTP-FANAS conference, 19-24 October 2009, Trieste



l. Introduction

Standard experimental technique

E e
-  measured: spring force
e (“tribological” friction 4 = F¢. ./ Floaq)
F, ine  control parameters:
e > Vooring (pulling velocity)

» Kypring (machine stiffness)
= | Jubricant » F,,4 (loading mass)

> T (temperature)

track

Modern experimental techniques

Surface Force Apparatus (SFA)

Tabor and Winterton (1969); Israelaschuvili
« atomically flat mica plates
« thickness is controlled optically (with accuracy of ~1A)

Friction Force Microscope (FFM)

Quartz-crystal microbalance



Regimes:

» Hydrodynamic lubrication (Reynolds 1886) — for a thick liquid layer (> 0.01 mm)
» Navier—Stokes equations with appropriate boundary conditions

> Boundary lubrication — for a thin (few A) lubricant film
> at stop/start, (almost) always the regime of boundary lubrication occurs

» Wearing (destroying of surfaces)

Static vs kinetic friction:

» Static friction — to start motion
» Kinetic friction — to keep the slider moving smoothly

Main laws (da Vinci, Amontons, Euler, Coulomb):

(D) # = FyictionFroaa = cOnstant <1
2) Mpinetic <OF << U0 and ., ... is approximately independent of v
(3) stick-slip and smooth sliding:

low velocity &/or soft system  high velocity &/or stiff system
F (a) stick-slip motion F f {b) smooth sliding

track 0 tine time



Some results

H = Fiicton'Froaa = cONstant <1

Bowder & Tabor 1950: Even a surface which appears to be flat on a millimeter scale
may contain micrometer-scale asperities, i.e., the surfaces are rough

) | -
s B vh\\»-w

I
A real (actual) contact area 4 | ~ F} .4 and 4,.,, grows until the external loading force

will be balanced by the contact pressure integrated over 4.
Let Po.,i1oad = Ploagd/A,eq1 18 the real pressure at the contact. Then:
* atlow P, 100 < Pyieiq (elastic regime) the number of contacts increases with load
* athigh P ,.q > Pyieq (plastic regime) the area of a contact increases with load

A thin film (Iess than 10 molecular diameters) is almost always layered, because
the substrates induce crystalline order in the film
(solidify / freeze the lubricant, Thompson et al 1995).

When the width is less than about three layers, most films behave like solid
“Memory / age” effects: frictional forces depend on the previous dynamical history of
the solid—solid contact(s), €.8., Uy, () = a, + by In(?) and py,.4.(V) = Uaie(a, /v)

with the characteristic length a, ~ 1 um (plasticity of the system)



Il. Simulation Microscopic 3D MD model

the MD model must be three-dimensional!

. Fma=fmaNa
rigid top
substrate \ l E=fN
S P o == B
defom]ab]e ““““““““““ g o o e S g g p ' Vcl'Ne
top substrate —» _-"-""_' ¢ : .'-.‘: A .I'_“'\"" = e e e km
lubricant — > GRS RIC S S R — V.. T,
N N T e e V.. r.
deformable ___ SOuR = vg ;‘
a87 " 88

bottom substrate

rigid bottom /

substrate (fixed)

Langevin equations:
Due to the driving force, an energy is pumped into the system
This energy must finally be removed from the driven system
A standard approach is to use Langevin equations for only few layers far from the interface.
But: a competition “large system <> long times”,
while the most important is a detailed modelling of the interface itself.
Solution: to use Langevin equations for all lubricant and substrate atoms

O.M.Braun & M.Peyrard, Phys. Rev. E 63 (2001) 046110 "Friction in a solid lubricant film"

O.M.Braun & A.G.Naumovets, Surf. Sci. Reports 60 (2006) 79 "Nanotribology:
Microscopic mechanisms of friction



I1.2. Simulation results

LoLS (Layer over Layer Sliding) Perfect sliding (“superlubricity”)
(“soft” lubricant, /~=0.008) (“hard” lubricant)

PPPRPRRRRRR PP Y YYYYYYYYS

LS (Liquid Sliding) “Amorphous” lubricant structure
(“hard” lubricant, 7=0.4, /=0.01, v, _=0.6) (“hard” lubricant, 7=0.3, /=0.008)

top

TII Yy




{3 11.3. Stick-slip to smooth sliding transition

low driving velocity: high driving velocity:
stick-slip smooth sliding
@V,=02 v=03 1 Fyv=02 - ] softlubricant:
a) 2 1 D)V, :
L ] 3 V < V
& smooth_1
(Vy=1/3)
hard lubricant:
Vll >> V
. . . . smooth_O 1
1.0 1.5 20 10 1.5 2.0
107 time 107 time
Problem|r: Simulation: v, ~ atomic scale v, ~ 102¢ ~ 10 m/s — huge!

experiment: v, ~ 0.1-1 pm/s

O.M.Braun, M.Peyrard, V.Bortolani, A.Franchini, A.Vanossi, Phys. Rev. E 72 (2005) 056116
"Transition from smooth sliding to stick-slip motion in a single frictional contact"



Il. I1.4. “Viscosity” of a thin film (smooth sliding)

LoLS, soft lubricant

h
4 o a Estimation (typical values):
0 A~10710 w?
. F ~ 20 uN
ol h ~ 3.5 x 107 m (4 OMCTS molecular layers)
— - v~z n=(F/A)(h/v) (from f = F/A =ndv/dz)
— . . kg
o problemli: experiment: v ~ 1 um/s — n ~ 700 —&
— simulation: v ~1m/s — n~ 0.7 x 1073 k—i
- (recall: npui ~ 2.5 x 1073 %)

Experiments (GranickK et al, 19917 Thompson ¢t al; 1995; eic):
the viscosity of a thin film is many orders of magnitude higher than the bulk viscosity



"L_ The earthquakelike (EQ) model

EQ & ME

. "W vy

<

P (x,) — probability distribution of
the thresholds x=f../k;
at which the contacts break

0(x:X) — distribution
of the stretchings x; when the top
substrate is at a position X

As the top stage moves, the surface stress at any junction increases, fi(#)=k.x:(?),

where X:(7) is the shift of the i-th junction from its unstressed position.

A single junction is pinned whilst fi(t)<fsi, where fsi is the static friction threshold for it.
When the force reaches fsi, a rapid local slip takes place,

during which the local stress in the block drops to the value j%i~0.
Then the junction is pinned again, and the whole process repeats itself.

R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am. 57 (1967) 341

Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68 (1992) 1244
B.N.J. Persson, Phys. Rev. B 51 (1995) 13568

O.M. Braun and J. Réder, Phys. Rev. Lett. 88 (2002) 096102



Il. 1l.2. The master equation (ME)

Q(x;X) - the distribution of the stretchings x, when the bottom of the slider is at X.
P (x,) - probability distribution of values of the thresholds x at which contacts break.
R(x) - probability distribution of values of the displacements x for “newborn” contacts.

Consider a small displacement AX > 0 of the bottom of the solid block.

It induces a variation of the stretching x, of the asperities which has the same value AX.
The displacement X leads to three kinds of changes in the distribution,

which can be written as a master equation for Q(x;X):

Qr; X + AX) = Q(z — AX; X) — AQ (73 X) + AQ (w5 X)

(1)<he first term is just the shift du ¢ global increase of the stretching;

(2) some contacts brea ause the stretching excee ¢ maximum that they can stand:
AQ=(z; X) = P(z) AX Q(z; X); P(x) = Pe(z) / [, d€P:(§)

) _ the numbeér of contacts
(3) those broken contacts form a after a slip: 1o be broken =N P (x)AX thenumber of still
AQx

(aj; X) — R(CIZ‘) fjooo df AQ_(f,X) unbroken contacts (/N,)

Finally, with AX—0 we get the integro-differential equation:




.
l1.3a. EQ <> ME (short times)

N

e P T S L R T 0 TN R e S S HL R e R T ) S R
—_%_:_f.".z::..::zi
:e‘-i's
| e > .?“"— |
50 —_—I e 50
———
) b -JA o] b
: _
~100 = ~100
e
__-

10— et 1.0 —
(b) ]

0.5F ] 05k

FIN
FIN

0.0 — ey oy ] 0.0 .

P(X) = Nogk) J dv 2 Q(z; X)
P.(z) = Gauss (Zs =1, 05 = 0.05), Qini(x) = Gauss (Zin; = 0, oin; = 0.025)



.
l1.3b. EQ €<-> ME (long times)
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P.(x) is Gaussian with Z; = 1 and o5 = 0.05,

Qini(7) is Gaussian with Zi,; = 0 and oy = 0.025 sliding !



1. lll.4. The steady state
dQ(z)/dx + P(z) Q(z) = d(x) [ d& P(€) Q(€)

10 p—— e ! 410
- ' ]
Q(x) master equation .
g QO(x) earthquake model
!
S ;
2 05} | 1s
= [
B =P
= I
= - == P(x)
= h ‘
l
oob v vy A
0,0 05 1,0

solution: Q4(z) = C~1O(z)Ep(x)

_ ,—U(x)
approach to the stationary state: Ep(z) = §
Qs X) — Qula)| x exp(—x/x),  U@) = Jo d€P(E)
where X* ~ 72 /0, C = fO dr Ep(x)



V.

Generalizations o
IV.1. Friction loop

if AX <0, then AQ_(z; X) = —Py(x) AX Q(x; X)
and AQy (z; X) = Ry(z) [*._ da’ AQ_(2'; X) so that

f
where for the symmetric case (the forward-backward symmetry)

Py(x) = P(—x) and Ry(x) = R(—x)

0Q(x; 0Q(x; 00
HE ST 7 D) Qs X) = Ry(w) [ da’ By(a') Qa5 X)

0.5 - UAV \Va

0.0

0.5 F /

1111111111111111




V. IV.2. Delay in contact formation

AQ+ — AQ(x; X + AX,,,), where AX,,, = v7y, (v is the driving velocity)
and 7, is a “delay” time, i.e.,
the time of break-formation (melting-freezing) of a new contact

8@(:1: X) o 8Q(w X) P(x )@(x;X) = R(x) ffooo dx' P(x') @(x’;X P AX,,)

I —o— F(AX )VF, l[0)
09

[ o-- Ne(AX, /N (0)
08k \\\\\
0.7 ’\

F(AX_)F,(0), N(AX_)N (0)

06 | ‘\\\H -

0.5 - \

04 o:o . ofz ' 014 ' oro ' oia ' 110 ' ljz
P.(x) is Gaussian with Z, = 1 and o, = 0.2 AX, = VAT, ;

Qini(z) is Gaussian with Z;,; = 0.1 and o;,; = 0.025 dF\/dv <0 -2 instability



IV. IV.3a. Aging of contacts: P (x) changes with time

Let P.;(x) be the threshold distribution for “newborn” contacts
characterized by the average value x,; and the dispersion oy;.
Typically z, grows while o, decreases with time, and finally at ¢t — oo
P.(z) approaches P.¢(x) with Zsr > Z,; and 055 < 0.

If the evolution of P.(x) corresponds to a stochastic process,
then it can be described by the Smoluchowsky equation

6Pc/at — Dzwpca where Lw = 88 (B(LL“) + %)’

the “diffusion” parameter D defines the rate of aging,
the “potential” U(xz) is defined by the final distribution,

P.;(x) oc exp [~U(z)] so that B(z) = 0&) — —dP;ffjg;/)d%

An interplay of two processes: the aging which moves P.(z) to P.f(z),
and the breaking/reborn process which returns P.(z) to P.;(x)

QX) | 29X 4 P25 X) Q(z; X) = 8(x) 2, da’ P(2'; X) Q(a'; X)
%—Dmm; X)+P(w; X) Q(a; X) = Pes() |75 da’ P(#' X) Q(&'; X)
Pe(x; X) = P(; X) exp [~ [y d€ P(& X))

where Dx = D/v and v = dX(t)/dt
The case of fast driving (v — oo, Dx — 0): P.(x) = P.;(x)
The case of slow driving (v — 0, Dx — 00): P.(z) = Pc¢(x)




IV. IV.3b. Aging of contacts: the steady state

(a) The final distribution
.. Qs(z) for Dx = D /v =

: 107° (circles),

: 10~ (up triangles),
=3 x 107* (crosses),
= 1073 (down triangles), and
= 1072 (diamonds).

_Inset: the kinetic friction force F}%
in the steady state versus
the driving velocity v ((k;) = 1).

(b) The distributions P,(x)
larger circles show

the initial P,;(x) (red) and
the final P.s(x) (blue)].

" . : | P.;(z) is Gaussian
0.0 05 | with Zy; = 0.5 and oy = 0.1,
x P.f(x) is Gaussian

instabili ith Z,; = 1 and 0,5 = 0.01.
dF,/dv <0 —> instability WILR s f and o



V. IV.4. Slider dynamics: Elastic instability

The force at the substrate/lubricant interface
F = K(Xgq— X) (*) must be equal to

the force F'(X) from friction contacts.

When X, and X increase, the substrate
remains stationary as long as dX;/dX > 0.

dXy4/dX =0,0r F/(X) =dF(X)/dX = —K (**)
just defines the maximal displacement X,, which
the contacts can sustain; a larger displacement

will broke all the contacts simultaneously, K" =— maxF '(X) = Nk (f;_f[,) / Afs
and at this moment all contacts will reborn.
OR: .:?é e K K
The total potential energy of the sliding §‘ 0. _ B
interface plus the elastic substrate is N
S
-] -

V(X) = [ dX' F(X') + LK (X — Xy)%;
then Eq.(*) <> V/(X) = 0; 0.0+
it is stable if V"(X) > 0, so that '
the unstable displacement is defined by

V"(X) =0 ¢ Eq.(**) N~

.................................................




V.

spring force (uN)

10

-10

10

-10

IV.5. Elastic instability + delay — stick-slip

(a) rd=104 sec

lllllll!lllllll 9_ ' '

1325 1330

1325 1330

lllllllllllllll l l

10 15 20 13.55 13.60
time (sec) time (sec)

Spring force F((7)
for different values

of the delay time 7,

(parameters from: J.Klein,
PRL 98 (2007) 056101)

Despite the soft

spring constant

K=97 N/m <<
K*=4.34x10* N/m,
stick-slip 1s only found
for sufficiently large 7,



V.

PRL 98, 056101 (2007)

PHYSICAL REVIEW

week ending

LETTERS 2 FEBRUARY 2007

Contact area A
Confined film thickness D

FIG. 1. Friction-force traces between mica surfaces sliding
across a film of OMCTS of thickness D =352 A (n = 4
molecular layers), under a load L = 16 uN (for details of
OMCTS preparation see Ref. [14]). The lower and upper traces,
taken directly from the X-r chan recorder, show. respectively.
the applied uniform motion (at velocity v,) of the end of the
shear spring, and the extension of the spring in response to stick-
slip motion between the upper and lower surfaces. The canoon
illustrates schematically the geometry in the SFB (for details see
Ref. [22]). Motion of the spring end (lower trace) commences at
the point O, and the initial stick spike (upper trace) is character-
istically larger than subsequent stick spikes (the slight downward
trend of the stick-slip cveles is due to thermal drift). The points v
and s, indicated for clanity only for one (circled) cycle, are the
vield and solidification poimts of the confined film.

(a) ,¥

1?
1sec 5
Iﬁx: 20nm
(c) 4
5 Y 40x10%sec

FIG. 2 (color online). (a) A single typical stick-slip cyele
(region similar to the marked cycle in Fig. 1. but from a different
experiment recorded via a LeCroy 9310M recording oscillo-
scope) for friction between mica surfaces across a 35 = 3 A film
of OMCTS (n = 4 monolavers) under a load of 42 uN. The
contact arca A at this load. evaluated from Johnson-Kendall-
Roberts contact mechanics expression [14], is A = (4 = 0.4) X
107" m?. Traces (b) and (c) focus on the slip region of the same
cycle at magnified time scales. where @ and b are. respectively,
stick and slip regions, x;, and Ax, are. respectively. the spring
bending at the yield point v and the extent of slip from y to 5. The
SFB shear-spring constant K = 97 N/m. while the mass of the
moving surface and its mount is M = 1.47 g. The dashed curve
(red online) is the predicted variation x(r) given by Eq. (2) in the
text, with a value of B corresponding to an effective viscosity of
the OMCTS film given by 7, = 27 Pas. The dotted curve (red
online) corresponds to the predicted variation of x(r) with the
viscosity of the OMCTS film given by its bulk value 7y, =
25X 107" Pas.

IV.6a. “Viscosity” of the confined film (stick-slip)

experiment:
Jacob Klein,
Phys.Rev.Lett.
98 (2007) 056101
“Frictional dissipation
in stick-slip sliding”

= 10*nomers

Problem II:
the viscosity of a thin
confined film is many
orders of magnitude
higher than the bulk
viscosity



V.

IV.6b. Solution: Earthquakelike model

Experiment: 7 ~ 10* nopvcrs

(J.Klein, Phys.Rev.Lett. 98 (2007) 056101)

Theory: earthquakelike model

Parameters: K g
M=147¢ M 7z
K =97 N/m - "'
h=35x10""m s
Fy =18 uN
A=10"1m?
vg = 0.1 pum/s
~ pc2ai
ne =2 x 1011 s71
(bulk OMCTS) s i | o
: 13.45 13.50

Ng =/ K/M E .

=257 s~ 1 32 10
Ts =27 /Qg o

= 0.0245 sec :é' 5 _

on X
guessed / varied: -2 /
Af, = 0.01f, a O
74="5x 10"% sec
IV = 4080 0 5 0 5 20
kN = 2000 N/m
time (sec)

details




IV.6d. Role of threshold’s dispersion

(a) Af/f=0.003

15

10
p 5
2 of i
\;’ _5:1{1 Lo o s o 1 & o 4 3 1 3 3 331
< 0 5 10 15
% - -
b 15 (b) A /f=0.3
=
o
oo

I J PEPEPEPE B PR B

10 15
time (sec)

0 5

20

20

10

5

15

10

M 1 1 1 2 1
61 15.62 15.63 15.64

[ IR R
15.59 15.60 15.61

time (sec)

The system behavior (either stick-slip or smooth sliding) is controlled by the dispersion Af; :

K" =—max F'(X) ~ Nk (f~f,) /Af.

If Af, is so small that K"™>K, then the motion corresponds to stick-slip;

otherwise the smooth sliding regime 1s achieved.

In the stick-slip regime, an increase of Af, leads to the decrease of the period 7, of stick-slips.
The ratio Af/f, should decrease with the time of stationary contact due to aging of contacts;
namely this aging is responsible for the transition from stick-slip to smooth sliding

with the increase of driving velocity.



V. IV.6e. Role of slider elasticity

Slider of N, layers, each of mass M=M/N,
5 L — coupled by springs of the constant K=KN,

g (fix the bottom, and apply F' to the top;
2:: 10 _ v, then the top will shift on AX=}, [V, AX,,
~ N, 00— where AX,=F/K,, so that AX=F/K as before).
g 5F : Let the top layer be driven with the velocity v,
S =" M.? while the bottom layer be in frictional contact
-y 0 3 . with the bottom substrate.
g. sE ok o .

y P4 The slip kinetics is almost independent

qJob F1e of the number of layers N, and is determined
: by the minimal slider mechanical frequency Q..
| 1 | 1 | 1 | 1 | 1 | 1 |

1.705 1.706 1.707 1.708 1.709 L1710 1.711 1.712
time (sec)

The frequency €. can be found with the help of elastic theory:

Let the slider have a cylinder shape of height L and radius r, and is characterized by the section S=mnr?,
inertial momentum /=mr*/4, mass density o and Young modulus E.

If the cylinder foot is fixed and a force F' is applied to its top,

the latter will be shifted on the distance AX=FL3/3EI .

Thus, the effective elastic constant of the slider is K=3EI/L3.

The minimal frequency of bending vibration of the pivot with one fixed end and one free end

is given by Q=(3.52/L?)(EIl/pS)"* .

Taking M=pSL, we finally obtain QSz2.03\/(K/M).



V.

spring force (uN)

IV.6f. Role of lubricant viscosity details. ..

) 14 3
(a) 7=210"s =107
15
10 10

A

TTTT

" —
L

(=¥ |
Il%l!

0 5 10 15 20 13.62 13.63 13.64 13.65 13.66

20 (b) 7=210"s = 1077, .

o
IIIIHII

5
0 | R - l A_A__R_N l A __ A 1 l | I — ]
0 5 10 15 20 13.29 13.30 13.31 13.32 13.33
16 5
— x — p-
20 (©) =210 s=1017n_ .
15 =
10 =
0 5 10 15 20 12.53 12.54 12.55 12.56 12.57

time (sec)

time (sec)



V.

IV.6g. Role of interaction between the contacts

The elastic interaction between the contacts is described by the potential V(r)=g/r>.

The interaction becomes important, when g/a*~f.a, where a is the distance between NN contacts.
How the system behavior changes with the dimensionless parameter &=g/(f.a*) ?

The interaction between the contacts works roughly in the same way as the dispersion Af :

the stronger is the interaction, the wider is the range of model parameters where stick-slip operates.
Fig: system kinetics with increasing interaction (& = 0 to 0.3) for AN=200 N/m, Af,/f =0.3.

The system quickly goes to smooth sliding for noninteracting contacts (a),

but demonstrates stick-slip for a strong interaction £=0.3 (d).

0.10 I T T . T T T ™
(a) E.,=0 C (a) €=0
10 = 00sf =¢M’//"\/\-:
5 = F 1
0.00 bt et N— ]
0 - 2.22 2.23 224 225
- 10 (b) §=01 3 0.4 -' (b) E,=0.l -
ERE = o '_
O 0 : 0.0 PN Y AW s ) P, P T
O 1.89 1.90
qg (C) §=0.2 1.0 ET T 1] T T T T T T T _] —TT =
0 10 = (c) =02 _5
g = ;\q 5
% 0 I 0.0 AP 1 I M .
1.51 1.52
10 (d)&=03 > @ (d) £=0.3 '
5 2’3 0.5F i
0 i 5 I 1 L . 0.0 e - | L O AN O O
0 | 2 3 4 5 1.30 1.31 1.32

time (sec) time (sec)



V.

IV.7a. Nonzero temperature

When T > 0, the contact may relax due to a thermally activated jump
before the threshold z, is reached. The rate of this process is

dQ(t)/dt = h(z;z,) Qt) (v < )

For the set of contacts, this equation is to be generalized to

dQ(t)/dt = H(z) Q(t) with H(z) = [~ dz' h(z;2") P.(z')

If X =wt, then P(z) — Pr(z) = P(x) + H(x)/v in the ME.

. P(Ix) ,

h

CoT=03

L —P,(x) wkv=10
| —— P (x) o/kv=3
P,{x) w'kv=1
—_— P,{x) w/ikv=0.23
[EEEE P(x) w/kv=0
P AX)

w/kv=1

| —P =

——P(x) T=0.3
P (x) T=0.1
——— P(x) T=0.03

ke,

1.0

P.(z) is Gaussian with s =1 and o5 = 0.05
Qini(7) is Gaussian with Zini = 0.1 and gini = 0.025



V. IV.7b. T>0: the steady state

Q (%)

In the limit v — 0, all contacts

will finally break if T' # 0,

so that Q4(x) — d(z) and Fj, — O;

in this limit we have “smooth sliding”

0.5

04

0.3‘!

02 |

0.1

soft / stiff contacts (a) _

—_—- v=0.1
———— v=0.01

—mmmy=10
v=1

0.1

00 &

0.0

corresponded to creep motion of contacts.

0.5

dF Jdv >0 >

stable



V.

F
0 m ewl m e m \szszszszsul m
$s8d E5ad 5  EEEE
Frrrrrrprrrrrr e
(a) loading curve 1333
F(7) 800
= 600

400
200

(c) distribution of

fraction of

attached contacts

as a function of

the block number ;

and time .

The regions with

attached contacts =
blue color,

detached = red color.

1200
1-2F 1000
I 800
D
I o4 400
[ 200
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IV.8. Onset of sliding (soft surface contacts, K .=K)
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V. P.(x) Probability distribution of thresholds P_(x)

P.(f,) is the distribution of (static) friction force thresholds of the contacts.
If a given contact has an area A, then it is characterized by

the static friction threshold f, oc A and the elastic constant k ~ pc?vA
(here p is the mass density and c is the sound velocity).

The displacement threshold for the given contact is x5 = fs/k,

so that f, oc 22, or df,/dx, x z,.

Using the relationship P.(xs) dzs = ﬁc( fs) dfs, we obtain

Pc(xs) X xsﬁc[fS(xS)]
Systems:

» dry friction: b me o A
contact of rough surfaces . Bl A

» dry or lubricated friction:
contact of polycrystalline substrates

> lubricated friction:
Lifshitz-S16zov coalescence




V. V.2a. P.(x): contact of
rough surfaces

Rough surface: hills of heights {h;} distributed with

Py(h) = h™texp(—h/h) ©(h), where h is the average height.

Greenwood and Williamson: all hills have spherical shape of radius r.
When this surface is pressed with another rigid flat surface, which takes

a position at the level hg, then the hills of heights h > hg will form contacts.

Elastic contacts: the contact of height h — compression (h — hg) —
area 7r(h— ho) — it bears the normal force f;(h) ~ (47 /3)E*rY/2(h—hg)3/?
(E* = the effective Young modulus).

Assume that fs(h) ~ ufi(h), where p < 1 is a constant.

Then P.(fs) is coupled with Pp(h) by P.(fs) dfs o Pn(h) dh, or

Po(f) oc f1/3e B Py(a) o /3 exp(—B'a3), By oc [hr'/3(uE)2/3]
Plastic contacts: the local pressure on contacts = pjpaq = H = hardness.
The normal force at the contact is f;(h) ~ wr(h — ho)H.

Assume: fo(h) ~ pfi(h) = fs = mr(h — ho)uH and P.(fs) o Py [h(fs)], or

P.(f) < exp(—Baf), or P.(z) < zexp(—B"x?), whereBy = (mhruH)™!



V.2b. Contact of rough surfaces: P (x) & F,
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V.

activation energy

N=896 (28x32)
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1. Calculating a histogram of &, (¢),
we obtain the distribution P,(f,)
if all domains have the same size N
and all angles are equally presented.

2. Averaging over domain sizes N
with a weight function w(IN) = e~ N/V,
where N is the average domain size,
we obtain the distribution P.(x)

(N = 50 in the figure).




V. v.4. P (x): Lifshitz-Slé6zov
coalescence

Melting /freezing: the lubricant melts during slip and solidifies at stops.
Lifshitz-Slozov: grains of solid phase emerge and grow in size, © /3.
Distribution: the number of grains with the radius from r to r + Ar

is equal to Prg(r/7) Ar/7, where

u? exp[—1/(1—2u/3)]
Prs (U) X (u—|—3)7/3<%—U)11/3

When the size of a grain exceeds
the film thickness d,

1.0 — =l
it pins the surfaces. Using ---=- =10
~ = |l 5 0 mee =100
P.(f)df < PpLs(r/T)dr/7, we obtain g ——— =1000

P.(f) o< (dr/df) Pis(r/7) /7.

0.5 ‘
A single grain: '
fs oxx w(r? —d?/4) for r > d/2 , ,
thus dr/df oc f~1/2. L4 3 /\
0.0 g, . . i 2 A A
5 10

Finally, P.(z) = Prs(u), where
w=p~L(1+Bx?)"? p(t) = 27(t)/d

and B is determined by the system parameters.




Conclusion

The complex problem of behavior of the tribological system is split into

two independent subproblems:

(/) to find the distribution of static thresholds P.(x) for a given system
(a separate problem for MD)

(/]) dynamics of the friction contact, if the distribution P (x) is known

» EQ model with a distribution of thresholds

» EQ model reduces to Master Equation

» includes: delay effects, aging, 7>0, interaction (MF)

» describes the dependences of frictiononv & T

» stick-slip € -2 smooth sliding:
macroscopic smooth sliding = uncorrelated microscopic stick-slip;
macroscopic stick-slip = correlated microscopic stick-slip

» huge “viscosity” of a thin film emerges due to sequential melting/sliding
of different domains one by one because of film’s non-homogeneity

Perspective:

» certain systems, taking into account all effects simultaneously
» further development: combine with elastic eqgs., X=X(r)
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