
2063-8

ICTP/FANAS Conference on trends in Nanotribology

BRAUN Oleg M.

19 - 24 October 2009

Academy of Sciences of Ukraine
Institute of Physics
46 Prospekt Nauki

03028 Kiev 39
UKRAINE

Friction on a mesoscale



Friction on a mesoscale

Abstract
Nanofriction on a mesoscopic scale is considered with the help of an earthquakelike 
(EQ) model. Kinetics of the EQ model with a distribution of static thresholds is 
reduced to a master equation which can be considered analytically. This approach 
naturally describes stick-slip and smooth sliding regimes of tribological systems 
within a framework which separates the calculation of the friction force from the 
studies of the properties of the contacts. The role of physical parameters which 
determine stick-slip against smooth sliding is clarified. The model can explain 
tribological experiments in considerable detail without the need of any special 
properties of the lubricant film such as, e.g., its huge viscosity.
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Standard experimental technique

• measured: spring force 
(“tribological” friction � = Ffriction/Fload )
• control parameters:

� vspring (pulling velocity)
� kspring (machine stiffness)
� Fload (loading mass)
� T (temperature)

Modern experimental techniques
Surface Force Apparatus (SFA)
Tabor and Winterton (1969); Israelaschvili
• atomically flat mica plates
• thickness is controlled optically (with accuracy of ~1Å)

Friction Force Microscope (FFM)
Quartz-crystal microbalance

I. Introduction



Regimes:
� Hydrodynamic lubrication (Reynolds 1886) — for a thick liquid layer (> 0.01 mm)

� Navier–Stokes equations with appropriate boundary conditions
� Boundary lubrication — for a thin (few Å) lubricant film

� at stop/start, (almost) always the regime of boundary lubrication occurs
�Wearing (destroying of surfaces)

Static vs kinetic friction:
� Static friction — to start motion
� Kinetic friction — to keep the slider moving smoothly

Main laws (da Vinci, Amontons, Euler, Coulomb):
(1) μ = Ffriction/Fload � constant < 1
(2) μkinetic < or << μstatic, and μkinetic is approximately independent of  v
(3) stick-slip and smooth sliding:

low velocity &/or soft system       high velocity &/or stiff system

I.



Some results
μ = Ffriction/Fload � constant < 1

Bowder & Tabor 1950: Even a surface which appears to be flat on a millimeter scale
may contain micrometer-scale asperities, i.e., the surfaces are rough

A real (actual) contact area Areal ~ Fload, and Areal grows until the external loading force 
will be balanced by the contact pressure integrated over Areal

Let Preal load = PloadA/Areal is the real pressure at the contact. Then:
• at low Preal load < Pyield (elastic regime) the number of contacts increases with load
• at high Preal load > Pyield (plastic regime) the area of a contact increases with load

I.

A thin film (less than 10 molecular diameters) is almost always layered, because
the substrates induce crystalline order in the film
(solidify / freeze the lubricant, Thompson et al 1995).

When the width is less than about three layers, most films behave like solid
“Memory / age” effects: frictional forces depend on the previous dynamical history of

the solid–solid contact(s), e.g., μstatic(t) � as + bs ln(t) and μkinetic(v) � μstatic(a� /v)
with the characteristic length a� ~ 1 μm (plasticity of the system)



O.M.Braun & M.Peyrard, Phys. Rev. E 63 (2001) 046110 "Friction in a solid lubricant film"
O.M.Braun & A.G.Naumovets, Surf. Sci. Reports 60 (2006) 79 "Nanotribology:

Microscopic mechanisms of friction“

Microscopic 3D MD modelII. Simulation
the MD model must be three-dimensional!

Langevin equations:
Due to the driving force, an energy is pumped into the system
This energy must finally be removed from the driven system

A standard approach is to use Langevin equations for only few layers far from the interface. 
But: a competition “large system � long times”, 
while the most important is a detailed modelling of the interface itself.
Solution: to use Langevin equations for all lubricant and substrate atoms



II.2. Simulation results

LoLS (Layer over Layer Sliding)
(“soft” lubricant, f=0.008)(“soft” lubricant, f=0.008)ff

Perfect sliding (“superlubricity”)
(“hard” lubricant)

“Amorphous” lubricant structure
(“hard” lubricant, T=0.3,  f=0.008)f )f

LS (Liquid Sliding)
(“hard” lubricant, T=0.4, f=0.01, vtop=0.6)

II.



soft lubricant:
Vll < Vsl
vsmooth=1

II.3. Stick-slip to smooth sliding transition
low driving velocity:              high driving velocity:

stick-slip                               smooth sliding

(Vsl = 1/3)

hard lubricant:
Vll >> Vsl

vsmooth=0.1

II.

simulation: vc ~ atomic scale  vc ~ 10–2c ~ 10 m/s – huge!
experiment: vc ~ 0.1÷1 �m/s

Problem I:

O.M.Braun, M.Peyrard, V.Bortolani, A.Franchini, A.Vanossi, Phys. Rev. E 72 (2005) 056116
"Transition from smooth sliding to stick-slip motion in a single frictional contact"



LoLS, soft lubricant, LS, hard lubricantLS, hard lubricant

II.4. “Viscosity” of a thin film (smooth sliding)

h

F, v

Experiments (Granick et al, 1991; Thompson et al, 1995; etc):
the viscosity of a thin film is many orders of magnitude higher than the bulk viscosity

Estimation (typical values):
A � 10�10 m2
F � 20 �N
h � 3.5× 10�9 m (4 OMCTS molecular layers)
� = (F/A)(h/v) (from f = F/A = � dv/dz)

experiment: v � 1 �m/s � � � 700 kg
m s

simulation: v � 1 m/s � � � 0.7× 10�3 kg
m s

(recall: �bulk � 2.5× 10�3 kg
m s)

Estimation (typical values):
A � 10�10 m2
F � 20 �N
h � 3.5× 10�9 m (4 OMCTS molecular layers)
� = (F/A)(h/v) (from f = F/A = � dv/dz)

experiment: v � 1 �m/s � � � 700 kg
m s

simulation: v � 1 m/s � � � 0.7× 10�3 kg
m s

(recall: �bulk � 2.5× 10�3 kg
m s)

II.

Problem II:

?   ?   ?   ?   ?   ?   ?   ?   ?   ?   ?   ?   ?



The earthquakelike (EQ) model

As the top stage moves, the surface stress at any junction increases,  fi(t)=kixi(t),
where  xi(t) is the shift of the i-th junction from its unstressed position.
A single junction is pinned whilst  fi(t)<fsi, where  fsi is the static friction threshold for it.
When the force reaches  fsi,  a rapid local slip takes place, 
during which the local stress in the block drops to the value  fbi~0.
Then the junction is pinned again, and the whole process repeats itself.

R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am. 57 (1967) 341
Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68 (1992) 1244
B.N.J. Persson, Phys. Rev. B 51 (1995) 13568
O.M. Braun and J. Röder, Phys. Rev. Lett. 88 (2002) 096102

Pc(xs) – probability distribution of 
the thresholds xsi=fsi/ki
at which the contacts break

Q(x;X) – distribution
of the stretchings xi when the top 
substrate is at a position X

III. EQ & ME



P (x) = Pc(x)
.R�

x
d�Pc(�)P (x) = PcPP (x)))

.....RRR�
x

RR
d�PcPP (�)

III.2. The master equation (ME)
Q(x;X) - the distribution of the stretchings xi when the bottom of the slider is at X.
Pc(xs) - probability distribution of values of the thresholds xsi at which contacts break.
R(x) - probability distribution of values of the displacements x for “newborn” contacts.

Consider a small displacement  �X > 0  of the bottom of the solid block.
It induces a variation of the stretching  xi of the asperities which has the same value  �X.
The displacement  X leads to three kinds of changes in the distribution,
which can be written as a master equation for Q(x;X):

(1) the first term is just the shift due to the global increase of the stretching;
(2) some contacts break because the stretching exceeds the maximum that they can stand:

(3) those broken contacts form again after a slip:

�Q�(x;X) = P (x)�XQ(x;X),�Q�(x;X) = P (x)�XQ�� (x;X),

�Q+(x;X) = R(x)
R�
�� d��Q�(�;X)�Q+(x;X) = R(x)
R�
��
RR

d��Q�(�;X)

Finally, with �X�0 we get the integro-differential equation:

�Q(x;X)
�x + �Q(x;X)

�X + P (x)Q(x;X) = R(x)
R�
�� d� P (�)Q(�;X)

�Q(x;X)
�x + �Q(x;X)

�X + P (x)Q(x;X) = R(x)
R�
��
RR

d� P (�)Q(�;X)

Q(x;X +�X) = Q(x��X;X)��Q�(x;X) + �Q+(x;X)Q(x;X +�X) = Q(x��X;X)��Q�(x;X) + �Q+(x;X)

III.

the number of contacts 
to be broken =NcPc(x)�X the number of still

unbroken contacts (/Nc) 



III.3a. EQ �� ME (short times)
III.

F (X) = Nchki
R
dx xQ(x;X)

Pc(x) = Gauss (x̄s = 1, �s = 0.05), Qini(x) = Gauss (x̄ini = 0, �ini = 0.025)

F (X) = NcNN hki R dx xQ(x;X)
PcPP (x) = Gauss (x̄s = 1, �s = 0.05), Qini(x) = Gauss (x̄ini = 0, �ini = 0.025)



III.3b. EQ �� ME (long times)

Pc(x) is Gaussian with x̄s = 1 and �s = 0.05,
Qini(x) is Gaussian with x̄ini = 0 and �ini = 0.025
PcPP (x) is Gaussian with x̄s = 1 and �s = 0.05,

Qini(x) is Gaussian with x̄ini = 0 and �ini = 0.025

III.

smooth
sliding !



III.4. The steady state

solution: Qs(x) = C�1�(x)EP (x)
EP (x) = e

�U(x)

U(x) =
R x
0
d� P (�)

C =
R�
0
dxEP (x)

Qs(x) = C
�1�(x)EP (x)

EP (x) = e
�U(x)

U(x) =
R x
0

RR
d� P (�)

C =
R�
0

RR
dxEP (x)

dQ(x)/dx+ P (x)Q(x) = �(x)
R�
�� d� P (�)Q(�)dQ(x)/dx+ P (x)Q(x) = �(x)
R�
��
RR

d� P (�)Q(�)

approach to the stationary state:
|Q(x;X)�Qs(x)| � exp(�X/X�),
where X� � x̄2s/�s

approach to the stationary state:
|Q(x;X)�Qs(x)| � exp(�X/X�),
where X� � x̄2s/�s

III.



IV.1. Friction loop
if �X < 0, then �Q�(x;X) = �Pb(x)�XQ(x;X)
and �Q+(x;X) = Rb(x)

R�
�� dx

0�Q�(x0;X) so that

�Q(x;X)
�x + �Q(x;X)

�X � Pb(x)Q(x;X) = Rb(x)
R�
�� dx

0 Pb(x0)Q(x0;X)

where for the symmetric case (the forward-backward symmetry)
Pb(x) = P (�x) and Rb(x) = R(�x)

if �X < 0, then �Q�(x;X) = �PbPP (x)�XQ�� (x;X)
and �Q+(x;X) = Rb(x)

R�
��
RR

dx0�Q�(x0;X) so that

�Q(x;X)
�x + �Q(x;X)

�X � PbPP (x)Q(x;X) = Rb(x)
R�
��
RR

dx0 PbPP (x0)Q(x0;X)

where for the symmetric case (the forward-backward symmetry)
PbPP (x) = P (�x) and Rb(x) = R(�x)

IV. Generalizations



IV.2. Delay in contact formation

= v��m; 
dFk/dv < 0  � instability

= v��m�� ; Pc(x) is Gaussian with x̄s = 1 and �s = 0.2
Qini(x) is Gaussian with x̄ini = 0.1 and �ini = 0.025

PcPP (x) is Gaussian with x̄s = 1 and �s = 0.2
Qini(x) is Gaussian with x̄ini = 0.1 and �ini = 0.025

IV.

�Q+ � �Q+(x;X +�Xm), where �Xm = v�m (v is the driving velocity)
and �m is a “delay” time, i.e.,

the time of break-formation (melting-freezing) of a new contact

� eQ(x;X)
�x + � eQ(x;X)

�X + P (x) eQ(x;X) = R(x) R��� dx0 P (x0) eQ(x0;X ��Xm)

�Q+ � �Q+(x;X +�X�� m), where �X�� m = v�m�� (v is the driving velocity)
and �m�� is a “delay” time, i.e.,

the time of break-formation (melting-freezing) of a new contact

� eQ(x;X)
�x + � eQ(x;X)

�X + P (x) eQ(x;X) = R(x) R���RR
dx0 P (x0) eQ(x0;X ��X�� m)



IV.3a. Aging of contacts:  Pc(x)  changes with timeIV.

An interplay of two processes: the aging which moves Pc(x) to Pcf (x),
and the breaking/reborn process which returns Pc(x) to Pci(x)

�Q(x;X)
�x + �Q(x;X)

�X + P (x;X)Q(x;X) = �(x)
R�
�� dx

0 P (x0;X)Q(x0;X)
�Pc(x;X)

�X �DX bLxPc(x;X)+P (x;X)Q(x;X) = Pci(x) R��� dx0 P (x0;X)Q(x0;X)
Pc(x;X) = P (x;X) exp

£� R x0 d� P (�;X)¤
where DX = D/v and v = dX(t)/dt
The case of fast driving (v ��, DX � 0): Pc(x) = Pci(x)
The case of slow driving (v � 0, DX ��): Pc(x) = Pcf (x)

An interplay of two processes: the aging which moves PcPP (x) to PcfPP (x),
and the breaking/reborn process which returns PcPP (x) to PciPP (x)

�Q(x;X)
�x + �Q(x;X)

�X + P (x;X)Q(x;X) = �(x)
R�
��
RR

dx0 P (x0;X)Q(x0;X)
�PcPP (x;X)

�X �DX bLxPcPP (x;X)+P (x;X)Q(x;X) = PciPP (x)
R�
��
RR

dx0 P (x0;X)Q(x0;X)

PcPP (x;X) = P (x;X) exp
£� R x0RR d� P (�;X)

¤
where DX = D/v and v = dX(t)/dt
The case of fast driving (v ��, DX � 0): PcPP (x) = PciPP (x)
The case of slow driving (v � 0, DX ��): PcPP (x) = PcfPP (x)

Let Pci(x) be the threshold distribution for “newborn” contacts
characterized by the average value x̄si and the dispersion �si.
Typically x̄s grows while �s decreases with time, and �nally at t��
Pc(x) approaches Pcf (x) with x̄sf > x̄si and �sf < �si.

If the evolution of Pc(x) corresponds to a stochastic process,
then it can be described by the Smoluchowsky equation

�Pc/�t = D bLxPc, where bLx � �
�x

¡
B(x) + �

�x

¢
,

the “di�usion” parameter D de�nes the rate of aging,
the “potential” U(x) is de�ned by the �nal distribution,

Pcf (x) � exp [�U(x)] so that B(x) = dU (x)
dx

= �dPcf (x)/dx

Pcf (x)
.

Let PciPP (x) be the threshold distribution forff “newborn” contactsnn
characterized by the avaa erage vavv lue x̄si and the dispersion �si.
Typically x̄s grows while �s decreases with time, and �nally at t��
PcPP (x) approaches PcfPP (x) with x̄sf > x̄si and �sf < �si.

If the evolution of PcPP (x) corresponds to a stochastic process,
then it can be described by the Smoluchowsky equation

�PcPP /�t = D bLxPcPP , where bLx � �
�x

¡
B(x) + �

�x

¢
,

the “di�usio�� n” parameter D de�nes the rate of aging,
the “potential” U(x) is de�ned by the �nal distribution,

PcfPP (x) � exp [�U(x)] so that B(x) = dU (x)
dx

= �dPcfP (x)/dx

PcfP (x)
.

{



IV.3b. Aging of contacts: the steady state

dFk/dv < 0  � instability

IV.

(a) The �nal distribution
Qs(x) for DX = D/v =
(a) The �nal distribution
Qs(x) for DX = D/v =

= 10�5 (circles),
= 10�4 (up triangles),
= 3 × 10�4 (crosses),
= 10�3 (down triangles), and
= 10�2 (diamonds).

= 10�5 (circles),
= 10�4 (up triangles),
= 3 × 10�4 (crosses),
= 10�3 (down triangles), and
= 10�2 (diamonds).

Inset: the kinetic friction force Fk
in the steady state versus
the driving velocity v (hkii = 1).

Inset: the kinetic frff iction force FkFF
in the steady state versus
the driving velocity v (hkii = 1).
(b) The distributions Pc(x)
[larger circles show
the initial Pci(x) (red) and
the �nal Pcf (x) (blue)].

Pci(x) is Gaussian
with x̄si = 0.5 and �si = 0.1,
Pcf (x) is Gaussian
with x̄sf = 1 and �sf = 0.01.

(b) The distributions PcPP (x)
[larger circles show
the initial PciPP (x) (red) and
the �nal PcfPP (x) (blue)].

PciPP (x) is Gaussian
with x̄si = 0.5 and �si = 0.1,
PcfPP (x) is Gaussian
with x̄sf = 1 and �sf = 0.01.



IV.4. Slider dynamics: Elastic instabilityIV.

The force at the substrate/lubricant interface
F = K(Xd �X) (*) must be equal to
the force F (X) from friction contacts.
When Xd and X increase, the substrate
remains stationary as long as dXd/dX > 0.

dXd/dX = 0, or F 0(X) � dF (X)/dX = �K (**)
just de�nes the maximal displacement Xm which
the contacts can sustain; a larger displacement
will broke all the contacts simultaneously,
and at this moment all contacts will reborn.

OR:

The total potential energy of the sliding
interface plus the elastic substrate is

V (X) =
RX
0
dX0 F (X0) + 1

2K(X �Xd)2;
then Eq.(*) 	 V 0(X) = 0;
it is stable if V 00(X) > 0, so that
the unstable displacement is de�ned by
V 00(X) = 0 	 Eq.(**)

The force at the substrate/lubricant interface
F = K(Xd �X) (*) must be equal to
the force F (X) from friction contacts.
When Xd and X increase, the substrate
remains stationary as long as dXdX /dX > 0.

dXd/dX = 0, or F 0(X) � dF (X)/dX = �K (**)
just de�nes the maximal displacement XmXX which
the contacts can sustain; a larger displacement
will broke all the contacts simultaneously,
and at this moment all contacts will reborn.

OR:

The total potential energy of the sliding
interface plus the elastic substrate is

V (X) =
RX
0

RR
dX0 F (X0) + 1

2K(X �XdX )2;

then Eq.(*) 	 V 0(X) = 0;
it is stable if V 00(X) > 0, so that
the unstable displacement is de�ned by
V 00(X) = 0 	 Eq.(**)

K* = � maxF'(X) � Nk (fs�fb) /�fs



IV.5. Elastic instability + delay � stick-slip

Spring force Fd(t)
for different values
of the delay time �d
(parameters from: J.Klein,
PRL 98 (2007) 056101)

Despite the soft
spring constant
K=97 N/m <<
K*=4.34×104 N/m,
stick-slip is only found
for sufficiently large �d

IV.



experiment:
Jacob Klein,

Phys.Rev.Lett.
98 (2007) 056101

“Frictional dissipation
in stick-slip sliding”

� � 104 �OMCTS

IV.6a. “Viscosity” of the confined film (stick-slip)

Problem II:
the viscosity of a thin
confined film is many
orders of magnitude 
higher than the bulk
viscosity

IV.



IV.6b. Solution: Earthquakelike model
Experiment: � ~ 104 �OMCTS
(J.Klein, Phys.Rev.Lett. 98 (2007) 056101)
Theory: earthquakelike model
Parameters:
M = 1.47 g
K = 97 N/m
h = 3.5 × 10�9 m
Fs = 18 �N
A = 10�10 m2

vd = 0.1 �m/s
k � 	c2ai
�c = 2 × 1011 s�1
(bulk OMCTS)

�S =
p
K/M

= 257 s�1

�S = 2
/�S
= 0.0245 sec

guessed / varied:
�fs = 0.01fs
�d = 5 × 10�4 sec
N = 4080
kN = 2000 N/m

Parameters:
M = 1.47 g
K = 97 N/m
h = 3.5 × 10�9 m
FsF = 18 �N
A = 10�10 m2

vd = 0.1 �m/s
k � 	c2ai
�c = 2 × 1011 s�1
(bulk OMCTS)

�S =
p
K/M

= 257 s�1

�S� = 2
/�S
= 0.0245 sec

guessed / varied:
�fs = 0.01fs
�d�� = 5 × 10�4 sec
N = 4080
kN = 2000 N/m

IV.

�F ~ t 3
�F ~ t 2

details



IV.6d. Role of threshold’s dispersionIV.

The system behavior (either stick-slip or smooth sliding) is controlled by the dispersion �fs :
K* = � max F'(X) � Nk (fs�fb) /�fs 

If �fs is so small that K*>K, then the motion corresponds to stick-slip; 
otherwise the smooth sliding regime is achieved. 

In the stick-slip regime, an increase of �fs leads to the decrease of the period �ss of stick-slips. 
The ratio �fs/fs should decrease with the time of stationary contact due to aging of contacts; 

namely this aging is responsible for the transition from stick-slip to smooth sliding 
with the increase of driving velocity. 

details…



IV.6e. Role of slider elasticityIV.

The frequency �S can be found with the help of elastic theory:
Let the slider have a cylinder shape of height L and radius r, and is characterized by the section S=�r2,
inertial momentum I=�r4/4, mass density � and Young modulus E.
If the cylinder foot is fixed and a force F is applied to its top, 
the latter will be shifted on the distance �X=FL3/3EI . 
Thus, the effective elastic constant of the slider is K=3EI/L3.
The minimal frequency of bending vibration of the pivot with one fixed end and one free end
is given by �S=(3.52/L2)(EI/�S)1/2 . 
Taking M=�SL, we finally obtain �S�2.03�	K/M). 

Slider of Nl layers, each of mass Ml=M/Nl,
coupled by springs of the constant Kl=KNl
(fix the bottom, and apply F to the top;
then the top will shift on �X=�l=1

N
l �Xl,

where �Xl =F/Kl, so that �X=F/K as before). 
Let the top layer be driven with the velocity vd,
while the bottom layer be in frictional contact 
with the bottom substrate. 

The slip kinetics is almost independent 
of the number of layers Nl and is determined 
by the minimal slider mechanical frequency �S. 



IV.6f. Role of lubricant viscosityIV. details…



IV.6g. Role of interaction between the contactsIV.
The elastic interaction between the contacts is described by the potential V(r)=g/r3. 
The interaction becomes important, when g/a3
fsa, where a is the distance between NN contacts.
How the system behavior changes with the dimensionless parameter �=g/(fsa4) ?
The interaction between the contacts works roughly in the same way as the dispersion �fs:
the stronger is the interaction, the wider is the range of model parameters where stick-slip operates. 
Fig: system kinetics with increasing interaction (� = 0 to 0.3) for kN=200 N/m, �fs/fs=0.3.
The system quickly goes to smooth sliding for noninteracting contacts (a), 
but demonstrates stick-slip for a strong interaction �=0.3 (d). 



IV.7a. Nonzero temperature
When T > 0, the contact may relax due to a thermally activated jump
before the threshold xs is reached. The rate of this process is

dQ(t)/dt = h(x;xs)Q(t) (x < xs)

For the set of contacts, this equation is to be generalized to

dQ(t)/dt = H(x)Q(t) with H(x) =
R�
x
dx0 h(x;x0)Pc(x0)

If X = vt, then P (x)� PT (x) = P (x) +H(x)/v in the ME.

When T > 0, the contact may relax due to a thermally activated jump
before the threshold xs is reached. The rate of this process is

dQ(t)/dt = h(x;xs)Q(t) (x < xs)

For the set of contacts, this equation is to be generalized to

dQ(t)/dt = H(x)Q(t) with H(x) =
R�
x

RR
dx0 h(x;x0)PcPP (x0)

If X = vt, then P (x)� PTPP (x) = P (x) +H(x)/v in the ME.

IV.

Pc(x) is Gaussian with x̄s =1 and �s =0.05
Qini(x) is Gaussian with x̄ini =0.1 and �ini =0.025
PcPP (x) is Gausuu sian witww h x̄s =1 andnn �s =0.05
Qini(x) is Gausuu sian witww h x̄ini =0.1 andnn �i��ni =0.025

T

v



IV.7b. T>0: the steady state

In the limit v � 0, all contacts
will �nally break if T 6= 0,
so that Qs(x)� �(x) and Fk � 0;
in this limit we have “smooth sliding”
corresponded to creep motion of contacts.

In the limit v � 0, all contacts
will �nally break if T 6= 0,66
so that Qs(x)� �(x) and FkFF � 0;
in this limit we have “smooth sliding”
corresponded to creep motion of contacts.

IV.

dFk/dv > 0  � stable

T



IV.8. Onset of sliding (soft surface contacts, Ks=K)
F

mmm m
F

mmm m

Bars set up a correspondence between
the colors and the force in Newton  (b)
and the fraction of detached contacts in % (c, d).

(a) loading curve
F(t)

(c) distribution of
fraction of 
attached contacts
as a function of
the block number j
and time t. 
The regions with
attached contacts =

blue color,
detached = red color. 

(b) distribution of 
elastic forces in the slider
as a function of 
the block number j
and time t.
The unstressed and 
stressed regions are 
displayed by blue 
and red colors. 

(d) enlarged view
of the fast detachment
front from (c) 
showing an excitation
of a secondary 
Rayleigh front 
by the slow fronts

experiment: S.M. Rubinstein, G. Cohen & J. Fineberg,
Nature 430, 1005 (2004); Phys. Rev. Lett. 98, 226103 (2007)

IV.



Probability distribution of thresholds  Pc(x)

Systems:
� dry friction:

contact of rough surfaces

� dry or lubricated friction:
contact of polycrystalline substrates

� lubricated friction:
Lifshitz-Slözov coalescence

V. Pc(x)
ePc(fs) is the distribution of (static) friction force thresholds of the contacts.
If a given contact has an area A, then it is characterized by
the static friction threshold fs � A and the elastic constant k � 	 c2



A

(here 	 is the mass density and c is the sound velocity).
The displacement threshold for the given contact is xs = fs/k,
so that fs � x2s, or dfs/dxs � xs.
Using the relationship Pc(xs) dxs = ePc(fs) dfs, we obtain

Pc(xs) � xs ePc[fs(xs)]

ePcPP (fsff ) is the distribution of (static) friction force thresholds of the contacts.
If a given contact has an area A, then it is characterized by
the static friction threshold fsff � A and the elastic constant k � 	 c2
A
(here 	 is the mass density and c is the sound velocity).
The displacement threshold for the given contact is xs = fsff /k,
so that fsff � x2s, or dfsff /dxs � xs.
Using the relationship PcPP (xs) dxs = ePcPP (fsff ) dfsff , we obtain

PcPP (xs) � xs ePcPP [fsff (xs)]



Rough surface: hills of heights {hi} distributed with
Ph(h) = h̄

�1 exp(�h/h̄) �(h), where h̄ is the average height.
Greenwood and Williamson: all hills have spherical shape of radius r.
When this surface is pressed with another rigid �at surface, which takes
a position at the level h0, then the hills of heights h > h0 will form contacts.

Elastic contacts: the contact of height h � compression (h � h0) �
area 
r(h�h0)� it bears the normal force fl(h) � (4
/3)E�r1/2(h�h0)3/2
(E� = the e�ective Young modulus).
Assume that fs(h) � �fl(h), where � < 1 is a constant.
Then ePc(fs) is coupled with Ph(h) by ePc(fs) dfs � Ph(h) dh, or
ePc(f ) � f�1/3e�B1f2/3 , Pc(x) � x1/3 exp(�B0x4/3), B1 � £h̄r1/3(�E�)2/3¤�1
Plastic contacts: the local pressure on contacts = pload = H = hardness.
The normal force at the contact is fl(h) � 
r(h � h0)H .
Assume: fs(h) � �fl(h) � fs = 
r(h � h0)�H and ePc(fs) � Ph [h(fs)], or
ePc(f ) � exp(�B2f ), or Pc(x) � x exp(�B00x2), whereB2 = (
h̄r�H)�1

Rough surface: hills of heights {hi} distributed with
PhPP (h) = h̄�1 exp(�h/h̄) �(h), where h̄ is the average height.
Greenwood and Williamson: all hills have spherical shape of radius r.
When this surface is pressed with another rigid �at surface, which takes
a position at the level h0, then the hills of heights h > h0 will form contacts.

Elastic contacts: the contact of height h � compression (h � h0) �
area 
r(h�h0)� it bears the normal force flff (h) � (4
/3)E�r1/2(h�h0)3/2
(E� = the e�ective Young modulus).��
Assume that fsf (h) � �flff (h), where � < 1 is a constant.
Then ePcPP (fsf ) is coupled with PhPP (h) by ePcPP (fsff ) dfsff � PhPP (h) dh, or

ePcPP (f ) � f�1/3e�B1f2/3 , PcPP (x) � x1/3 exp(�B0x4/3 ,) B1 � £h̄r1/3(�E�)2/3¤�1
Plastic contacts: the local pressure on contacts = pload = H = hardness.
The normal force at the contact is flff (h) � 
r(h � h0)H .
Assume: fs(h) � �flff (h) � fs = 
r(h � h0)�H and ePcPP (fs) � PhPP [h(fsf )], or

ePcPP (f ) � exp(�B2f ), or PcPP (x) � x exp(�B00x2 , where) B2 = (
h̄r�H)
�1

V.2a. Pc(x): contact of
rough surfaces

V.



V.2b. Contact of rough surfaces: Pc(x) & Fk

Fk � B�3/4 � h̄3/4 for the elastic contacts, and
Fk � B�1/2 � h̄1/2 for the plastic contacts
FkFF � B�3/4 � h̄3/4 for the elastic contacts, and
FkFF � B�1/2 � h̄1/2 for the plastic contacts

V.

(B � 1/h̄)((B � 1//h̄))



V.3. Pc(x): contact of polycrystalline substratesV.

Rigid domain of triangular lattice over
the rigid substrate of square lattice
Rigid domain of triangular lattice over
the rigid substrate of square lattice

(misfit angle)

1. Calculating a histogram of �a(�),

we obtain the distribution ePc(fs)
if all domains have the same size N
and all angles are equally presented.

2. Averaging over domain sizes N
with a weight function w(N) = e�N/N̄ ,
where N̄ is the average domain size,
we obtain the distribution Pc(x)

(N̄ = 50 in the �gure).

1. Calculating a histogram of �a(�),

we obtain the distribution ePcPP (fsff )
if all domains havaa e the same size N
and all angles are equally presented.

2. Averaging over domain sizes N
with a weighth functff ion w(N) = e�N/N̄ ,
where N̄ is the avaa erage domain size,
we obtain the distribution PcPP (x)

(N̄ = 50 in the �gure).

� = 0: � = 15°: � = 30°:



V.4. Pc(x): Lifshitz-Slözov
coalescence

V.

When the size of a grain exceeds
the �lm thickness d,
it pins the surfaces. Using

ePc(f)df � PLS(r/r̄) dr/r̄, we obtainePc(f) � (dr/df)PLS(r/r̄)/r̄.
A single grain:
fs � 
(r2 � d2/4) for r > d/2
thus dr/df � f�1/2.
Finally, Pc(x) = PLS(u), where

u = 	�1
¡
1 +Bx2

¢1/2
, 	(t) = 2r̄(t)/d

and B is determined by the system parameters.

When the size of a grain exceeds
the �lm thickness d,
it pins the surfaces. Using

ePcPP (f)df � PLSPP (r/r̄) dr/r̄, we obtainePcPP (f) � (dr/df)PLSPP (r/r̄)/r̄.

A single grain:
fsff � 
(r2 � d2/4) for r > d/2
thus dr/df � f�1/2.
Finally, PcPP (x) = PLSPP (u), where

u = 	�1
¡
1 +Bx2

¢1/2
, 	(t) = 2 (̄t)/d

and B is determined by the system parameters.

Melting/freezing: the lubricant melts during slip and solidi�es at stops.
Lifshitz-Slözov: grains of solid phase emerge and grow in size, r̄ � t1/3.
Distribution: the number of grains with the radius from r to r + �r
is equal to PLS(r/r̄)�r/r̄, where

PLS(u) � u2 exp[�1/(1�2u/3)]
(u+3)7/3( 32�u)

11/3

Melting/frff eezing: the lubricant melts during slip and solidi�es at stops.
Lifshitz-Slözov: grains of solid phase emerge and grow in size, r̄ � t1/3.
Distribution: the number of grains with the radius from r to r + �r
is equal to PLSPP (r/r̄)�r/r̄, where

PLSPP (u) � u2 exp[�1/(1�2u/3)]
(u+3)7/3( 32�u)

11/3



Conclusion

� EQ model with a distribution of thresholds
� EQ model reduces to Master Equation
� includes: delay effects, aging, T>0, interaction (MF) 
� describes the dependences of friction on v & T
� stick-slip �� smooth sliding:

macroscopic smooth sliding = uncorrelated microscopic stick-slip;
macroscopic stick-slip = correlated microscopic stick-slip

� huge “viscosity” of a thin film emerges due to sequential melting/sliding
of different domains one by one because of film’s non-homogeneity

Perspective:
� certain systems, taking into account all effects simultaneously
� further development: combine with elastic eqs., X=X(r)

The complex problem of behavior of the tribological system is split into
two independent subproblems:
(I)  to find the distribution of static thresholds Pc(x) for a given system

(a separate problem for MD)
(II) dynamics of the friction contact, if the distribution Pc(x) is known
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