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Background:
Description of a simple tribo contact

simple tribo contact:
- no third bodies
- no plastic deformation
strong interactions:
- within solids
weak interactions:
- between substrate & slider

x relative displacement of slider & substrate
   any other explicitly kept variable
u internal degrees of freedom (e.g. phonons)
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Background:
Formal theory for simple tribo contact

V = V(x,0) + Vu(xref,0).u + Vxu(xref,0).(x-xref).u + …

expand:  V(x,u) around reference point xref and uref = 0 

⇒ F = F(x,0) - Vxu(xref,0). u(t) 

deterministic force 
(explicit variables)

stochastic force: Γ(t) 
(implicit/bath variables)

assume:  x moves slowly compared to u
       phonons “equilibrate” at each value of x

    ⇒        Γ(t) satisfies fluctuation-dissipation theorem
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Background
Eliminating “bath modes” in contacts

+ Fext(t)

see, e.g., Smith, Cieplak, Robbins, Phys. Rev. B 54, 8252 (1996)
   Friction on adsorbed monolayers, u = internal modes of layer

in our tribo system: Γ(t) = Vxu(xref,0). u(t)

assuming time 
scale separation

inverse slip time
<< ωDebye

white noise
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Background
Eliminating “bath modes” in contacts

Prandtl-Tomlinson model

if V’’ exceeds k
⇒ Fk is finite and relatively

independent of γ

! 

F
k

= "E /"a
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Prandtl Tomlinson model
Role of damping

For bi-stable potentials: 
Fk barely depends on γ
(at “relevant” velocities v) 

For multi-stable potentials: 
Fk can depend on γ
- (always) discontinuous in both γ and v
- (usually) non-monotonic in both γ and v
- dependence reduced/eliminated by disorder  

Prandtl (1928)
~ const + T ln v  (v large, T small)
~ v.exp(E/kBT)  (v small, T large)
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Origin of solid friction

What is the nature of the instabilities?

What is the nature/magnitude of the dissipation?
- usually irrelevant
  unless significant heating, adsorbed layers,
  superlubric or other viscous systems 

- dislocation motion / plastic deformation 
- third bodies (boundary lubricants)
- chemical reactions including hybridization changes
- phase transformations
- elastic instabilities (incommensurations)
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Damping vs. instabilities (1)

R. J. Cannara et al., Science 318, 780 (2007):
We compared H- and D-terminated single-crystal diamond and silicon surfaces, 
and in all cases the hydrogenated surface exhibited higher friction.  [~30%]

What does linear response say about m-dependance of γ? 

- attempt frequency ~1/√m
- momentum exchange ~m } γ ~ √m How can small damping

lead to large friction?

if nothing but isotope 
mass is changed

Easier H desorption
- small ΔE
- large ν

Mo, Müser, Szulfarska,
Phys Rev B (in press)
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Damping vs. instabilities (2)

T. Filleter et al., Phys. Rev. Lett. 102, 086102 (2009):
The friction on SiC is greatly reduced by a single layer of graphene
and reduced by another factor of 2 on bilayer graphene.  

If slip / pinning occurs at the substrate,
then single layer likely to be “deformed” &
second layer changes energetics of instability

There is an effect of dimensionality
of object on pinning (friction)
Müser, Europhys Lett 66, 97 (2001)
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Elastic instabilities and dimensionality

covalent
physical
covalent

instabilities only if k < ∂2V/∂x2

 MHM, MHM, EurophysEurophys. . LettLett. . 6666, 97 (2004), 97 (2004)

2d elastic sheet: kL = katomic  (no resistance to bending)
3d solid:       kL = L1/2 katomic 

L

Need to analyze how k changes with size:
If on local scale:  kbulk  >  kinterf then on large scale: k’bulk < k’interf ? 

     k

k/2
atomic

atomic
k

L

L
k
L
=1d linear chain
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- dislocation motion / plastic deformation of bulk 
- third bodies
- chemical reactions including hybridization changes
- phase transformations
- elastic instabilities

Origin of solid friction (cont’d)

What is the nature of the instabilities?

What is the nature/magnitude of the dissipation?

Hammerberg et al., Physica D 123, 330 (1998)
Frenkel Kontorova model captures

early time behavior of friction process &
low-dimensional systems (graphene?)

Müser, Tribol. Lett. 10, 15 (2001)
If interactions in atom-based models are tuned to produce elastic
instabilities, irreversible processes such as cold-welding and wear occur.
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Elastic wrinkle instabilities
Examples

not for yet for public exposure
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Elastic wrinkle instabilities
Preliminary results (1)

involved student: Hamid Mohammadi, UWO

not for yet for public exposure
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Elastic wrinkle instabilities
Preliminary results (2)

involved student: Hamid Mohammadi, UWO

Fo
rc

e
0

a time/
slid distance

not for yet for public exposure
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Elastic wrinkle instabilities
Preliminary results (3)

involved student: Hamid Mohammadi, UWO

not for yet for public exposure
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Conclusions

In order to rationalize kinetic (solid/Coulomb) friction,
we need to unravel the instabilities in the system.

- friction of graphite lamella: stiffness-effect

- isotope effect in friction due to stability of D atoms?

It’s the thickness that matters

not for yet for public exposure
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That’s it.

Thanks for
your attention!


