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  AFM in water 

  Friction and 
dissipation 

  STM/AFM  
interpretation 

  Nanomanipulation 

  Charge transfer 
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•  Doping of monovalent insulators with di- or multivalent impurity 
ions leads to the segregation of the so-called Suzuki phase1 at the 
surface – recently shown in high 
resolution AFM images of NaCl:Mg2+. 

•  The impurities are compensated by 
a nearby cation vacancy, producing 
a stable phase with similar geometry, 
but very different elements to the host.    

Na 

Mg 

Cl 

•  Suzuki phases can be formed from many systems 
and impurities e.g. NaCl:Cd2+, NaCl:Fe2+, LiCl:V2+, 
MgO:Mn4+. Their properties in regard to molecular 
adsorption, nanocatalysis and nanomagnetism are 
particularly interesting. 

Phys. Rev. Lett

 100 (2008) 096101 

1K. Suzuki, J. Phys. Soc. Jpn. 10, 794 (1955) and 16, 67 (1961)  

A. S. Foster et al. Phys. Rev. Lett. (2009) 102 256103 
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•  ab initio (PAW-PBE-VASP) 
calculations of bulk and surface 
used as benchmark for fitting of  
atomistic potentials. 

•  Structure matches experiments and 
ab initio. 

•  Atomic displacement profiles also 
match.   

•  Considered several tip models, 
including NaCl:Mg and NaCl:Cd 
based models. 

•  Upper third of tips and lowest 
layer of surface frozen, all other 
atoms allowed to relax fully. 
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•  Simulated images with a Cl-terminated NaCl tip match experimental 
contrast pattern, frequency change and contrast magnitude as a 
function of tip-surface separation. 

•  Clear evidence that experiment was imaging the Suzuki structure on 
the surface with vacancy sites as maximum contrast i.e. minimum 
attraction. All sublattices are resolved. 

•  Other tips 
produced 
characteristically 
different contrast 
or were much 
less stable than 
an NaCl tip. 
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•  NaCl also doped with Cd2+, resulting in the appearance of similar 
Suzuki islands at the surface. 

•  Calculated surface geometries are similar, although Cd induces 
larger displacements at the surface. 

df = 109 Hz df = 112 Hz df = 115 Hz df = 118 Hz 

•  Experimental images 
show a different 
contrast pattern, which 
cannot be seen in 
simulated images of 
NaCl:Mg for any tip – 
no match in 
simulations… 
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•  Termination by an “ideal” NaCl layer has not been considered in 
earlier works. 

•  From ab initio surface energy 
calculations, NaCl:Mg Suzuki 
termination is favoured by 0.3 eV 
over NaCl termination. 

•  For NaCl:Cd the difference is less than 
0.1 eV. 

•  Simulated images 
of the NaCl 
terminated surface 
with a Na-terminated 
tip match 
experiment. 
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Lauritsen et al, Figure 2
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•  Wide gap semiconductor or Narrow Gap insulator, 
can be imaged in STM and AFM. 

•  Even in UHV, residual adsorbates can be seen on 
the surface after a few hours. 

•  Simulations built up a database of STM and AFM 
images of clean, defective and water covered 
surfaces – tip dependence! 

•  TiO2 remains a model oxide for many 
surface science studies, particularly for 
Scanning Probe Microscopy (SPM).  

•  Technologically important as a catalytic 
substrate, both in photo- and nano-catalysis. 
Also a common biomedical substrate. 
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•  Combining STM and AFM provides access to information not available 
from a single channel alone. 

•  A single OH 
on the surface 
disappears 
from the AFM 
image during 
scanning. 

•  It is still 
visible in the 
STM image. 

•  Proton is manipulated by 
the tip – it is pushed from 
the surface to subsurface 
site. Barrier ~1 eV. 
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•  Controllable 
manipulation can be seen 
when approaching the tip 
closer to the surface. Only 
certain defects are moved. 

•  AFM images as a function of time show the gradual deposition 
of water and the eventual manipulation of some of the resultant 
defects. 
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•  Water is too mobile on  
the ideal surface and must 
adsorb at vacancies. 

•  Initial immovable species are 
OH groups at neutral F-centres? 

•  Over time, charged vacancies 
diffuse to the surface and trap 
molecular water – the  
manipulable species in images? 

•  We use first principles calculations to characterize the barriers 
for adsorption, reaction and migration on the surface. 

Phys. Rev. B 80, 115421 (2009) 
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•  Barrier for water diffusion calculated at each 
tip position on a 7000 point grid, covering 
the area around the path and from 0.6 to 
0.2 nm tip-surface distance.   

•  Manipulation experiments generally have 
contrast characteristic of imaging Ca  
-  negatively terminated tip. 

•  Oxide tips interact too 
strongly with water and 
cannot reduce the  
barrier before desorption. 

•  Annealed a large CaF2 
cluster to form a realistic 
tip contaminated by the 
surface – F termination. 
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Forward barrier Backward barrier 

•  Plots of the barrier as a function of tip height 
demonstrate the influence of the tip on 
the barrier and identify the areas of maximum 
manipulation probability – irreversible? 
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•  Key low barrier area appears already at about 0.45 nm – repulsion 
of fluorine under the tip makes vacancy part of diffusion easier, while 
H-F attraction aids molecular motion. 

•  Closer to the surface, the tip can act as 
part of the molecule’s diffusion path. 
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  Catalysis 

  Nanostructures 

on insulating surfaces 



Cluster nanomanipulation on thin films 
  charge transfer through insulating 
film 

  thin film thickness additional 
degree of freedom for catalyst 
design 

AFM tip!

- 

+ 

  MgO on Ag suitable for catalysis 
and nanomanipulation? 
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Island growth of MgO 

Mg O 
Ag 

Mg O 
Ag 

Schintke et al. JP:CM 16 (2004) 1249 "

Apparent step height varies from  
+0.4 to -0.4 nm in different images 
 - contradicts STM… 
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Computational AFM force spectroscopy 
  first-principles 
calculation of AFM forces 

•  SIESTA (LCAO) 
•  VASP (plane wave) 

MgO tip on Ag surface   MgO and Ag tips (64 and 20 atoms) 
  Ag bulk, MgO bulk, 1ML thin film 
slabs 
  400 eV cutoff, 1.0 – 1.5 nm vacuum 
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Force spectroscopy 
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Designing a tip 

•  Neutral tips will always 
give roughly the real 
step height. 

•  What about polar tips? 

•  Long-range 
electrostatic forces 
make no difference to 
imaging silver… 

•  …but couple with 
dipole of MgO thin film. 
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Ag bulk MgO film 

• 

 Effective height a function of the polarity of the tip. 



 
 

Designing a tip 



Nanomanipulation? 
  controlled growth of MgO  
   on Ag difficult  
  working on improving 
surface quality 

  successful nanomanipulation 
of Au clusters on NaCl  

  other systems also 
investigated 
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Nanomanipulation? 

  anisotropic 
  simulations 
   to follow ...    
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•  Imaging of MgO thin films strongly 
influenced by polarity of tip…
nanomanipulation? 
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•  Ongoing studies of Suzuki islands to 
take advantage of the unusual surface 
properties in nanocatalysis and 
nanotemplating. 

•  Coupling of adsorbates on TiO2 – 
contrast as a function of separation. 
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