

2063-26

ICTP/FANAS Conference on trends in Nanotribology

19 - 24 October 2009

Triggering frictional slip

Stefano Zapperi CNR-INFM Modena Ita;y

Triggering Frictional slip

Stefano Zapperi CNR-INFM, Modena

Vibration induced slip: Rosario Capozza Andrea Vanossi Alessandro Vezzani

see: Phys. Rev. Lett. 103, 085502 (2009)

Thermal induced slip: Marco Reguzzoni Mauro Ferrario M. Clelia Righi

submitted to PNAS

Supported by EU-FP6:

Questions

- Mechanical triggering: can we understand the role of vibration in stick-slip and friction?
- Thermal triggering: How does frictional slip occur in subcritical conditions?

Langevin simulations Repulsive particles Normal load Low driving velocity Low temperature Rigid top & bottom plates

Sinusoidal vibration of the bottom plate

 $Z = A\sin(\omega_0 t)$

Friction suppression

Spectral properties

Friction suppression

To compute the frequency ω_1 we compare the inertial force due to the vibration to the sum of the load and the damping

M: is the total mass (particles+plates)

 M_p : is the mass of the particles F_N : is the load

- : is the damping constant
- *A* : is the vibration amplitude

Using dimensionless variables:

$$\tilde{f} \equiv \frac{F_N}{MA\eta^2} \quad \tilde{m} \equiv \frac{M_p}{M} \quad \tilde{\omega} \equiv \frac{\omega}{\eta}.$$

 $F_{in}(\omega_1) \simeq F_N(\omega_1) + F_{damp}(\omega_1).$

$$MA\omega_1^2 = F_N + M_p \eta A\omega_1$$

$$\tilde{\omega}_1 = \frac{1}{2} \left(\tilde{m} + \sqrt{\tilde{m}^2 + 4\tilde{f}} \right)$$

Friction recovery

Detachment time from the bottom substrate:

$$\Delta t \simeq \dot{Z}_b M / F_N \simeq A \omega_0 M / F_N$$

Rise time of the bottom substrate:

$$t_{rise} = \frac{2\pi}{\omega_0}$$

When the rise timeis equal to the detachment time friction is recovered:

$$\tilde{\omega}_2 = \sqrt{2\pi\tilde{f}}.$$

Comparison with simulations

Phase diagram

Part II Thermally induced slip

Subcritical slip: creep

According to Amontons-Coulomb two surfaces in contact slide if the later force exceeds the static friction force:

$$F_L > F_s = \mu_s F_N$$

and when they move they are subject to the dynamic friction force:

$$F_d = \mu_d F_N$$

but real interfaces creep even below the static limit.

F. Heslot, T. Baumberger, B. Perrin, B. Caroli and C. Caroli, Phys. Rev. E 49, 4973 (1994)

Onset of slip: Xe monolayer on Cu substrate

Cu (111) surface adsorbed Xe atom form a commensurate interface Xe atoms interact via LJ interactions:

 $\epsilon = 20 \mathrm{meV}$

Xe-Cu potential obtained from ab-initio calculations:

 $V_0 = 1.9 \mathrm{meV}$

Constant temperature MD simulations:

$$25^{\circ}\mathrm{K} < T < 100^{\circ}\mathrm{K}$$

Apply a subcritical force to Xe atoms:

 $F < F_s \simeq 2.4 \mathrm{meV/\AA}$

Slip activation time

Nucleation theory

Energy cost of a commensurate domain:

Critical domain size:

$$r_c = \frac{\Gamma\sqrt{3b^2}}{2aF}$$

Energy barrier:

$$U = \frac{\sqrt{3}\pi\Gamma^2 b^2}{2aF} - E_s$$

Domain walls: simulations

Nucleation barrier

Comparison with QCM experiments

Coffey & Krim Phys. Rev. Lett. 2005;95:076101.

Adsorbed noble gas

metal layer

Quartz crystal

A typical QCM operates at the resonance frequency of $\omega_0\simeq 10^7~{\rm s}^{-1}$

with an amplitude $A \simeq 100 {\rm \AA}$ corresponding to a maximum lateral inertial force on the monolayer

$$F_{QCM} = m\omega_0^2 A \simeq 10^{-7} \mathrm{meV/\AA}$$

In order for the film to slide, the nucleation time should be smaller than the experimental time scale. This would be impossible for a perfect Xe/Cu interface where $F_s \simeq 2.4 \mathrm{meV/\AA}$

Conclusions

- Mechanical triggering:
 Under vibration friction is suppressed in a well defined frequency range.
- Thermal triggering:
 Creep in commensurate interface can be understood as a nucleation problem.
 Disorder induced nucleation could explain QCM experiments.

